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Chapter 1: Solution of Nonlinear Equations

Introduction

Analysis versus Numerical Analysis

The word analysis in mathematics usually means to solve a problem through
equations. The equations must then be reduced to an answer through procedures
of algebra, calculus, differential equations, partial differential equations.
Numerical analysis is similar in that prospect that the problems are solved but we
only use simple arithmetic add, subtract, multiply, divide or compare only. Since
these operations are exactly those that computers, so numerical analysis and

computer are closely related

Example:

We need to find the cube root of 2 i.e.3/2 using only arithmetic operations. One
way of solving this could be using trail and error method. We try choosing a value
and multiply itself 3 times so that the value is close to 2. We take new

approximation at get closer the number 2.

1.23 = 1.728 too small

1.43 = 2.744 too large
1.253 = 1.9531 pretty close
1.263 = 2.0004 really close

Now we can say that the cube root of 2 lies between 1.2-1.26, and we can choose
the value according to our need, how accurate we need. Here in above example

we calculated the cube root of 2 just by using simple arithmetic and compare.

Another difference between a numerical result and analytical result is that

numerical result is always approximation. Analytical methods usually give the
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result in terms of mathematical function that can evaluate for specific instances.
This also has the advantage that the behavior and properties of the function are
often apparent, this is not the case for numerical answer, however numerical

results can be plotted to show some of the behavior of the solution.

While the numerical results are an approximation this can usually be as accurate
as needed. The necessary accuracy is of course determined by application and
need. To achieve high accuracy many operations must be carried out, but as these

operations are carried out the computer so that’s not a big problem.

Solution by Taylor series
Taylor series is often used in determining the order of errors for methods and the
series itself is the basic for some numerical procedures.

Lety' = f(x,y),y(x0) = ¥o
(1)

Be the differential equation to which the numerical solution is required.
Expanding y(x) about x = x, by Taylor Series we get

(r=x0)y" (), (x=%0)%" (o)
yx) =y(xo) +— T+

)

— 4 _ 2.,
=y0 _I_(x :?)yo_l_(x xo) Yo + (3)

2!

Puttingx = x4 + h = x4, h=difference we have

hyl hzy” h3ylll
Y1=Y(x1)=YO+1_!O+2—!O+3—!O--- 4)

Here y§,¥o,V4 ... can be found using equation (1) and its successive

differentiation at x = x,. The series in (4) can be truncated at any stage if ‘h’ 1s

small. Now having obtained y,;we can calculate y;,y;’,y;" from equation (1) at

X =x9+h

Now expanding y(x) by Taylor series about x = x,, we get

hyl hzyn h3yIII
2=yttt (5)




Proceeding further we get

_ hyn_1 , h%yn_p | h3y;’s
Yn=Yn1t =+ + (6)

2! 3!

By taking sufficient number of terms in above series the value of y, can be
obtained without much error

If a Taylor series is truncated while there are still non-zero derivatives of higher
order the truncated power series will not be exact. The error term for a truncated
Taylor Series can be written in several ways but the most useful form when the
series is truncated after n®"* term is

Example:

Using Taylor series method solve Z—z =x2—y,y(0)=1 at x=
0.1,0.2,0.3 &0.4. Compare the values with exact solution.

Solution

Giveny' = x? —y,y(0) = 1,

X% =07y=1,h=01,x=01,x=02,x=03,x=04

Now

y =x*-y Yo=x3—y,=0—-1=-1

y'=2x—-y' Yo = 2% —yo=2+0-(-1) =1
ylll=2_yll y(l)ll=2_y(1)1=1

yv=—y" yo' =~y =1

By Taylor Series

hyo,  h%yy  R3yg' Rty
=Yoottt g T

y1 =y(0.1)
- 2y 3k (=
:1+0.1( 1)+(0.1) 1+0.1 1+0.1 (-1
1! 2! 3! 4!

=1-0.1 + 0.005 + 0.0001667 — 0.00000417



=0.90516
Now
y; = x% —y; = (0.1)2 — 0.90516=-0.89516
yi =2x; —y; = 2%(0.1) — (—0.89516) = 1.09516
y, =2—-y; =2-1.0951 = 0.90484
Y& = —y}" = —0.90484
By Taylor Series

hy;  h*y;  h3y;"  htyl
Ya=ntrt ottty

v, = ¥(0.2)

0.1%(—0.89516) (0.1)2*1.09516+0.13*0.90484+0.14*(—)

2! 3! 4!

=0.9051 — 0.089516 + 0.0054758 + 0.000150 — 0.00000377

=0.90516+

+

=0.821266
Now
yy = x% —y, = (0.2)2 — 0.8212352 = —0.7812352
Yy = 2%, —yy = 2% (0.2) — (—0.7812352) = 1.1812352
y; =2-—y;, =2—11812352 = 0.8187648

vy = -y = —0.8187648

By Taylor Series

hy, h%*yy R3yy' h*yY
Ys=Yot ottty
y3 =¥(0.3)

0.1 % (—0.7812352) (0.1)? * 1.1812352
= 0.8212352 + - + -

0.13 % 0.8187648 0.1* x (—0.8187648)
+ 30 + 2




= (0.7491509

Now

y; = x% —y; = (0.3)%2 — 0.7491509 = —0.6591509

ys = 2x3 —y3; =2 *(0.3) — (—0.6591509) = 1.2591509
y3' =2 —y3 =2—-1.2591509 = 0.740849

vy = —y3’ = —0.740849

By Taylor Series
hyt Rh%*y§y R3yY' h*yY
Ya=Ys+ ot T3 41
ys = y(0.4)
0.1 % (—=0.6591509) (0.1)% * 1.2591509
— 0.7491509 + . + .
0.13 * 0.740849
+ +
31
= 0.6896519

Similarly we can find the values of y,, for n=5, 6, 7.....

Approximation and errors in Numerical Computation:

Total Error
Modeling Errors Inherent Errors Numerical Errors Blunders
A
Human
Imnarfartinn
Missing Data : .
_ ) Conversion Round-off Truncation
informatio
- Errors Errors Errors Errors

\ /

Computing

Numerical
Method

Measurin
machine

g method




Figure: 1.1 (Taxonomy of Errors)

Modeling errors

Mathematical models are the basis for numerical solution. They are formulated
to represent physical process using certain parameters involved in the situations.
In many situations it is impractical or impossible to include all of the real
problems, so we use certain assumptions for easy calculations. For example while
developing a model for calculating the for acting on a falling body, we may not
be able to estimate the air resistance coefficient properly or determine the
direction and magnitude of wind force acting on the body and so on. To simply
the model we may assume that the force due to the air resistance is linearly
proportional to the velocity of the falling body or we assume that there is no wind
force acting on the body. All such assumption certainly results in errors in the
output from such models.

Inherent Errors

Inherent errors are those that are present in the data supplied to the model.
Inherent error contains data errors and conversion error.

Data error

Data error (known as empirical errors) arises when data for a problem are
obtained by some experimental mean and are therefore of limited accuracy and
precision. This may be due to some limitations in instruments and reading and
therefore may be unavoidable, for example there is no use in performing
arithmetic operations to 4 decimal places when the original data themselves are
correct up to 2 decimal places.

Conversion Error

Conversion errors (representation error) arise due to the limitations of the
computer to store data exactly. We know that the floating point representation
retains only a specific number of digits, that are not retained constitute round off
error.



Example

0.1,, |= ]0.00011001

0.4, |= |0.01100110

Sum |= |0.01111111

05,0 | = |0.25+0.125+0.0625+0.03125+0.015625+0.0078125+0.00390625
= 10.49609373

Now from above example we can see that the addition of binary number
conversion to decimal we do not get exact value as decimal number of 0.1 has
non termination binary form 0.000110011001... and so on. The computer has
fixed memory so it uses only certain number for digits after decimal so we get
this type of errors which is caused by conversion.

Numerical Errors

Numerical errors (procedural errors) are introduced during the process of
implementation of numerical methods. They come in two forms round off and
truncation error.

Round off errors

Round off errors occurs when a fixed number of digits are used to represent exact
number, since the number are stored at every stage of computation, round off
error is introduced at the end of every arithmetic operations. Consequently even
though an individual roundoff error could be very small the cumulative effect of
a series of computation can be very significant.

Rounding a number can be done in two way, chopping and symmetric rounding.
Chopping

In chopping the extra digits are dropped, this is also called truncating a number.
Suppose we are using a computer with a fixed word length of four digits then a
number like 42.7893will be stored as 42.78 and the digit 93 will be dropped.

Symmetric round off

In symmetric round off method, the last retained significant digit is “rounded off”
by 1 if the first discarded digit is larger or equal to 5, otherwise the last retained
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digit is unchanged. For example the number 42.7893 would become 42.79 and
the number 76.5432 would become 76.54.

Sometimes a slightly more refined rule is used when the last the last number is 5,
then the number is unchanged if the last digit is even and is increased by 1 it is
odd.

Truncation error

Truncation error arises from using an approximation in place of an exact
mathematical procedure. Typically it is the error resulting from the truncation of
the numerical process. We often use some finite number of terms to eliminate the
sum of an infinite series, for example

s= ). i—o a;x" is replaced by finite sum, the series is truncated as

x3 x5 x7

sin(x) :x—§+§—ﬁ...
Truncation error can be reduced by using a better numerical model which usually
increases the number of arithmetic operations. E.g. in numerical integration the
truncation error can be reduced by increasing the number of points at which the
function is integrated, but care should be exercised to see that the round off error
which is bound to increase due to increased arithmetic operations does not offset
the reduction in truncation error.

Blunders

Blunders are errors that are caused due to human imperfection. As the name
indicated such errors may cause a very serious disaster in the result since these
errors are due to human mistake. It should be possible to avoid them to a large
extent by acquiring a sound knowledge of all aspect of the problem as well as
numerical process.

Human errors can occur at any stage of the numerical processing cycle, some
common types of errors are:

Lack of understanding of the problem.

Wrong assumption.

Overlooking of some basic assumption required for formulating the model.
Errors in deriving the mathematical equation or using model that does not
describe adequately the physical system under study.

B2 W N =
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5. Selecting the wrong numerical method for solving the mathematical model.

6. Selecting a wrong algorithm for implementing the numerical method.

7. Making mistakes in the computer program, such as testing real number of
zero, using <symbol in place of >.

8. Mistakes in date input such as misprints, giving values column wise instead
of row wise to a matrix.

9. Wrong guessing of initial values.

Absolute and Relative Errors:

Some of the fundamental definition of errors analysis regardless of its source, an
error is usually quantified in two different but related ways but are related in some
ways, known as absolute error and relative error.

Let us suppose that true value of a date item is denoted by x; and its approximated
value is denoted byx,, then they are related as True value, (x;)=Approximate
value(x, )+error.

Error is given by error=x;-x,

The error may be negative or positive depending on the values of x; and x,. In
error analysis what is important is magnitude of the error and not the sign and
therefore we normally consider its absolute value, known as absolute error
denoted by

error = |x; — x|

In many case absolute error may not reflect its influence correctly as it does not
take into account the order of magnitude of the value under study. For example
an error of 1gm is much more significant in the weight of 10gm of gold than in
weight of a bag of sugar of 1 kg. In view of this we introduce the concept of
relative error which is nothing but the normalized value of absolute error. The
relative error is defined as follows:

absolute error
ey =

|true value|
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Minimizing the total error

1. Increasing the significant figures of the computer.
2. Minimizing the number of arithmetic operations.
3. Avoiding subtractive cancellations

4. Choosing proper initial parameters.

Significant digits

We all know that all computers operate with fixed length so that all the floating
point representation requires the mantissa to be specified number of digits. Some
numbers such as the value of m = 3.141592 ..... we have to write as 3.14 or

3.14159 i all these cases we have omitted some digits. Now 2/7=

0.285714 or m = 3.14159 is said to have number containing 6 significant digits.

The concept of significant digit has been introduced primarily to indicate the
accuracy if a numerical value. For example if the number y=23.40657 has correct
value of only 23.406 then we may say that y has 5 significant digits and is correct
up to 3 decimal places. The omission of certain digits from a number of results in
roundoff error. The following statements describe the notion of significant digits.

1. All non zero digits are significant.

2. All zero occurring between non zero digit are significant digits.

3. Trailing zero following a decimal point are significant .e.g. 3.50, 65.0&
0.230 have three significant digits each.

4. Zeros between the decimal point and preceding non-zero digit are not
significant e.g. following numbers have 4 significant digits.

0.0001234(1234x1077)
0.001234(1234x107)

5. When the decimal point is not written trailing zeros are not considered to
be significant. E.g. 4500 may be written as 45x102 contains only two
significant digits however.

4500.0 4 significant digits
7.56x10* 3 significant digits
7.560x10* 4 significant digits
7.5600x10* 5 significant digits

13



The concept of accuracy and precision are closely related to significant digits.
They are related as follows:
1. Accuracy refers to the number of significant digits in a value e.g. 57.396 is
accurate to five significant digits.
2. Precision refers to the number of decimal position i.e. the order of
magnitude if the last digit value. the number 57.396 has a precision of
0.001 or 1073

[terative methods

There are number of iterative methods that have been tried and used successfully
in various problem situations. All these methods typically generate a sequence of
estimates of the solution which is expected to converge to the true solution. All
iterative methods begin their process of solution with one or more guess of the
solution and then using those guesses to find another better approximation and so
on to get to required solution with desired accuracy. Iterative method can be
grouped as:

1. Bracketing methods
2. Open end methods

Before we start to go further into the methods first we need to know about the
starting and stopping criteria in an iterative process.

Starting criterion

Before an iterative process is initiated, we have to determine an interval that
contains the roots of the equation. One method is to plot the curve and find the
interval where the curve cuts the x-axis. Such that the interval that contains such
point will contain roots. This gives us rough estimate of the roots, also helps to

understand the properties of the function.
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Stopping criterion

An iterative process must be terminated at some stage; we must have a criterion
for deciding when to stop the process. We may use one or combination of
following tests depending in the behavior of the function to terminate the process:

1. |x;41 — x;| < E, (absolute error in x)
2. % < E,.(relative error in x)x # 0
i+1
3. |f(xi+1)| < E (value of function at root )
4. |f(xi11) — f(x)| < E (dif ference in function value )

x; Represents the estimate of the root at i*" iteration and f (x;) is the value of the
function atx;. There may be situations where these tests may fail when used alone
so we use combination of many.

Bracketing method

This method starts with two initial guess that bracket the root and then
systematically reduce the width of the bracket until the solution is reached. Two
popular methods are:

1. Bisection method
2. False position method

Bisection method

The Bisection method is one of the simplest and most reliable method for solution
of non-linear equations. This method relies on the fact that if f(x) is real and
continuous in the interval a < x < b and f(a)&f(b) have opposite signs i.e
f(a) * f(b) < 0 then there is at least one real root in the interval between a & b.
let x; = a and x, = b . now determine another point x5 to be mid point between

X1+Xx,

aandbie x3 = now there exists the following three conditions;

1. f(x3) = 0,then we have a root at x5
2. if f(x3) * f(x1) < 0,then there is root in the interval x;& x5
3. if f(x3) * f(x,) <0, then there is root in the interval x,& x5

15



Figure 1.2: Illustration of Bisection method

Example 1: find a root of the equation x3 — x — 11 = 0, correct up to 4 decimal

place using bisection method.

Solution:(x) = x3 —x — 11 = 0, now we select the initial approximation, by

selecting those values of x where their functional values have opposite sign.

S.N X f(x)
1 1 -11
2 2 -5
sign
3 3 13 changed
4 4 49
5 5 109
6 6 199
7 7 325
8 8 493
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From above table we can that the values of f(x) changes at x=2 & x=3, we can
randomly test for the values without creating the table but it will be easy to find

out if we use table.

Now the initial approximation bex; = 2,x, =3 then f(2) = -5&f(3) =

13, where root lies in between 2 & 3, hence next approximation will be x3 =
xX1+Xx5

2

e X3 = Chk 2.5, f(2.5) = 2.125. since f(2)f(2.5) < 0, aroot lies in between

o =

2 & 2.5, now proceeding further in tabular form we get.

Itr x1 f(x1) x2 f(x2) Xm f(xm) error
| 2.0000 |-5.0000 |3.0000 | 13.0000 | 2.5000 | 2.1250 1.0000
2 2.0000 |-5.0000 |2.5000 |2.1250 |2.2500-1.8594 |0.5000
3 2.2500 |-1.8594 |2.5000 |2.1250 |2.3750]0.0215 0.2500
4 2.2500 | -1.8594 |2.3750]0.0215 |2.3125|-0.9460 |0.1250
5 2.3125 [-0.9460 |2.3750]0.0215 |2.3438 |-0.4691 |0.0625
6 2.3438 [-0.4691 |2.3750]0.0215 |2.3594|-0.2256 |0.0313
7 2.3594 |-0.2256 |2.3750]0.0215 [2.3672|-0.1025 |0.0156
8 2.3672 |-0.1025 |2.3750]0.0215 |2.3711|-0.0406 |0.0078
9 2.3711 |-0.0406 |2.3750|0.0215 |2.3730|-0.0096 |0.0039
10 2.3730 |-0.0096 |2.3750|0.0215 |2.3740 | 0.0059 0.0020
11 2.3730 [-0.0096 |2.3740]0.0059 |2.3735|-0.0018 |0.0010
12 2.3735 [-0.0018 |2.3740|0.0059 |2.3738|0.0021 0.0005
13 2.3735 [-0.0018 |2.37380.0021 |2.37370.0001 0.0002
14 2.3735 [-0.0018 |2.373710.0001 |2.3736|-0.0009 |0.0001
15 2.3736 |-0.0009 |2.3737]0.0001 |2.3736|-0.0004 |0.0001
16 2.3736 |-0.0004 |2.3737]0.0001 |2.3736|-0.0001 |0.0000

Therefore, the root of the equation 1s 2.3737, since the value of error is 0.0000 or
we can also say that the new root is same as old so this is the required roots for

given stopping criteria.

Example 2: Find the root of the equation of x? — 4x — 10 = 0, correct upto 5

decimal places.
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Solution:f(x) = x2 — 4x — 10 = 0, let the initial approximation be -2& -1,

chosen from table below .

S.N X f(x)
1 -3 11
2 -2 2
3 -1 -5
4 0 -10
5 1 -13
6 2 -14
7 3 -13

now the initial approximation be x; = —2, x, = —1, then f(—2) = 2 &f(—1)

—5, where root lies in between 2 & 3, hence next approximation will be x5

X1+Xy
2

€ X3 =

-1-2

in between -2 &-1.5, now proceeding further in tabular form we get.

Itr x1 f(xl) |x2 f(x2) Xm f(xm) | error

| -2 2.0000 _1 .0000 | -5.0000 _1.5000 _1 .7500 | 1.0000
2 -2 2.0000 -1.5000 -1.7500 -1.7500 0.0625 | 0.5000
3 -1.75 0.0625 _1.5000 -1.7500 _1.6250 ;).8594 0.2500
4 -1.75 0.0625 _1.6250 -0.8594 _1.6875 6.4023 0.1250
5 -1.75 0.0625 -1.6875 -0.4023 -1.7188 2).1709 0.0625
6 -1.75 0.0625 _1.7188 -0.1709 -1.7344 6.0544 0.0313
7 -1.75 0.0625 _1.7344 -0.0544 _1.7422 0.0040 | 0.0156
8 _1.74219 0.0040 _1.7344 -0.0544 _1.7383 6.0253 0.0078
9 -1.74219 0.0040 -1.7383 -0.0253 -1.7402 2).0106 0.0039

= —1.5, f(—1.5) = —1.7500, since f(—2)f(—1.5) < 0, aroot lies
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10 1.74219 |0.0040 | 1.7402 | -0.0106 | 1.7412 | 0.0033 | 0.0020

11 1.74219 |0.0040 | 1.7412 | -0.0033 | 1.7417 | 0.0003 | 0.0010

12 -1.7417 |0.0003 | 1.7412 [ -0.0033 | 1.7415 | 0.0015 | 0.0005

13 -1.7417 |0.0003 | 1.7415 | -0.0015 | 1.7416 | 0.0006 | 0.0002
14 -1.7417 |0.0003 | 1.7416 | -0.0006 | 1.7416 | 0.0001 | 0.0001
15 -1.7417 10.0003 | 1.7416 | -0.0001 | 1.7417 | 0.0001 | 0.0001

16 1.74167 |0.0001 | 1.7416 | -0.0001 | 1.7417 | 0.0000 | 0.0000

Therefore, the root of the equation is -1.7417, since the value of error is 0.0000.

Practice: find the roots of the equation for following equations, correct up to

5 decimal places.

1. 3x+sin(x)—e*=0
2. sin(x) —2x+1=0
3.e*r—x—-2=0
4. x*-x-3=0
5

.4x3—-2x-6=0

NOTE: When there are trigonometric functions, use radian measure in calculator.

False Position Method

In Bisection method, the interval between x; &x, is divided into two equal halves,
irrespective of the location of the root. It may be possible that the root is closer to
one as in figure 1.3, note that the root is closer to x;.let us join the point x; &x,
by a straight line. The point of intersection of this line with x-axis gives and
improved estimate root and is called false position of the root. Let this point is
called x3. This point then replaces one of initial guess. The process is then
repeated with new values of x; &x,, since this method uses the false position of

19



the root repeatedly it is called false position method. It is also called linear
interpolation method.

F(x) 4
X2, f(x2)
X3, f(x3)

X1

A

\ 4

X1, f(x1)

Figurel.3 : Illustration of False position method
The equation of the line joining (xy, f(x1))& (3, f(x3)) is

y—y1 =m(x—x)
=3’2_3’1

Yy—W xz_xl(x_xﬂ
y—fe =L (x;z - ﬁfx) (x—x1)

Let the line joining the points (x4, f (x1))& (x5, f(x5)) cuts x-axis at (x5, 0), then
the point lies in the line, putting the value in the equation we get
fx2) — fxn)
0—f(x1) = (x3 — x1)

X2 —Xq

On solving the above equation, we get,
o c— f () (2 — x1)
TN fle) ~ f(xn)

This is the formula for calculating the new approximation in false position
method.
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Example 1: find the real root of the equation x3 — 2x — 5 = 0 by the method of
false position correct up to 4 decimal places.

Solution: Let f(x) = x3 — 2x — 5 = 0, Now we select the initial approximation,
by selecting those values of x where their functional values have opposite sign.

SN [x f(x)

1 1 -6

2 2 -1

Sign

3 3 16 changed
4 4 51

5 5 110

6 6 199

7 7 324

8 8 491

From above table we can that the values of f(x) changes at x=2 & x=3, we can

randomly test for the values without creating the table but it will be easy to find

out if we use table.

now the initial approximation be x; = 2, x, = 3, then f(2) = —1&f(3) =

16, where root lies in between 2 & 3, hence next approximation will be

f(x) (g — x1)

BTN T ) — ()

o, (DG-2)
3 (16 — (-1))
x3 = 2.0588

f£(2.0588) = —0.3908. since f(2.0588) = f(3) < 0, a root lies in between

2.0588&3 now proceeding further in tabular form we get.

Itr x1 f(x1) x2 f(x2) x3 f(x3) error
1 2.0000 | -1.0000 3.0000 | 16.0000 | 2.0588 | -0.3908 1.0000
2 2.0588 | -0.3908 3.0000 | 16.0000 | 2.0813 | -0.1472 0.9412
3 2.0813 | -0.1472 3.0000 | 16.0000 | 2.0896 | -0.0547 0.9187
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4 2.0896 | -0.0547 3.0000 | 16.0000 | 2.0927 | -0.0202 0.9104
5 2.09271-0.0202 3.0000 | 16.0000 | 2.0939 | -0.0075 0.9073
6 2.0939 | -0.0075 3.0000 | 16.0000 | 2.0943 | -0.0027 0.9061
7 2.0943 | -0.0027 3.0000 | 16.0000 | 2.0945 | -0.0010 0.9057
8 2.0945 [ -0.0010 3.0000 | 16.0000 | 2.0945 | -0.0004 0.9055
9 2.0945 | -0.0004 3.0000 | 16.0000 | 2.0945 | -0.0001 0.9055
10 2.0945 | -0.0001 3.0000 | 16.0000 | 2.0945 | -0.0001 0.9055
11 2.0945 | -0.0001 3.0000 | 16.0000 | 2.0945 | 0.0000 0.9055
12 2.0945 | 0.0000 3.0000 | 16.0000 | 2.0946 | 0.0000 0.9055

Therefore, the root of the equation is 2.0946, since the value of f(x3) = 0.0000.

Example 2: find the real root of the equation x? — 4x — 10 = 0 by the method of
false position correct up to 6 decimal places.

Solution

Let f(x) =x%2 —4x — 10 = 0, Now we select the initial approximation, by
selecting those values of x where their functional values have opposite sign.

S.N X f(x)
1 -3 11
2 -2 2
3 -1 -5
4 0 -10
5 1 -13
6 2 -14
7 3 -13

From above table we can that the values of f(x) changes at x=-2 & x=-1, we can
randomly test for the values without creating the table but it will be easy to find

out if we use table.

now the initial approximation be x; = —2,x, = —1,then f(—2) = 2 &f(—1) =
—5, where root lies in between -2 &-1, hence next approximation will be

R LCA G
; ! f Q) = f(x1)
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x3:_

,_@(1-(2)

(=5-2)

x3 = —1.714286

f(—1.714286) = —0.204082. since f(2) * f(—1.714286) < 0, a root lies in

between 2 &—1.714286 now proceeding further in tabular form we get.

Itr x1 f(x1) x2 f(x2) x3 f(x3) error

1 -2.000000 2.000000 -1.000000 T5.000000 -1.714286 6.204082 1.000000
2 _2.000000 2.000000 _1.714286 6.204082 -1.740741 6.006859 0.285714
3 _2.000000 2.000000 _1.740741 6.006859 _1.741627 6.000229 0.259259
4 _2.000000 2.000000 _1.741627 6.000229 _1.741656 6.000008 0.258373
5 -2.000000 2.000000 -1.741656 2).000008 -1.741657 0.000000 | 0.258344

Therefore, the root of the equation is -1.741657, since the value of f(x3) =

0.000000.

Practice: Find the real roots for the following equations , correct up to 5

decimal places.

.3x+sin(x)—e*=0

. x—e*=0

.3x2+6x—45=0
.4x3—-2x-6=0

1
2
3. x3-4x>+x+6=0
4
5
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Open end methods:
This method uses single starting value or two values that do not necessarily
bracket the root. The following methods fall under open end method:

1. Secant method
2. Newton method
3. Fixed point method

Secant Method

The secant method begins by finding two points on the curve of f(x), hopefully
near to root. We draw a line through these two points and find the point where it
intersects the x -axis. The two points may both be on one side of the root as seen
in figure, but they can also be on opposite side.

If f(x) were truly linear, the straight line would intersect x-axis at the roots, but
f(x) will never be linear because we would never use a root finding method on a
linear function. That means the intersection of the line with x-axis in not at root,
but that should be close to it. From the obvious similar triangles we can write

A
v

X3 X2 X1

Figure 1.4: Illustration of Secant method

(X2 —x3) (X1 — x2)

fr) — (Flxn) = f(x2)

Now solving this for x; we get
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X3 =

f(x2) (g — x3)

2T @) - f )

Because f(x) is not exactly linear, x5 is not equal to root, but it should be closer
than either of the two points.

Example 1: Find the real root of the equation x? — 4x — 10 = 0 by the method
of secant method correct up to 6 decimal places.

Solution

Let f(x) = x? — 4x — 10 = 0, let the initial approximation be x; = 4, x, = 6,

hence next approximation will be

Proceeding further in tabular form we get.

X3=

f(x2) (%1 — x3)

2T ) — f ()
o __@0-6
3 (—10 — 2)
X3 = 5.666667

Itr. | x1 f(x1) x2 f(x2) x3 f(x3) error

| 4.000000 | 10.000000 | 6.000000 | 2.000000 | 5.666667 | 0.555556 | 2.000000
2 16.000000 | 2.000000 |5.666667 | 0.555556|5.739130 | 0.018904 | 0.333333
3 5.666667 | -0.555556 | 5.739130 | 0.018904 | 5.741683 | 0.000191 | 0.072464
4 |5.739130 | -0.018904 | 5.741683 | 0.000191 | 5.741657 | 0.000000 | 0.002553
5 5.741683 1 0.000191 |5.741657 | 0.000000 | 5.741657 | 0.000000 | 0.000026

Therefore, the root of the equation is 5.741657, since the value of f(x3) =
0.000000.

Practice: Find the real roots following equations, correct up to 5 decimal

places.

1. 3x+sin(x)—e*=0
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2. 4x3*—-2x—-6=0
3. x2-5x+6=0
4. xsinx—1=0
5

.e¥—3x=0

Newton’s method

One of the most widely used methods of solving non-linear equations is Newton’s
method (also called Newton Raphson Method). This method is also based on the
linear approximation of the function, but does so using a tangent line to the curve.
Figure gives the graphical description starting from a single initial estimate X,
that 1s not too far from a root. We move along the tangent to its intersection with
x-axis and take the next approximation. This is continued until either the
successive x-value are sufficiently close or the value of the function is sufficiently
near to zero.

The calculation scheme follows immediately from the right triangle shown in
figure, which has the angle of inclination of the tangent line to the curve atx = x,.

A
v

[¢]
\/ X1

Figure 1.5: Illustration of Newton’s Method
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tan 6 = f'(xq) = f(%o)

Xo — X1
e f (x0)
P f(xo)
In general,
X
Xp+1 = Xp — % wheren = 0,1,2,3 ...
n

Newton’s method is widely used because it is more rapidly convergent then any
of the methods. Some important things that should be kept in mind while using
Newton method:

1. When f'(x,) is very large, i.e. when the slope is large the root can be
calculated in even less time.

2. If we choose the initial approximationx, close to the root then we get the
root of the equation very quickly.

3. The process will evidently fail if f'(x) = 0, in that case use other methods

4. If the initial approximation to the root is not given choose two values of x
such that its functional values are opposite, as this will ensure that the
chosen point in near the root.

Example 1: Find the root of x3 — 3x% + 2x — 10 = 0, using NR method
Solution: Let x, = 2 be an approximate of the root, then
f(x) =x3—3x%2+2x—10
f'(x) =3x%—6x+2
Atxg = 2
f(2)=23-322+2%x2—-10=-10
fl(2)=322-6+2+2=2

Then the new approximate is :

L fe)
! 0 f'(x0)
_ —10
=2
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=7
Now
Xog=Xx1 =7
Then doing further calculation, we get required root of the equation. In tabular
form we get

Itr | x0 f(x0) f'(x0) x1 error

1 12.00000 | -10.00000 | 2.00000 7.00000 | 5.00000
2 17.00000 | 200.00000 | 107.00000 | 7.00000 | 5.00000
3 |5.13084 | 56.35721 |50.19155 |5.13084 | 1.86916
4 14.00800 | 14.20854 |26.14417 [4.00800 | 1.12284
5 3.46453 |2.50479 17.22172 | 3.46453 | 0.54347
6 13.31909 | 0.15333 15.13448 |3.31909 | 0.14544
7 13.30895 | 0.00071 14.99382 |3.30895|0.01013
8 13.30891 | 0.00000 14.99316 |3.30891 | 0.00005

Therefore, the root of the equation is 3.30891, since the value error=0.00005

correct up to 4 decimal place.

Practice :

1. sin(x) =1+ x3

2. f(x) =x*-2x-1

3. fx)=x3—-x-3

4. f(x) =x3-3x-2

5. f(x) =cosx

Fixed point Iteration method

Any function in the form of f(x) = 0 can be manipulated such that x is on the
left hand side of the equation as shown: x = g(x). Both equations are equivalent.

Observe that if f(r) = 0, where r is the root of f(x), it follows that r= g(r),
whenever we have r= g(r)r is said to be fixed point for the function g.

If x; is an approximate solution then x;,; = g(x;). The above transformation can
be obtained either by algebraic manipulation of the given equation or by simply
adding x to both sides of equation.

Example 1: locate the root of the equation f(x) = x? — 2x — 3.
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Suppose we arrange to given the equivalent form x = g,(x) = v2x + 3, if we
start with x=4 and iterate. Successive values of x are

x0:4

x, = V11 = 3.31662

x, = 3.10375
X3 = 3.03439
x, = 3.01144
xs = 3.00381
xg = 3.00127

Therefore, it appears that the values are converging on the root at x = 3

Now if we re-arrange the terms then we get another equation

g2(x) = ﬁ =X
Let us start the integration again with x, = 4, successive values then
xXo =4
x, =15
X, = —6
x3 = —0.375
x4 = —1.26316
x5 = —0.91935
xg = —1.02763
x7; = —0.99087
xg = —1.00305
X9 = —0.99898

X0 = —1.00034
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X1, = —0.99989
x12 = _10004
X135 = —1.00000

It seems that we now converge to another root at x = —1, we also see that the
converge 1s oscillatory rather than monotonic.

Consider another re-arrangement

x%? -3
2

x =g,(x) =

Starting with
xO == 4

X, = 6.5
x, = 19.625
x3 = 191.070
From these results we see that the iterates are diverging.

NOTE: the g(x) formed must be such that |g’(x)| around the real root should be
less than 1, if this is not case change g(x).

Practice

Use the Fixed point iteration method to evaluate a root of the equation x* —
x — 1 = 0, using the following forma of g(x)

a. x=x%-1
b. x =1+ 2x — x2

1+3x—x2
c. X = >

Starting with xo = 1 and xy = 2 and discuss the results
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Convergence:

Convergence of Bisection method

In the bisection method, we choose a midpoint x5 in the interval between x; &x5.
Depending on the sign of the function f (x), f (1) &f (x;). x1&x, is set to equal
to Xy, such that the new interval contains the root. In either case the interval

containing the root is reduced by a factor 2. The same procedure is repeated n
: : . : . — A
times, then the interval containing the root is reduced to the size % ==

_Zn

X ) ) o A ) i
After n iterations the root must lie within + 2—: of our estimate. This means that

) . . Ax

error bounds at nt" iteration is E,, = on
) . Ax Ax En

SimilarlyE,,,; = on+l an2|l T 2

that is the error decreases linearly with each step by a factor of 0.5. the bisection
method is therefore linearly convergent. Since the convergence is slow to achieve
a high degree of accuracy. Large number of iterations may be needed; however
the bisection algorithm is guaranteed to converge.

Convergence of secant method and false position
Both of the secant method and false position uses iterations that can be written as

X _ f(xn)(xn - xn—l)
nr f(xn) - f(xn—l)

Which is similar tox = g(x), except x = g(x,, Xx,—1) When we apply Taylor

series the derivatives are pretty complicated, so we omit the details it turns out
that the error relation is

g(fli 62)

= %

€n+1 = 2 €nln+1

Showing that the error is proportional to the product of the two pervious errors,
we can conclude that the convergence is better than linear but poorer than
quadratic

€n41 X €n * €n_q

Convergence of Fixed point iteration:
The demonstration in example earlier shows that fixed point iterations seems to
converge linearly. We now show when this is true.
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We have x,,; = g(x,) now writing above relation for the error after iteration
n+1, where R is the true value of the root.

R—xp41 =R—g(xy) = gR) — g(xy,)
Because where x = R, R = g(R), multiplying and dividing by (R-x,,), we get

(g(R)—g(xn))
R—xp4q1 = %(R'xn)

Now we can use the mean value theorem, if g(x) and g'(x) are continuous, to
say that

R —x,41 =9 (&) * (R — x,) where &, lies between x,, and R, writing e,, for
the error of the n'" iterate, we have |e,,4 1| = |g'(&,) * e,,]

Because e, the error in x, is R — x,(we take absolute values because the
successive iterates may oscillate around the root). Now from above equation we
can say that the fixed point iteration will converge linearly, in the limit as x,,
approaches R, provided that we start within the interval |g' ()| < K < 1

Convergence of Newton’s method
Newton’s method uses iteration that resembles fixed point

Xpt1 = X — % = g(x,) , successively iterates will converge if |g'(x)| < 1

and doing the differentiation, we see that the method converge, if

Q) * 7 (x)
(f'(x0))?

Which requires that f(x) and its derivatives exits and be continuous. Newton
method is shown to be quadratically convergent by the following as before

lg" ()] =

R—xp4q = g(R) —g(xn)

Now we expand g(x,) as Taylor series in terms of (R — x,) with the second
derivative term as the remainder getting

9" ()
2

9Ca) = gR) + g'(R) * (R — x) + ( ) R XY 2

Where ¢ lies within (x,,, R), however from equation 1
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FR) = f"(R)|

lg'(R)| = aommE 0
Because f(R) = 0 at the root and equation 2 reduces to
900 = g0 + (L2) (R 3

Using e,, = R — x,, for the error on the nt" iterate equation 3 becomes

ens1 =R —xp41 = gR) — g(xn) = —(9"(§)/2)(en®)
Providing that Newtons method is quadratically convergent

2
€n+1 X €y

Chapter 2: Interpolation and approximation

The statement y = f(x), x, < x < x,, means for every corresponding value of x
in the range x, < x < x,,, there exists one or more values of y. assuming that
f(x) is single valued and continuous and that it is known explicitly then the
values of f(x) corresponding to certain given values of X, say Xxg,X; X3 ..... Xy
can easily be computed and tabulated. The central problem of numerical analysis
is the converse one,given the set of tabular values of
(%0, ¥0), (X1, ¥1), (X2, V) .. .. (X, yn) satisfying the relation y = f(x) where the
explicit nature of f(x) is not known, it is required to find a simpler function say
¢ (x) such that f(x)and ¢ (x)agree at the set of tabulated points. Such a process
is called interpolation. If ¢p(x) is polynomial then the process is called polynomial
interpolation and ¢(x) is called interpolating polynomial. Similarly different
types of interpolation arise depending on ¢ (x).

An application of interpolation can be seen everyday in weather forcasting. The
weather service people collect information on temperatures, wind speed and
direction, humidity, pressure from hundreds of weather stations around the world.
All these data items are entered into a massive computer program that models the
weather.

Interpolation
e* =ay+ a;x + ayx? + azx3 + - ... tax”
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Taylor series expansion of e* about x=0, ay, a,,a, ....are coefficient to be
determined

x 0 0.5 1 1.5 2 2.5 3
e* 1 1.8487 |2.7183 144817 |7.3891 |12.1825 |20.085

If we have to find the value of e?? or e%7> then interpolation inside the given
range.

If we have to find the value of €32 then extrapolation outside the given range.

Various method of interpolation

1. Lagrange interpolation

2. Newton’s interpolation

3. Newton’s Gregory forward interpolation
4. Spline interpolation

Polynomial form
The most common form of an n'" order polynomial is
p(x) = ag+ a;x + ayx? + azx3 + - ... .... +a,x™ known as power form.

Linear interpolation

The simplest form of interpolation is to approximate two data points by straight
line, suppose we have two points (x;f(x;1)) &(x,f (x3)). These two points can
be connected linearly as shown in figure, using the concept of similar triangles
we show that :

fQ0) = f(xy) _ fQx) = f(x1)

x_xl xz_xl
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f(x2) B2

f(x)

f(x1)

Figure: Graphical representation of Linear interpolation

On solving for f(x) we get

f(x2) = f(x1)

X2 —Xq

fe) = flx) + (x = x1)

f(x2)—f(x1)

Above equation is known as linear interpolation formula, note that p—
2741

represents the slope of line.

Example : The table below shows square root for the integers, determine the
square root of 2.5

X 1 2 3
F(x) 1 1.4142 1.7321

B~

5
2.2361

\S]

The given value of 2.5 lies in between 2 and 3. Therefore x; = 2, f(x;) =
1.4142,x, = 3, f(x,) = 1.7321,

f(x2) = f(x1)

X2 —Xq

= f(2) + (2.5 — 2)%

f(2.5) = f(x1) + (x —x1)
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1.7321 — 1.4142

= 1.4142 + (2.5 - 2) —

= 1.5732

Now if the two points taken are x; = 2,x, = 4
fA4-f(2)
4 —72
(2 —-1.4142)
2

£(2.5) = f(1) + (2.5 - 2)

£(2.5) = 1.4142 + 0.5

=1.5607

The correct answer is 1.5811, so from above values we can say that closer the

points the more accurate results.

Lagrange Interpolation polynomial

Let (x9,¥0), (x1,V1), (x2,V2), (x3,y3) are given set of data points.Let y = f(x)

be a function which takes the (n+1) values yg, ¥4, V2, .. ... Y, corresponding to
X = Xg, X1, X3 e e x,,. Now f(x) can be represented as polynomial of n*"* degree
in X.

Let the polynomial be of the form

y=fx) =ag(x —x)(x = x2) oo (x — %)

+a,(x —x9)(x — x3) ... ... (x — x;,)
+a,(x —xp)(x — x1) ... ... (X —x3) v e
+a,(x —x0)(x — x1) wo. oo (x —xp_1) e e (D)

Putting x = x,, y = y, in the equation 1 we get,

Yo = ag(xg — x1)(xg — x2) w.v s (x0 — x)
Q= Yo
0 (xo — x1) (g — x2) woe - (xo — %)

Again putting x = x4,y = y; in the equation 1 we get,
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y1 = a;(x; — x0)(xg — x2) ooe e (x1 — xp)

V1
(1 — x0) (1 — x3) e oes (1 — xp)

a1=

On preceding

Yn
(X — x0) (X — X1) wor - (xn — Xn_1)

a, =

Substituting the values of ag,a; a, ... ... a, in equation 1 we get.

(x—x1)(x —x3) . ... (x —x;,)
(xo — %) (xg — X2) wov oo (xo — xp)

y=f(x)=

(x —x0) (X — x3) v e (x — x,)
(1 — x0) (1 — x2) e oo (x1 — xp)

(x —xp)(x — x1) wer o (x — x,-1)
(xn - xo)(xn - xl) ------ (xn - xn—l)

Yn

this is known as Lagrange’s interpolation formula

in general

n Yj H?:o_(x — X;)
fo) =) —-

7iﬂlzo(xj — X;)
i#j

j=0
This 1s Lagrange basic polynomial
Note:

1. This formula can be used irrespective of whether the values xq X1 X, _Xn
are equally spaced or not.

2. Itis simple and easy to remember but its application is not speedy.

3. The main drawback of it is that if another interpolation value is inserted,
then the interpolation coefficients are required to be recalculated.

Example 1: Consider the problem to find the square root of 2.5 using the
second order Lagrange interpolation polynomial.
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Consider the following three points

X0:2

X1=3

f, = 1.4142 f,

= 1.7321

We know that

f(x) = Zz:)’ili
i=0

2
Hj:O(x — X;j)
JES
2
[Ti=o(x; — %)
Jj#i

(x — x1)(x — x3)

Where
li -
SO
lo(x) =
[ (x) =
l,(x) =

(x9 — x1) (%9 — x7)

(x—3)(x—4)

(2-3)(2-4)

x% —7x+12
2

(x — x0)(x — x2)
(x1 — x0)(x1 — x3)

(x—2)(x—4)
(3-2)(3—4)

x?>—6x+8
—

(x — x0) (x — x1)
(2 — x0) (%2 — %1)

_ (x=2)(x-3)
(4-2)(4-3)
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_x2—5x+6

2
We know, f(x) = yolo(x) + y11 (x) + y,15(x)
x% —7x+ 12 x*—6x+8 x> —-5x+6
= 1.4142 * +1.7321*_—1+2*f

=0.7071 * (x> = 7x +12) — 1.7321 * (x> —6x + 8) + (x> = 5x + 6)

£(2.5) = 0.7071 = (2.52 — 7 % 2.5 + 12) — 1.7321 % (2.52 — 6 % 2.5 + 8)
+ (252 = 5% 2.5+ 6)

= 0.5303 + 1.2991 — 0.25
= 1.5794
The square root of 2.5 is 1.5794 with some error.
Practice :

1. Find the Lagrange interpolation polynomial to fit the following data.

i 0 1 2 3
X; 0 1 2 3
eXi—1 |0 1.7183 6.3891 19.0855

Use the polynomial to estimate the value of el

2. Find the Lagrange interpolation polynomial to fit the following data.

X

1.0

1.1

1.2

COS X

0.5403

0.4536

0.3624

Use the polynomial to estimate the value of cos 1.15

Newtons Interpolation formula

Given the set of data points (xq, Vo), (X1, Y1), (X2,V2) . ... (%p-1,Vn-1)- Let us
consider a polynomial function of the form known as newton form as

Pn(x) = ag + a;(x — xp) + az(x — x0)(x — x1)
+az(x—x0)(x —x)(x —x3) + -+ a,(x —x1) ... (x — x,_1)

Of the order n which passes through all the given data points

Atx = Xo ;pn(xO) = 0o = Yo
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At, X =x1,Pn(x1) =ag+a,(x; —x9) =y,

V1~ Qo
a; = ——
X1 — Xo

Y1 — Yo
X1 — Xo

At, X = X,Pn(x2) = ag + a;(x; — xp) + az(x; — x0) (X2 — x1) =y,

Y2 — Yo — a1 (X2 — xp)
(2 — x0) (X2 — x1)

a2=

Substituting of the value of a,

1=y
Y2 —=Yo — xi—xz (x2 — xp)

(2 — %) (X2 — x1)

a2=

On further calculation we get the final result as

Y2=Y1 _ Y17Yo
__X2—Xq X1—Xg

a, =
(x2 — Xo)
Now let us define new notation as
a, = zl ZO = f[xo, x,] divided dif ference
1~ Xp

Y2=Y1 Y17 Xo
Xop—X1 X1—Xpo

(x2 — xo)

a, = = f[xo»xl'xz]

The polynomial p,, (x) which passes through the given points is

Pn(x) = flxol + flx0, x11Cx — x0) + fx0, %1, x21(x — x0) (x — x1)
+ flxo, %1, %2, x3](x — x0) (x — x1) (x

— X3) e e f X0, X1, X0, X3 oo X ] (x — x0) ( — 1) (X — X3) ...

- xn—l)
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This polynomial is called Newtons divided difference interpolation

Example : Given below is a table of data for log x, estimate log 2.5using second
order newton

i 0 1 2 3
X; 1 2 3 4
log x; 0 0.3010 0.4771 0.6021
Solution

ap = flxgl =y0 =0
Vi —Yo _0.3010—0

ay = flxo, x1] = = 0.3010
1= flxo, %1 X, — %g 2 _1
Y2—YVi1_Yi—Yo 0.4771-0.3010 0.3010—0
— — X27X1 X1—X0 __ 3-2 2—1 —
ay = flxo, %1, %] = =22 = = = —0.0625use

Now,
Pn(x) = flxo] + flx0, x1](x — x0) + fx0, %1, %21 (x — x0) (x — x1)
=0+ 0.3010 * (x — 1) + (—0.0625)(x — 1) (x — 2)
= 0.3010 * (x — 1) — 0.0625(x — 1) (x — 2)
pn(2.5) = 0.3010 * (2.5 — 1) — 0.0625(2.5 — 1)(2.5 — 2)
= 0.3010 * 1.5 — 0.0469
= 0.4046

Newtons divided difference table:

The alternative way of finding the coefficients(a,,a,, a, and so on) values to
use Newton divided difference table, for given (xg fo),(x1 f1).(x2 f2),(x3f3) and
(x4 f4) 1s called Newton’s divided difference table.

Example : find the functional value for x = 7 using newton interpolation

polynomial
X 5 6 9 11
f(x) 12 13 14 16
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Since there are four data points the required polynomial will be of the order 3

p3(x) = ag + as(x — xp) + az(x — x)(x — x1)
+ az(x — x¢) (x — x1)(x — x3)

To get the value of ay, a4, a,, az we are going to use newton divided difference
table

x |f It Order | 2" Order Difference
Difference
5 [12
13 —-12
6—5
=1
6 |13 1,-1
9 —15
S /6
14 — 13 2/~ 1 /
9—6 11-5 20
— 1/3
1
9 |14 1 /3 2/
11—6 5
16 — 14
11-9
=1
11]16

From table ag = 12,a; = 1,a, = — 1/6'a3 = 1/20

Now ps(0) =12+1(x—5) = 1/ (x = 5)(x = 6) + 1/, (x = 5)(x —
6)(x —9)

Now substitute x=7 in above expression and we get

ps(x) =12+107 -5) -1/ 7 -5 T -6) + 1/, (7=5) (7 - 6)(7-9)
= 13.47
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Evenly spaced data

If x-value are evenly spaced getting an interpolating polynomial is considerably
simplified. Most of the engineering and scientific table are available in this form.

Newton’s forward difference interpolation/ Gregory Newton forward
interpolation formula

let y = f(x) be a function which takes the values y,, y; .....y, for values (n+1),
at xg,Xx1,X5 ....x, of the independent variables x. let these values of x be
equidistance i.ex; = xo + th,i.e i = 0,1,2 ...n. Let y(x) be the polynomial in x
of the nth degree such that y; = f(x;),i = 0,1,2 ...n.

y(x) =Ag + A1 (x — xp) + Az (x — x0) (x — x1)

+ As(x —xp)(x —x)(x — x3) oo oo ()
Putting x = xg, X4 ... .... X, Successively
We get, putting x = x,
Yo = 4o
Ao = Yo

putting x = x; and putting A, = y,
y1 = Ag + A1 (x1 — %)

3’1_A0=3’1_YO=A3’0
xl_xo xl_xo h

A1=

Where h =equidistant gap.

putting x = x, and putting values of 4y, A;

V2 =Ag + A1 (x1 — x0)+A2(x2 — x0) (X2 — X1)

V2 — Ag — A1 (x5 — x0)
(3 — x0) (x5 — x1)

A2=
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_Y1=Yo _
Y2 — Yo xl_xo(xz Xo)

(xz — x0) (X2 — xq1)

xz_xoZ(xz_xl)+(x1_x0)=h+h=2h

yz _ y() _ y1;3’0 Zh
(2h)(h)

Y2 —Yo—2Y1 + 2Y
2h?

_ Y2—2y1 + Yo
2h?

Similarly

Similarly, and so on putting these values in equation (a), we get

Ayo(x —x0)  A*yo(x — x0)(x — x1)

y(x) =yo + A + T2
A3yo(x — xg)(x —x)(x — x
n Yol 0)( ( 2) e (D)
3! h3
P . (x_XO) _ . _ .
utting =—=—=p,i.e x = xo + ph where p is a real number

Finally we get

— 1)A? —D(p — 2)A3
yp=y0+pAy0+p(p 2') Yo P )(;9! Ao .

p(p—1)..[p — (n— 1)]A%,
T n!

Where y, = y(x, + ph) is known as Gregory Newton forward interpolation
formula.
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Gregory Newton Backward Interpolation Formula

let y = f(x) be a function which takes the values y,, y; .....y, for values (n+1),
at xg,Xq,%y ....x, of the independent variables x. let these values of x be
equidistance i.ex; = xy + th,i.e i = 0,1,2 ...n. Let y(x) be the polynomial in x
of the nth degree such that y; = f(x;),i = 0,1,2 ...n. Suppose it is required to
evaluate y(x) near the end of the table value, then we can assume that,

y(x) = Ag + A (x — x5) + Ax(x — x) (x — Xp-1)
+ A3 (x — 2) (x — xp—1) (X —2xp—2) + -
+ A (e —xp) (6 — xp_q) o (6 — Xq) (a)

Putting x = x,,, Xx;,_q ... .... Xo SUccessively in equation a

We get, putting x = x,,

Ag =y(xn) = yn
putting x = x,,_; and putting Ay, = y,
Y(xn-1) = Yn-1 = Ao + A1 (-1 — X)
putting x = x,,_,
Y(xn-2) = Yn—2 = Ao + A1 (Xn—2 — Xn)+A42(xn—2 — %) (Xn—2 — Xp—1)

Solving above equation for values of A, we get
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Yn-1— AO _ Yn-1— Yn _ Yn — Yn-1 _ vyn

A1 =
Xn-1~"Xn Xn-1—Xn Xn = Xp—q h

Where h =equidistant gap.

_ VYn-2 — Ao — A1 (X3 — xp)
(xn—z - xn)(xn—z - xn—l)

Az

_ Yn-2=Yn— O = Yn-1)(=2) xl
- (—2h)(=h) h

_ yn_ZYn—l + 23’71—2
2h?

_Vy,
2! h?

Similarly

_ Vy,
~ 31h3

A3

And so on

Putting these values in equation a we get

Vyn(x - xn) 4 szn(x - xn)(x - xn—l)

y(x) =y + . T2
Vsyn(x — xp) (X = Xp_1) (X — Xp_3)
+ TE ()]
Putting (x_—hx”) = p,i.e x = x, + ph where p is a real number

Finally we get
p(p + 1)V? p(p+ 1(p + 2)V3

LGRS D@ +2) ..[p + (n — DIV,
nl!

Where y,, = y(x, + ph) is known as Gregory Newton Backward interpolation
formula.
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Example 1: Estimate the value of sinf at 8 = 25" , using Newton Gregory

Forward difference formula with the help of following table

7] 10 20 30 40 50
sin @ 0.1736 0.3420 0.5 0.6428 0.7660
Solution

In order to use newtons Gregory difference formula we need the values of A™.

These coefficients can be obtained from the difference table given below

0 sin 6 Ay, A%y, A3y, Ay,
10 0.1736
0.1684
20 0.3420 -0.0104
0.1580 -0.0048
30 0.5 -0.0152 0.0004
0.1428 -0.0041
40 0.6428 -0.0196
0.1232
50 0.7660

The Newton’s Forward Difference Interpolation Formula

p(p — DAy,  p(p —D(p - 2)A%,
p(p — D(p —2)(p — 3)A%y,
+
4!
Where p = =2 for § = 25,p =210_15

10

1.6(1.5 — 1)(—0.0104)

¥y =0.1736 + 1.5 X 0.1684 +

2!
1 5(1.5 -1)(1.5 - 2)(—0.0048)
31
1 5(1.5 — 1)(1. 5 —2)(1.5 - 3)0.004

41
= 0.1736 + 0.2526 — 0.0039 + 0.0003 + 0.0000
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= 0.4226

Extra solving using backward formula

p(p+ DV?y, plp+Dp+2)Vy,

p(p+ D +2)(P +3)Vy,
+
4!
_25-50
P=710 ~ 7~

y(25) = 0.7660 + (—2.5)(0.1232) + (=2.5)(=2.5 ;r' 1)(—0.0196)

N (=2.5)(=2.5+ 1)(—2.5+ 2)(—0.0044)
3!
N (=2.5)(=2.5+1)(—2.5+ 2)(—2.5 + 3)(0.0004)
4!
= 0.7660 — 0.3080 — 0.0368 + 0.0014 + 0

= 0.4226

Example 2 : Find the values of y for x=0.8 for the given set of values using
Newton’s Backward Difference Interpolation Formula

X 0.5 1 1.5 2 2.5 3

Y 2.1990 2.5 2.6761 2.8010 2.8979 2.9771
Now the difference table is

X y Vyn szn V3Yn V4Yn Vsyn

0.5 2.1990

1 2.5 0.3010

1.5 2.6761 0.1761 -0.1249

2 2.8010 0.1249 -0.0512 |0.0737

2.5 2.8979 0.0969 -0.0280 |0.0232 -0.0505

3 2.9771 0.0792 -0.0177 10.0103 -0.0129 ]0.0376
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Now, Newton’s Backward Interpolation Formula

p(p + DV, N p(p + 1(p + 2)V3y,

Yp = Yn + DAY, +

2! 3!
+p(p+1)(p+2)(P+3)V4yn
4
N p(p+ D +2)(P+3)(P+4HVy,
5!
Where
_x—=x, 08-3 A4
P="fh T "o5 ™
Now

(—4.4)(—=4.4 + 1)(=0.0177)

v, = y(0.8) = 29771 + (—4.4)(0.0792) +

2!
4 (—4.4)(—4.4 + 1)(—4.4 + 2)(0.0103)
3!
N (—4.4)(—44+ 1)(—4.4 + 2)(—4.4 + 3)(—0.0129)

4!

s (—4.4)(—4.4 + 1) (=44 + 2)(—4.4 + 3)(—4.4 + 4)(0.0376)

5!

= 2.9771 — 0.3485 — 0.1324 — 0.0616 — 0.0270 — 0.0063

= 2.4013
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Spline curves

There are many times when fitting an interpolating polynomial to data points is
very difficult. Here is an example where we try to fit to data pairs from known

functions.

f(x)

a) original function

f(x)

f(x)

c) fitted with p4(x)

b) fitted with quadratic
function

None of the polynomial is a good representation of the function. In particular we
observe that eight-degree polynomial derivatives widely near x=2.

One approach to overcome this problem is to divide the entire range of points into
sub intervals and use local low order polynomials to interpolate each sub
intervals, such polynomials are called piecewise polynomials.
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5
ax2+bix+c i+ 1X%+bie1X+Cist

f(x;1) fe) f(xi1) f(xie2)

Figure piecewise polynomial interpolation

Such piecewise polynomials are called splines functions. So, the splines functions
look smooth at the connecting points, the connecting points are called knots or
nodes.

The formula for obtaining cubic spline function:
(1) We write the formula for a cubic polynomial s;(x) as,
si(x) = (ai-1/6h;) (hi? ui-ui®) +(ai/6hi) (ui-i* — hi? ui-) +1/hi (fiuier -fior W)
where, u; = X-Xi

€2

(2) Formula for obtaining “a;”” values:
(I)  For 3 data points:
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fivi—=fi  [fi—fi-
hiai—l + Z(hl + hi+1)ai + hi+1ai+1 = 6( ;l-i1+1 - h; 1)

(IT)  For 4 data points:

[2(h1 + hy) h, [al] _ [D1]
h, 2(hy + h3)]la; D,

Where, Di = 6 (fi+1_fi _ fi—fi—1)
hivq hi

Q.N. (1) Given the data points as below:

1 0 1 2
Xi 4 (X0) 9 (x1) 16 (x2)
f(xi) 2 (fo) 3 (f1) 4 (£2)

Estimate the functional value at x=7 using cubic spline technique.

Solution : h1 =5, h» =7 Now, using the formula,

fira=fi _ fi~fi-
hia;—y + 2(h; + hipa; + hypiai40 = 6( ;;1 i 1)---(A)

Put i=1 since x=7 lies in the domain of si(x). i.e.

hiao + 2(hy + hy)ay + hya, = 6 (fh;f - fh;f) ...... (B)

Now, we know from the cubic spline technique, ap= a,=0 i.e. ap= a>=0
So, from (B) we get, 2(5+7) ai=6[1/7-1/5].Therefore, a; = -0.0143
Now the cubic spline function,
si(x) = (ai-1/6hi) (hi? ui-u;®) +(ai/6h;) (ui-1® — hi? ui-1) +1/hi (fiuir -fio wi)....(C)
where, Ui = X-X;
put i=1 in (C) we get,
s1(x) = (a0/6h1) (hi? ui-ui®) +(ai/6hi) (uo® — hi? uo) +1/hi (frue -fo ur)
where, uo =x-Xo and u; =x-Xi

So, s1(7) =2.6229 1.e. f(7) = 2.6229 Ans.
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Q.N. ( 2): Given the data points as below:

i 0 1 2 3
Xi 1(x0) | 2(x1) 3(x2) | 4(x3)
f(xi) 0.5(fo) | 0.3333(f1) | 0.25(f2) | 0.20(f3)
Estimate the functional value at x=2.5 using cubic spline technique.

Solution: hi =1, ho =1, h3=1 and ao= 0, a1, a2, a3=0 (from cubic spline technique)
[2(1 +1) 1 ] [al] _ Dl]
1 21+ D lazl — [D,

Now D (i=1) = 6 (fzh;f — £k} — 0.5004
2 1

and Dy(i=2) = 6 (222 — fzh;f) =0.1995
3

2

Now, a;=0.120 and a,=0.0199

Since x=2.5 lies on the domain of s2(x) i.e. 1=2

Now, the cubic spline function,

$2(x) = (a1/6h2) (ho? ux-uz?) +(a2/6h2) (ui® — ho? uy) +1/hs (Fur -fi w2)
where, U2 = X-X2, U] = X-X]

So, $2(2.5) =0.2829 1.e. f(2.5) = 0.2829

Practice questions:

1. Estimate the value of In(3.5) using Newton-Gregory Forward Difference
Formula using given data

X 1.0 2.0 3.0 4.0
In x 0.0 0.6931 1.0986 1.3863
2. Estimate the value of sinf at § = 45°&15" , using Newton Gregory
Forward and Backward difference formula with the help of following table
and compare the results

6 10 20 30 40 50
sin 6 0.1736 0.3420 0.5 0.6428 0.7660
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Curve Fitting:

In many applications it is often necessary to establish a mathematical relationship
between experimental values, this relationship may be used for either testing
existing mathematical model or establishing new ones. The mathematical
equation can also be used to predict or forecast values of the dependent variables.

Suppose the value of y for the different values of x are given, if we want to know
the effect of x and y then we may write a functional relationship y = f(x)

The variable y is called dependent variables and x is the independent variable.
The relationship mat be either linear or non linear. We shall discuss the technique
known as least squares regression to fit data under following situation.

Relationship is linear
Fitting a straight line is the simplest approach of regression analysis. Let us
consider the mathematical equation of a straight line

y=a+bx = f(x)

We know that a is the intercept of the line and b is the slope. Consider the
points(x;, y;), then the vertical distance of this point from the line f(x) = a +
bx is q; , then

qi =yi — f(x)
=i — (a + bx;)

There are various approaches that would be tries for fitting the best line through
the data:

1. Minimize the sum of errors
2. Minimize the sum of absolute value of errors
3. Minimize the sum of squares of errors
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Least Square regression:

Let the sum squares of individual errors be expressed as

n

0=y at = S scor

i=1 i=1

n
z i —a— bx;]

i=1

In this method of least squares we choose a & b such that Q is minimum, since Q
depends on a & b, a necessary condition for Q to be minimum is

aQ 00
da 0%_0

Then

90 <
o= —ZZ(yi—a—bxi) =0
i=

aQ C
b —Zin(yl' —a—bx;)=0
i=

Thus we can write as:

n
D i—a-bx)=0
i=1

Zyi =na + bz Xj vew vee veevee e @
zxiyi = ale- + beiZ tveiie b

These are called normal equations solving for a & b we get

nYxXyi — XNX LY
nYyxi* — (2 x;)?
_ XY bei _

n = n =y - bx

b=
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Where x and y are the average of x and y values.

Example: Fit a straight line to the following set of data

X 1 2 3 4
Y 4 5 6
Solution
The various summations are given below
Xi Yi x;2 Xiyi
1 3 1 3
2 4 4 8
3 5 9 15
4 6 16 24
5 8 25 40
1 2 55 90

now

b

_ nYXYi — XX LYi

- aniz - (in)z
_ 590 —15 %26

5% 55 — 152
=1.20

XYi 2 X
a= —b
n n

26 1215
5 5
=1.6

Therefore, the linear equationis y = 1.6 + 1.2x
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Practice :

1. Fit a linear curve through the following data points

X 1 2 3 4 5 6 7
Y 0.5 2.5 2.0 4.0 3.5 6.0 5.5
Answer :y = 0.0714 + 0.839x

2. In an organization , systematic efforts were introduces to reduce the
employee absenteeism and result for the first 10 months are shown below,
fit a linear least square lines to the data.

Months 1 2 |3 |4 5 |6 |7 8 |9 [10
Absentees(%) |10 |9 |9 |85 |9 |8 [85 |7 |8 |75

3. The following table shows heights(h) and weights, find the regression line
and estimate the weights of the person with the following heights.
a) 140cm
b) 163 cm
c) 172.5 cm

hem) [175 [165 [160 [180 [150 [170 [155 [185
w(kg) |68 58 59 71 51 62 53 68

Fitting Transcendental equations

In many cases of course data from experimental test are non linear, so we need to
fit them some functions other than first degree polynomial some popular forms
are

b bx

y=ax’ory=ae
Now for y = ax? if we take logarithms on both sides we get
Iny =Ina + blnx
now let is write as
z=A+ bx

z=Iny,A=Ina,X =Inx

This equation is similar in form to linear equation and therefore using the same
procedure we can evaluate the parameters A & B.
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_nXlnxIny; —Ylnx; Ylny;
~ nX(nx)? - Clnx)?

X Iny; —bXYInx;)

Ina=A4=

Example : given the data table below , fit a power function model of the form y =

ax?

X 1 2 3 4 5
y 0.5 2 4.5 8 12.5

The various quantities requires are

Xi Vi In x; In y; (Inx;))? | (nx;)(ny;)
1 0.5 0 -0.6931 0 0
2 2 0.6931 0.6931 0.4804 0.4804
3 4.5 1.0986 1.5041 1.2069 1.6524
4 8 1.3863 2.0794 1.9218 2.8827
5 12.5 1.6094 2.5257 2.5902 4.0649
» 4.7874 6.1092 6.1993 9.0804

_nXlnxIny; — Ylnx; Ylny;
 nY(Inx)% - Clnx)?
_ 5%9.0804 — 4.7874 * 6.1092
B 5% 6.1993 — 4.78742

=2

4= XIny; —bXYInx;)
n

_ 6.1092 — 2 % 4.7874
B 5
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= —0.6981
Q= el = 06931 _ (5
y = ax? = 0.5x?

y = 0.5x2

Practice:

1. The temperature of a metal strip was measured at various time intervals

during heating and the values are given in the table
Time,t(min) |1 2 3 4
Temp,T°(c) |70 83 150 124

If the relationship between the temperature T and time t is of the form T =

t . .
be' /4 + a, estimate temp at t=6min.

2. Use the exponential model y = ae?* to fit the data

X 0.4 0.8 1.2 1.6 2.0 2.4
Y 75 100 140 200 270 375

Fitting a polynomial function

When a given set of data does not appear to satisfy a linear equation, we can try
a suitable polynomial as regression curve to fit the data. The least squares
technique can be readily used to fit the data to a polynomial

Consider a polynomial of degree m-1.
f)=y=a;+a;x+asx*+ax>+ ..+ apx™?

If the data contains n set of x any y values, then the sum squares of the errors is
given by

Q= f(x)]?

n
i=1
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Since f(x) is a polynomial and contains coefficient a;,a,,a; we have to
estimate all m coefficients as before we have the following m equations that can
be solved for these coefficients i.e

0 d d
90 _ 90 . 29
day da, da,,
Consider a general term
aQ Y of (x:)
7 " zg[yl f)] =5 =0
l:
oF ) _ iy
6aj L

Thus, we have

2

n
[y — fOx)lx/ t=0j=123....m
=1

n

Z[Yixij_l —xJ 7 f(x)] =0
i=1

Substituting for f(x;)
n n
Z x/ 7 (ay + arx; + agx? +agxd o+ apx™Y) = z yixd 1
i=1 i=1

These are m equations and each summation is for i=1 to n
2 3 m-1 __
an + axyx; + az)x;° +asyx;” + o+ Q)X =)y

4
a Yx; + aYx;2 + azyx;® + ayxt + o+ anYx = Yyix; ..

Y™+ Y™ + as Y™ 4+ ay Yo et Y
= Yyt
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The set of m equation can be represented in matrix as CA=B

n in inz inm_l
C = XX Yx;?

e iném_z J

aq [ Zyi

a, XYiX;
A=[%|B=| Yyx?

Am >y ™

Example : Fit a second order polynomial to the data in the table

X 1.0 2 3 4
y 6 11 18 27

The order of the polynomial is 2 and therefore we will have 3 simultaneous
equations as shown below:

ain + a2 x; + azyx;? = Yy;
a1 2x; + A, Y xt + azyx;® = Yyx;

a1 2x;% + a Y x; + azyxt = Yyix;?

x y x? x3 x* yx yx?
1 6 1 1 1 6 6
2 11 4 16 22 44
3 18 9 27 81 54 162
4 27 16 64 256 108 432
» 10 62 30 100 354 190 644
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Substituting these values, we get,

4‘(11 + 10(12 + 30(13 == 62
10a, + 30a, + 100a; = 190

30a, + 100a, + 354a; = 644

On solving these equations gives,
a,=3,a,=2,a3=1

Therefore, the least square quadratic polynomial is y = 3 + 2x + x?
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Chapter 3: Numerical Differentiation and Integration

Let us consider a set of values (x;,y;) of a function. The process of computing
the derivative or derivatives of that function at some values of x from the given
set of values is called Numerical Differentiation. This may be done by first
approximating the function by suitable interpolation formula and then
differentiating.

Derivatives using Newton’s Forward Difference formula
Newton’s forward interpolation formula

p(-1DA%y, , p(p—-1D(P-2)A3y, |, p(p—-D(p—-2)(p-3)A*y
Yp = Yo + Py + =———+ o <+ m .. (D)

_x_xo
P="

Differentiating both sides of above equation with respect to p, we have

dy (2p — DA%,  Bp* —6p+2)Ny,

LA
dp o 2! 31

(2)

Now

dy dydp dyl

dx dpdx dph

. dp_l
" dx h
dy 1 2p — 1)A? 3p2 — 6p + 2 )A3
_yz_Ay0+(p )A%y,  (Bp” = 6p + 2)A°y,
dx  h 21 3!
4p3 — 18p2 + 22p — 6 )A*
+(p p s p —6)A%y, 3)
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At x = x4, p = 0, hence putting p=0 in equation 3 we get

d 1 A%y, A3y, A*
dy =_[Ao_ 2y0+ Yo 3’0] @

dx

X=Xq h
Differentiating equation 3 again with respect to x we get
dzy d (dy) dp 1d (dy)
dx? ~ dp\dx/dx ~ hdp\dx
1 Lo~ DAy,  (6p* — 18p +11)M%y,
AZ
" h2 [ . n 12 T O

Putting p = 0 in equation 5

il R 1[A2 APy, + =2 A ]
dx2 . = 2 Yo Yo 12 *¥o
—A0
Similarly
d3y 1 3
_ 3
e I e L

_xo

Derivates using Newton’s Backward Difference Formula

Newton’s backward interpolation formula is

2 3 4
y =y, +pVy, + p(m;?V Yn 4 p(p+1)(§!+2)v In 4 p(p+1)(p+jj(P+3)V Yn (8)
X—Xx
D L))

dy dydp dyl
dx dpdx dph

3p? +6p + 2
3!

dy 1 +2p+1
dp _R|r T2

Viy, +

VSyO + °ce (10)
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At x = x,,,p = 0, hence putting p=0 in equation 10 we get

1 iy, iy, Vi,
x:xn_ﬁlvy”Jr St L (1)

dy
dx

Again, differentiating equation 10 with respect to x
d’y d (dy) dp 1d (dy)
dx?  dp\dx/dx hdp\dx
1 6p + 6 6p? + 18p + 11

— |2 3
_hZIVy”+ TG 41

V4’yn + ...

- (12)

Puttingp =0

d?y

11, . D
IxZ =ﬁ[Vyn+V yn+EVyn+---]...(13)

Se=27

Similarly
d3y

1 3 3 4
dx3 Zﬁ[v Yn +§V Yn + .- (14)

X=xn

Note: first derivative is also as rate of change, so it can also be asked to find
the velocity, second derivative to find acceleration etc.

Example: Find the first, second and third derivate of f(x)at x = 1.5 if

1.5

2.0

2.5

3.0

3.5

4.0

X
f(x)

3.375

7.0

13.625

24

38.875

59.0
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Solution

We have to find the derivate at the points x = 1.5, which is at the beginning of
the given data. Therefore, we use the derivate of Newton’s Forward Interpolation
formula.

Forward difference table is

x _|y=f(x)| Ay A’y Ay Aty A%y

1.5 3.375

3.625
2.0 7.0 3

6.6250 0.75
2.5 13.625 3.750

10.3750 0.75
3.0 24.0 4.5

14.8750 0.75
3.5 38.875 5.25

20.1250
4.0 59.0

Here Xg = 1.5,y0 = 3375, Ayo = 3625, Azyo = 3, A3y0 = 075, A4y0 =
0,h=0.5

Now using equation for finding the derivate

Z_Zx:xo = f'(x0) = [Ayo Zzyo +A33y0 _A‘;yo + ]
f'(1.5) =i[3.625—§+0'_75_9+...]
0.5 2 3 4
= 4.75
Now
% =f"(15) =5 [ J’O—Ay0+%*0]

X=Xg
. [3 0.75 + 1 0]
=——1|3—-0. — %
1.52 12

=9
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Again

Example:

3
= h_ [A3y0 - EALLyO
1
=6

The population of a certain town (as obtained from central data) is shown in the

following table
Year 1951 1961 1971 1981 1991
population 19.36 36.65 58.81 77.21 94.61

(thousand)

Find the rate of growth of the population in the year 1981

Solution

Here we have to find the derivate at 1981 which is near the end of the table, hence
we use the derivative of Newtons Backward difference formula. The table if

difference 1s as follows:

x(year) |y = Vy Viy Viy Vty
f (x)(population)
1951 19.96
16.69
1961 36.65 5.47
22.16 -9.23
1971 58.81 -3.76 11.99
18.40 2.76
1981 77.21 -1
17.40
1991 94.61
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Here h = 10,x, = 1991,Vy,, = 17.4,V?y, = —1,V3y, = 2.76,V*y, = 11.99
We know derivative for backward difference is:
dy 1 2p+1
2=y
dp K| T2

2p3+9p% +11p + 3
+ a1

3p2 +6p + 2
3!

Viy, + 3y,

V43’0

Now we have to find out the rate of growth of the population in year 1981, so
_x—x, 1981-1991
P=" = 10 B

~p=-1,h=10

— —1)2 —
2( 12)+1*(_1)+3( 1)? + 6( 1)+22_76

1
y'(1981) = — |17.4 + -

10
N 2(-1D3+9(-1)? +11(-1) + 3

11.99
12

1
=10 [17.4 + 0.5 — 0.46 — 0.992]

= 1.6441
Therefore, the rate of growth of the population in the year is 1981 is 1.6441

Maxima and minima of tabulated function
We know Newton’s forward interpolation formula as :

dy 1 (2p — DA%y, (3p* —6p +2)A%y,
dx h 2! 3!
(4p3 — 18p? + 22p — 6 )Aty,
+ a1

We know that maximum and minimum values of a function y = f(x) can be
found by equating dy/dx to zero and solution for x
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Ayo +

(2p — DA%y, N (3p? —6p + 2)A3y,

3!

4p3 — 18p? + 22p — 6)A*
L P P=6)Ao

4!

Now for keeping only up to third difference we have

Ay, +

(2p — DA%,  Bp® —6p +2)Myo _

3!

Solving this for p, by substituting Ay,, A%y,, A3y,, we get x as x, + ph at which

y 1s @ maximum or minimum

Example: Given the following data, find the maximum value of y

X

-1

3

y

-21

15 12 3

Since the arguments (x -points) aren’t equally spaced we use Newton’s Divided
Difference formula

y(x) =ag+ a;(x —x9) + a(x — xp)(x — x1)
+ asz(x —x0)(x — x)(x — x3) ...

X f(x)
-1 -21
18*
1 15 =7
-3 1
2 12 -3
-9
3 3
Note :
18 = 15 - (-21)
1-(-1)
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_ —3-18
- 2—(-1)

From above table,
a, =-21,a, =18,a, = —-7,a3 =1,
f)=-214+18x+D+x+Dx-DEED+x+1D(x—1D(x—2)(1)

f(x) =x3—9x2+17x+ 6
. .. dy
For maxima and minima —= = 0

3x2—18x+17 =0

On solving, we get,
x = 4..8257 or 1.1743
Since x=4.8257 is out of range [-1 to 3], we take x=1.1743
S Ymax = X2 —9x%2 +17x + 6
= 117433 —9%1.1734* + 17 x 1.1743 + 6

= 15.171612

Differentiating continuous functions:
If the process of approximating the derivative f'(x) of the function f(x), when
the function itself is available

Forward Difference Quotient
consider a small increment Ax = h in X, according to Taylor’s theorem, we have

fa+h) =) +RF' ) +2F7(©0) .. (1) forx+ 6<x+h

by re-arranging the terms, we get
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£y = LI ey L (2)

Thus if h is chosen to be sufficiently small , f’(x) can be approximated by

frx =18 3)

With a truncation error of
2

h
E(h)=——f"(6)...(4

Equation 3 is called first order forward difference quotient. This is also known as
two-point formula. The truncation error is in the order of h and can be decreased
by decreasing h.

Similarly, we can show that the first order backward difference quotient is

— f(x—h
f’(x)=f(x) {l(x )_"

(5)

Central Difference Quotient

fx+h) = flx—h)
2h

HOE

This equation is called second order difference quotient. Note that this is the
average of the forward difference quotient and backward difference equation.
This 1s also called as three-point formula.

Example: Estimate approximate derivative of f(x) =x%atx =1, for
h=0.2,0.1,0.05 and 0.01, using first order forward difference formula

We know that
i =[G =10
h) —
g = LAED=1G)
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Derivative approximation is tabulated below as:

h ')
02 |22
0.1 |21
0.05 |2.05
0.01 |2.01

Note that the correct answer is 2. The derivative approximation approaches the

exact value as h decreases.

Now for central difference quotient

fx+h)—fx—-h)

£ = —

CfA+R) - FO-R)

f'(x) = o

h

0.2

0.1

0.05

Example Practice:

1. Find the first and second derivates of the function tabulated below at point

x=19

1.0

1.2

1.4

1.6

1.8

2.0

X
f(x)

0.128

0.544

1.296

2432

4.00

Result :0.63,6.6

2. The following data gives corresponding values of pressure and specific

volume of super-heated steam.

2

4

6

8

10

N
P

105

42.07

25.3

16.7

13

a. Find the rate of change of pressure with respect to volume when v=2
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b. Find the rate of change of volume with respect to pressure when p=105

f(x)

Numerical Integration:

The process of computing f; y dx,where y = f(x) is given by a set of tabulated
values [x;, y;],1=0,1,2 ....n ,a = xy, b = x,, is called numerical integration since
y = f(x) is a single variable function, the process in general is known as

quadrature, like that of numerical differentiation here also we replace f(X) by an
interpolation formula and integrate it in between given limits.

Newtons Cotes Formula:
This is the most popular and widely used in numerical integration. Numerical
integration method uses an interpolating polynomial p,, (x) in place of f(x)

b b
Thus I = [ f(x)dx = [ pp(x)dx ...... (1)
We know, Newton’s interpolation formula as:
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p(p—1) r(p— D -2)
f(x) = fo +pAfo + TAzfo + 30 A fo + -
Integrating term by term, since x = x, + ph
dx = hdp
nr -1 —D(p—-2
= fo+ pafy + 8Dz, (PO )A3f0+°"]hd'p
o L ! !
I_h- +n2A -|—1 n3 ‘I’lz Az _|_1 n4 3+2A3
—_nfo Zfo 21\ 3 > fo 31\ 2 n--n fo
+---]....(1)

Above equation is known as Newton’s Cote’s quadrature formula, used for
numerical integration.

If the limits of integration a and b are in the set of interpolating points
xi=0,1,2,3.....n, then the formula is referred as closed form. If the points a and b
lie beyond the set of interpolating points, then the formula is termed as open form.
Since the open form formula is not used for definite integration, we consider here
only the closed form methods. They include:

1. Trapezoidal rule
2. Simpson’s 1/3 rule
3. Simpson’s 3/8 rule

Trapezoidal rule (2 Point Formula)
Putting n=1 in equation 1 and neglecting second and higher order differences we
get

[ rax =l + =2
1
1=h|fy+5 - f)

h
1=§[f0+f1]
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Composite Trapezoidal Rule:

If the range to be integrated is large, the trapezoidal rule can be improved by
dividing the interval (a,b) into a number of small intervals. The sum of areas of
all the sub-intervals is the integral of the intervals (a,b) or (Xo,xn). this is known
as composite trapezoidal rule.

As seen in the figure, there are n+1 equally spaced sampling point that create n
segments of equal width h given by

b—a
n

h =

f(x)

x;=a+ih =012, ..n

From the equation of trapezoidal rule, vl

X
I = j p ()dx
Xi-1

h
= E [f(xi—l) - f(xl)] X0 x1  x2

The total area of all the n segments is

= h
= Z S [FGein) + F(x)]
h h h
I = > [f (xo) + f(x)] + > [f(xy) + f(x)] + - + 5 [f (xp—1) + f(x)]

Now let us denote f; = f(x;) then

I_h
2

n-—1
fot2) fitfo
i=1

Above equation is known as composite trapezoidal rule
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Simpson’s 1/3 rule ( 3 Point Formula)

f(x)

f(x1)

f(a) f(b)

x0=a x1 x2=b

Another popular method is Simpson’s 1/3 rule. Here the function f(x) is
approximated by second order polynomial p,(x) which passes through three
sampling points as shown in figure. The three points include the end point a & b
and midpoint between x; = (a + b)/2. The width of the segment h is given by

h = Che a)/ n- Take n=2 and neglecting the third and higher order differences
we get (in newton’s cote formula)

1 /23

1= h[2fy + S 0% +5 (5 - 5) 4%
b 138
L f(x)dx =h [ZfO +2(hi = fo) +5G =D - fo)z]
=h [Zfo + 2f1 — 2f, +%(Af2 — Afl)]
= g[ZfO + 2f; — 2f, +%(f2 —fi— (f1_fo))]

h
=§[f0 +4f1 + f2]

Composite Simpson’s 1/3 rule:

b h
[ £ =31+ ) + 4G+ f5 + fo ) 4 205 + fy+ fi+ )]
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Simpson’s 3/8 rule ( 4 Point Rule)
We have Newton’s cotes formula

3 n

— nz 1(n ’ 2 1 Tl4 3 2 3
I=h nf0+7Af0+z ?—7 Afo_i_i Z—n +n Af0+...

Putting n=3 and neglecting 4™ terms in above formula

2

I=nh|3 +32A +1 33 A? +1 3t 33 + 32| A3f, +

On solving we get

3h
I = 3 [(fo + f3) +3f1 + 3f2]

Adding all these integrals where n is a multiple of 3 we get

3h
ff(x)dx=§[(fo +)+t3ht+hLhthats+fH+)+2(+fe+ 1o

+.”.)]

This is composite Simpson’s 3/8 rule.

Example:

dx

1. Evaluate [ 010 using

1+x2
a. Trapezoidal rule
b. Simpson’s 1/3 rule

c. Simpson’s 3/8 rule
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Solution:

Taking h=1, divide the whole range of the integration [0,10] into ten equal parts.
The value of the integrand for each point of sub division.

X, |x |1 |2 [3 |4 5 6 78 9 10
=x| =0

fi |1 0. 70. (0. 0.058 |0.038 |0.027 |0.02 |0.015 |0.012 | 0.009
=y 5 12

—
0
W
()
jan)
N
\®)
No)

a. By Trapezoidal rule

10 dx h
jo m=§[fo + fil
1

= 0.75

b. By Simpson’s 1/3 rule

Y odx h A
j;) 1+x2_§[f0+ fi+ f2]

Wl =

[1+4x0.5+0.2]

= 1.0667
c. By Simpson’s 3/8 rule

10 gy 2
jo 1+ x2 =§[(f0 + ) +3f1 + 3]

X1
_T[(1+0.1)+3><0.5+3><0.2]
= 1.2

Composite methods:

a. Trapezoidal rule

jlo dx _h
o 1+x2 2

n-1
fot2) fitfo
i=1
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_h
2

fo+229:fi+flo

N =

[1+2(0.5+ 0.2+ 0.1+ 0.0588 + 0.0385 + 0.0270 + 0.020

+ 0.0154 + 0.0122) + 0.0099]
= 1.4769

b. By Simpson’s 1/3 rule
10 d h
| T =310t o) A Fat fat o )+ 20 4

1+x2
+ fo + fa)]
- % [(1 + 0.0099)

+ 4(0.5+ 0.1 + 0.0385 + 0.020 + 0.0122)
+2(0.2 + 0.0588 + 0.0270 + 0.0154)]

1
=3 [1.0099 + 2.6828 + 0.6024]
= 1.4317

c. Simpson’s 3/8 rule

10 dx 3h
| T =Gt ) +3Ch+fo + fut fs+ fr + fo) + 20
0
+ fo + fo)l
- g[u +0.0099)

+3(0.5 + 0.2 + 0.0588 + 0.0385 + 0.020 + 0.0154)
+2(0.1 + 0.0270 + 0.0270 + 0.0122)]
= 1.4199
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Romberg integration formula/ Richardson’s deferred approach to the limit
or Romberg method
Take an arbitrary value of h and calculate

b h
L = J fo)dx = E[(fo +) 20+ 2+ 3+ fasd)]

[(fo+ ) +2(i+ o+ 5+ faod)]

NN

I, = Lbf(x)dx =

[(fo+ ) +2(i+ o+ 5+ faod)]

x| s

b

I3 =j f(x)dx =

a
Now better estimate of I; & I, can be found as

. 1

I =1, +§(12_I1)
. 1

I, =13 +§(I3_12)

If I, = I,” then stop else continue as I; ™" = I," + % (I, — ;") and so on

dx

Example: Evaluate [ 01 T using Romberg’s method correct up to four decimal

+x2
places. Hence find approximate value of .

Solution

By taking n=2, h = b_Ta = % =0.5

a. When h=0.5
X 0 0.5 1
fi 1 0.8 0.5
h 0.5
I, = 5 [(fo+ 1) +2(f1)] = - [(1+0.5)+2(0.8)] =0.7750
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b. When h=0.5/2=0.25

X 0

0.25

0.5

0.75

0.9412

0.8

0.64

fi 1
h
I, = E[(fo + fa) +2(f1 + f2 + f3)]

0.25
= [(1+0.5) +2(0.941 + 0.8 + 0.64)] = 0.7828

c. When h=0.25/2=0.125

x |0 [0.125 10.25
fi |1 10.9846]0.9412

0.375 (0.5
0.876710.8

0.625
0.7191

0.75
0.64

0875 |1
0.5664 | 0.5

h
I3=E[(fo+f8)+2(f1 thtfatfatfstfetfr)

0.125
——[(1+05) +2(0.9846 + 0.9412 + 0.8767 + 0.8 + 0.7191 + 0.64
+ 0.5664)] = 0.78475

1 1
L' =1l +3 (I, — I) = 0.7828 + 3 (0.7828 — 0.7750) = 0.7854

1 1
L' = Iy +5 (s = Ip) = 0.7848 + 5 (0.7848 — 0.7828) = 0.7854

Since these two are the same value, we conclude that the value of the integral
=0.7854

1 dx
0 1+x2

1.e = (0.7854

b dx s
= [tan"'x]§ =tan™* 1 —tan"1 0 = — = 0.7854
jol+x2 [tan™" x]5 = tan an 2

~ 1= 31416
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Gaussian integration:

Gaussian integration is based on the concept that the accuracy of numerical
integration can be improved by choosing sampling points wisely rather than on
the basis of equal sampling. The problem is to compute the values of x; & x, given
the value of a and b and to choose approximate weights wi & w2 . The method of
implementing the strategy of finding approximate values of x; & w; and obtaining
the integral of f(x) is called Gaussian integration or quadrature.

Gaussian integration assumes an approximation of the form

1= [ reoar= Z Wef () - (1)
-1 i=1

The above equation 1 contains 2n unknowns to be determined. For example for
n=2, we need to find the values of wi,w2,x1,x2. We assume that the integral will
be exact up to cubic polynomial. This implies the function 1,x,x’&x> can be
numerically integrated to obtain exact results.

Assume f(x)=1 (assume the integral is exact up to cubic polynomial)

1. f(x)=1
1
W4 + Wy = f dx =2
-1
2. f(x)=x
1
WiXq + WyX, = f fx)dx =10
-1
3. f(x)=x>
1 1 2
WX 2 + wyox,? = j f(x)dx = j x?dx = 3
-1 -1
4. f(x)=x3

1 1
wix, S+ wyx,3 = j f(x)dx = j x3dx =0
-1 -1
Solving above equation we get
W, = 1, Wy = 1
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_ -1,
6 =1/ 2= -05773502

_1, _
xp =1/ = 05773502

Thus, we have the Gaussian Quadrature formula, for n=2

1
| feodx=rY o+ £ )

This formula will give correct value for the integral of f(x) in the range (-
1,1) for any function up to third order. The above equation is also called
Gauss Legendre formula.

1 : : . :
Example : Compute [~ , €” using two point Gaussian integration formula

I = j Cerdx = wnf () + wof (1)

Where x; and x, are Gaussian quadrature points and are given by
X, = —1/\/§ = —0.5773502,w; = 1
x, = 1/\/§ = 0.5773502,w, = 1

fx) =e”

we know that,

=g+ )

_1

1
=e /\/§ +e /\/§
= 0.5614 + 1.7813

= 2.3427
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Changing limits of Integration

Note that the Gaussian formula imposed a restriction on the limits of integration
to be from -1 to 1. The restriction can be overcome by using the techniques of the
“interval transformation” used in calculus, let

b 1
j f(x)dx = cj g(z)dz
a -1
Assume the following transformation between x and new variable z. by following
relation.
1.e x=Az+B
this must satisfy the following conditions at x=a, z=-1 & x=b, z=1

1.e B-A=a, A+B=b

A_b—a _a+b
=—B=—
b— +b
Lx= )
ax = =%
x=( > )dz
here ¢ = 222
2
- the integral becomes
b—a (!
jg(z)dz
2 )4

The Gaussian formula for this integration is

b—a (1 b—a_ x
5| a@dz= SRR
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Where w; and z; are the weights and quadrature points for the integration domain

(-1,1)

Example: Compute the integral

I = f_zz e~ /2 by using Gaussian two points formula

Here n=2

I = b_Taf_llg(Z)dz = b_TaZ?ﬂ wig(z;) = (b;a) [w19(z1) + wag(22)]

2

b—a b+a
x=( )z +

2 2

_2-(2)  2+(=2)

-T2 7 2
=2z

g(z) = e_x/Z = e_ZZ/Z = e Z

For two point formula :
wy=w, =1

__1 1
Z; = /\/§’Zz_/\/§

b—a
I = > [Wi19(21) + wog(23)]

_2 —;—2) e O 4 e R

= 2(0.5614 + 1.7813)

= 4.8654
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Values for gaussian quadrature

Number of terms | Values of x Weighting factor | Valid to degree
2 -0.5773502 1 3
0.5773502 1
3 -0.77459667 0.55555555
0 0.88888889 5
0.77459667 0.55555555
4 -0.86113631 0.34785485
-0.33998104 0.65214515 7
0.33998104 0.65214515
0.86113631 0.34785485

Example: Use Gaussian integration 3 point formula to evaluate f:(x4 + 1)dx

Given n=3, a=2, b=4

b—a >
I = 5 zWig(Zi)
=1

I'= bz;a W19 (21) + wo9(2;) + w3g(23)]
—a a+b
r= Y+ (D
4-2 4+2
= O+ ()
=z+3
gz =(Ez+3)*+1
For n=3
w; = 0.55556  z, = —0.77460
w, = 0.88889 7z, =0
ws = 0.55556 25 = 0.77460
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I = 0.55556[(—0.77460 + 3)* + 1] + 0.88889[(0 + 3)* + 1]
+ 0.55556[(0.77460 + 3)* + 1]

= 14.1814 + 72.8890 + 113.3310

= 200.4014
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Chapter 4: solution of Linear Algebraic Equations

Linear equations:

First mathematical models of many of the real world problems are either linear
or can be approximated reasonably well using linear relationships. Analysis of
linear relationship of variables is generally easier than that of non-linear
relationships.

A linear equation involving two variables x and y has the standard form ax +
by = c, where a, b& c are real numbers and a and b both cannot be equal to zero.

The equation becomes non-linear if any of the variables has the exponent other
than one, example

4x + 5y = 15 linear
4x — xy + 5y = 15 non — linear
x% + 5y? = 15 non — linear

Linear equation occurs in more than two variables asa;x; + a,x, + azx; +
- ap,x, = b. The set of equations is known as system of simultaneous equations,
in matrix form it can be represented as Ax = B

3x1 + 2x2 + 4x3 - 14‘
x1 - ZXZ = -7
—x1 + 3xy + 2x3 = 2

3 2 41[* 14
1 =2 0f||X2|=1|-7
X3 2

-1 3 2
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Existence of solution

In solving system of equations, we find values of variables that satisfy all
equations in the system simultaneously. There may be 4 possibilities in solving
the equations.

1. System with unique solution
here the lines or equatipns intersect in one and only one point.

2. System with no solution
Here the lines or equation never intersect or parallel lines.

3. System with infinite solution
Here two equation or lines overlap, so that there 1§ infinite
Solutions

4. ILL conditioned system:
There may be situation where the system has a solution but it is very close
to being singular, i.e, any equation have solution but is very difficult to
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identify the exact point at which the lines intersect. If there is any slight
changes in the value in the equation then we will see huge change in the
solution, this type of equation is called ILL condition system, we should
be careful in solving these kind of solutions. Example
[1.01 0.99] [x] _ [2.00
099 1.01lLy 2.00
1.01x + 0.99y = 2
0.99x + 1.01y = 2

On solving these equations, we get the solution at x=1 & y=1, however if

we make small changes in b 1.e.
[1.01 0.99] [x] _ [2.02
0.99 1.011Ly 1.98

1.01x + 0.99y = 2.02
0.99x + 1.01y = 1.98
On solving these equations, we get x=2 & y=0
So slight changes results in huge change in solution.

Methods of solutions (Direct Methods)

Elimination method

Elimination method is a method of solving simultaneous linear. This method
involves elimination of a term containing one of the unknowns in all but one
equation, one such step reduces the order of equations by one, repeated
elimination leads finally to one equation with one unknown.

Example: solve the following equation using elimination method

4x, —2x, +x3 =15 ... ... (D)

x1 - x2 + 3.X3 = 13 ...... (3)

Here multiply R; by 3 &R, by 4 and add to eliminate x;from 2. Multiply
Ry by — 1&R; by 4 and add to eliminate x; from 3

4x, — 2x5 +x3 =15
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_sz + 11X3 = 37

Now to eliminate x, from third equation multiply second row by 2 and third row
by -10 and adding

4X1 - ZXZ +X3 = 15
—72x5 = —216

Now we have a triangular system and solution is readily obtained from back-
substitution

X3=3
77 —19 % 3
i T

15425 (-2)-3 _
= y =

2

X1

Gauss Elimination Method

The procedure in above example may not be satisfactory for large systems
because the transformed coefficients can become very large as we convert to a
triangular system. So, we use another method called Gaussian Elimination

method that avoid this by subtracting ail/al ,times the first equation from

it"equation to make the transformed numbers in the first column equal to zero
and proceed on.

However, we must always be cautious against divide by zero, a useful strategy to
avoid divide by zero is to re-arrange the equations so as to put the coefficient of
large magnitude on the diagonal at each step, this is called pivoting. Complete
pivoting method require both row and column interchange but this is much
difficult and not frequently done. Changing only row called partial pivoting
which places a coefficient of larger magnitude on the diagonal by row interchange
only. This will be guaranteeing a non-zero divisors if there is a solution to set of
equations and will have the added advantage of giving improved arithmetic
precision. The diagonal elements that result are called pivot elements.
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Example (without pivoting element)
0.143x; + 0.357x, + 2.01x3 = —5.173
—1.31x; + 0.911x, + 1.99x3 = —5.458

11.2x, — 4.30x, — 0.605x; = 4.415

Augmented matrix is

—-1.31 0911 199 5458

l0.143 0.357 2.01 —5.173]
11.2 —-4.30 -0.605 4.415

R, - (R1/0_143) 131+ R, ,R; — (R1/0_143) « (=11.2) + Rs

0.143  0.357 2.01 —5.173
0 4,181 20.403  —52.847
0 —32.261 -—158.032 409.573

R
Ry > ("2/41g1)32.261 + R,

0 4181 20.403 -—52.847

[0.143 0.357 2.01 —5.173 ]
0 0 —0.6 1.8

xs =18/, =-3.001

4.181x, + 20.403x; = —52.847

_ —52.847 — 20.403 * —3.001

X2 4181 005

0.143x; + 0.357x, + 2.01x; = —5.173
_ —5.173 — 0.357x, — 2.01x;

1= 0.143
_ —5.173 - 0.35 * 2.005 — 2.01 — 3.001
1= 0.143

x; = 0.749
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Example (with pivoting element)
0.143x; + 0.357x, + 2.01x3 = —5.173
—1.31x; + 0.911x, + 1.99x3 = —5.458
11.2x; — 4.30x, — 0.605x3; = 4.415

Augmented matrix is

—-1.31 00911 1.99 —-5458

[0.143 0.357 2.01 —5.173]
11.2 —-4.30 -0.605 4.415

R; & R;(Pivoting)

—-1.31 00911 199 5458

lll.Z —4.30 -0.605 4.415]
0.143 0.357 2.01 -5.173

R, - (R1/11.2) 131+ R, ,Rs — (R1/11.2) « (—0.143) + R,

11.2 —-430 -0.605 4.415
0 0.408 1.919 —4.942
0 0.412 2.018 -—5.229

R, © R3

0 0.412 2.018 —5.229
0 0.408 1919 —4.942

11.2 —-4.30 -0.605 4.415]

R
Ry — ( 2/0_412) % (—0.408) + R,

11.2 —-430 -0.605 4.415
0 0412 2.018 -—5.229
0 0 —0.079 0.236

_ 0236 - _
xz = 0236/ og=—2.990

0.412x, + 2.018x3 = —5.229

| —5.229 - 2.018 * —2.990
X2 = 0412

= 1.953

11.2x, — 4.30x, — 0.605x; = 4.415
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| 4.415 4 4.30 * 1.953 + 0.605 * —2.990
X1 = 112

x, = 0.982
Hence x; = 2,x, = 1.953,x3 = —2.990
Practice: Solve the following system of equations(without pivoting)

1. 3x1 + 6x2 + X3 = 16, le + 4x2 + 3x3 - 13, X1 + 3x2 + 2x3 =9
2. 2x1 + 3x2 + 4‘X3 = 5, 3x1 + 4x2 + SX3 = 6, 4 X1 + SXZ + 6X3 =7
3. Solve above equations again using pivoting techniques.

Gauss Jordan Method

Gauss Jordan method is another popular method used for solving a system of
linear equations. In this method the elements above the diagonal are made zero at
the same time that zero are created below the diagonal, usually the diagonal
elements are made ones at the same time the reduction is performed, this
transforms the coefficient matrix into identity matrix. When this has been
accomplished the column of right-hand side has been transformed into the
solution vector. Pivoting is normally employed to preserve arithmetic accuracy.

Example solution using Gauss-Jordan method
2x1 + 4x2 - 6X3 == _8
x1+3x2 +X3 = 10
2x1 —4x, — 2x3 = —12
Augmented matrix is
2 4 -6 -8
1 3 1 10
2 -4 -2 -12
R
Ry = ( 1/2)
1 2 -3 -4
1 3 1 10
2 -4 -2 -12
R2 - Rl _Rz,R3 - _2R1 +R3
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1 2 -3 -4
lO -1 -4 —14]
0 -8 4 —4
R
R, - ( 2/_1)

1 2 -3 -4
0 1 4 14
0 -8 4 —4

R, » —2R, + R, ,R; » 8R, + R,

1 0 —-11 -32
01 4 14
0 0 36 108

1 0 —-11 -32
01 4 14
0 0 1 3

R, » 11R; + R, ,R, > —4R; + R,

S O
O R O
_ o O
W N =

Hence x; = 1,x, = 2,x3 = 3
Example Solution using Gauss-Jordan method (with pivoting)
2xq + 4x, — 6x3 = —8
X1+ 3xy +x3 =10

2x1 —4x, — 2x3 = —12
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Augmented matrix is:

2 —4 -2 -12
RZ_)Rl_Rz,R3_)_2R1+R3

1 2 -3 -4
0 -1 -4 -14
0 -8 4 —4

R~ (% _g)

1 2 -3 -4
0 1 -05 05
0 1 4 14

R1 - _2R2 +R1,R3 - _RZ +R3

10 -2 -5

0 1 —05 05

0 0 45 135
R

Rs _’( 3/4.5)

96



R, > 2R; + R, ,R, »> 0.5R; + R,

Hence x; = 1,x, = 2,x3 =3

Practice: Solve the following system of equations using GJ elimination
method.

1. x1+2x2—3x3 =4‘, 2x1+4‘xZ_6X3 =8, X1—2x2+5x3 =4
2. 2x1+xy+x3=7, 4x1+2x,+3x3=4, x;—x, +x3=0

The inverse of a matrix

The division a matrix is not defined but the equivalent is obtained from the inverse
of the matrix. If the product of two square matrices A*B equals identity matrix I,
B is said to be inverse of A (also A is inverse of B). the usual notation of the
matrix is A™1 . we cansayas AB =1,A=B"1,B=A"1.

Example: Given matrix A, find the inverse of A using Gauss Jordan method.

1 -1 2

A=13 0 1]

1 0 2
1 -1 2 1 0 O
The augmented matrix with identity matrix is [3 0O 1 0 1 O]
1 0 2 0 0 1

R2 - _3R1 +R2,R3 - _R1 +R3

0 3 -5 -3 10

[1—12100
o 1 0 -1 0 1

R, — (R2/3)

1 -1 2 1 0 0
0 1 -1.6667 —1 0333 0
0 1 0 -1 0 1

Rl_)R1+R2,R3_)R2_R3
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0 1 -16667 -1 03333 O

[1 0 0.3333 0 0.3333 O]
0 0 -16667 0 03333 -1

Rs - (Rg/ 1.6667)

1 0 0.3333 0 03333 0
0 1 -16667 -1 0333 O
0 0 1 0 —-0.2 0.6

R1 - _03333R3 + R1 'RZ - 16667R3 + R2

010 -1 O 1
0 01 0 -02 06

N

[1 0 0 O 0.4 —0.2]

Al =[-1 0 1

0 -02 0.6

Practice: Find the inverse of the following matrix using Gauss Jordan
elimination method.

Method of factorization
Consider the following system of equations

a11X1 + A12X; + ay3x3 = by
Ap1X1 + ApX; + Ay3X3 = by
a31X1 + A33X; + Az3X3 = b3

These equations can be written in matrix form as:

AX =B
ai1 Q12 Qg3 X1 by
A=|0z21 Gz ax3|X =|%X2|B=1b,
31 043z dAszg X3 bs
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In this method, we use the fact that the square matrix A can be factorized into the
form LU, where L is lower triangular matrix and U can be upper triangular matrix
such that A = LU

Iy, 0 0
L=|:l21 l22 0

l31 l32 l33

0 up; ups
0 0 us;

U1 Uqz Ug3
U =

LUX =B
Letus assume UX = Z ,then LZ = B
Now we can solve the system AX = B in two stages

1. Solve the equation, LZ = B for Z by forward substitution
2. Solve the equation, UX = Z for X using Z by backward substitution.

The elements of L and U can be determined by comparing the elements of the
product of L and U with those of A. The decomposition with L having unit
diagonal values is called the Dolittle LU decomposition while the other one with
U having unit diagonal elements is called Crout’s LU decomposition.

Dolittle LU decomposition:

1 0 O0f[U11 Uiz U3 a1 Q12 413
[121 1 0][0 Uz u23]=[a21 azz azs]

l37 lz3; 1110 0 us3 az1 dzp 0aszz
Uq1 Uqp Uq3 a1 A2 Qg3
lrqugg lqugp + Uy, lrqug3 + Uy = Q21 Az Q3
l31u17 3912 + I30Upp  l31Uq3 + [35Up3 + Uss azq1 0Gzz 0azs

Equating the corresponding coefficients, we get the values of L and U
Example: Find L & U by using Doolittle algorithm.

2x —3y+10z =3

—x+4y+ 2z =20

S5x +2y+z=-12

The given system is Ax = B,
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Where,

2 -3 10 X 3
A=|-1 4 21X = [y B = 20 | here, A=LU
5 2 1 Z —-12
1 0 Oj[u11 Uz Ugg 2 =3 10
[121 1 0] 0 uy u23] = l—l 4 2]
31 l3; 1110 0 us; 5 2 1
U1q Uqp Uq3 2 -3 10
[lz1u11 U7 + Uy, l1uy3 + ups = [—1 4 2 ]
l31u11  l31Ugp + I3 I3qUp3 + [35Up3 + Uss 5 2 1

Now comparing both sides we get,
U1 = 2,U1p = —3,uy3 = 10
l1ug; = —1
Iy = — 1/2
l3aU1p + Uy, = 4
Uzz = 5/2
lp1Uy3 + Uz = 2
Uyz =7
l31u11 = 5
l31 = 5/2
[31U1z + I32Up; = 2
l3; = 19/5
l31Uy3 + l32Up3 + U3z = 1
Uzz = — 253/5

So, we have,
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1 0 0 2 -3 10
L=|-Y, 1 of y_|o %, 7
5 19 253

Now LZ = B where Z is the matrix of order 3x3.

% 0 0 Zy 3

=2 1 0||z2|=] 20

5/2 19/5 1|LZ;3 —12
Zl=3

7 __506/
Now UX= 7
2 -3 10 X 3
0 5/2 7 y]: 43/2
0 0 _254/5 Z _506/5
z=2
y=3

2x —3y+10z =3
x=—4

Practice: Solve the following system of equations by factorization using Doolittle
method.
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x+3y+8z=4
x+4y+3z=-2
x+3y+4z=1

Note: the process of solution by using method of factorization can be
repeatedly applied to solve the equation multiple times for different B. in this
case it is faster to do an LU decomposition of the matrix A once and then
solve the triangular matrices for different B, rather than using Gaussian
elimination each time.

Crout’s method
liy, 0 0711 uy, ugs ;; Q12 Qg3
lop Ly 0[]0 1 uy|=[q1 a2z az3

131 l32 l33 0 0 1 azi1 43z d4zs

l11 l11Uq l11Uq3 ay1 Q12 Qg3
lo1 lrugp + 1p lr1ug3 + 15oUsp3 = |dz21 Az dz3
l31 31Uz + 13z lz1ugz + I32Uz3 + 33 d31 Q32 Q33

Equating the corresponding coefficients, we get the values of 1 and u

Example Solve the following system by the method of Crout’s factorization
method.

2x —3y+10z =3
—x+4y+2z=120
Sx +2y+z=-12

The given system is Ax = B, where

=pJe-

l11 0 1 Ui Uq3 2 -3 10
l21 l22 0 0 1 Uyz| = —1 4 2

I3, 13, I3dlo o0 1 5 2 1

2 —3 10
-1
5

A= here A=LU

Now comparing, we get,

h1=2,l1 ==1L113=5
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li1u42 = =3

Uiz = —3/2

l11u13 - 10

Uiz = 10/2 =5

lyaugp + 1, =4

ls = 5/2

lr1uy3 + lpoUp3 = 2

u23::14/5

l31U17 + 13, = 2

lyy = 19/2

[31Ug3 + l32Up3 + 133 =1

133=_253/5
So, we have,
2 0 0 _3
55 X 1 /2 5
L= 2 U= 1 14/5
19 253
5 /s =5 o o0 1
Now Lz =B
2 0 0
Al 3
I MZZI_[Z()]
5 19/ _253/5 Z3 —12
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Zy = 43/2
253
57, + 19/, 2, - =23 =12
Zy=2

Now UX= Z
1 —3/2 5 |x 3/2
14 =143
0o 1 /s [32’] /s
0 0 1 2
z=2
14
y=3

3 e, 3
X Zy Z—2

x =—4
x=—4y=3,z=2

Practice: Solve the following system using Doolittle and Crout’s
decomposition methods.

1. x1+2x2—3X3 =4‘, 2x1+4‘x2_6x3 =8, x1—2x2+5X3 =4
2. 21+ xy+x3=7, 4x1+2x,+3x3=4, x;—x,+x3=0

Choleskys method:
In case of A 1s symmetric, the LU decomposition can be modified so that upper
factor in matrix is the transpose of the lower one (vice versa)

1.€.
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=LILT =UTU

l14 111 ln I3 ai1 Q12 4g3
l1 122 132 = |21 Q22 dz3
132

34 az1 a3z d4szz

Just as other method, perform as before.
Symmetric matrix

A square matrix A = [a,-j] is called symmetric if a;; = aj; for all i and j

Example: Factorize the matrix, using Cholesky algorithm

1 2 3
2 8 22
3 22 82

Now decomposition becomes,

li, O 011l lax lsg 1 2 3
llm l,o 010 I I|=12 8 22
l37 13, [55110 0 I3 3 22 82
Equating, we get:
l112 == 1, lll = 1
liglyy = 2,15, =2
li1l31 = 3,13, =3
lp1lp1 + 1yl = 8 15, = 2

l312 + l322 + l332 = 82 ,l33 = 3
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Practice: Find the Cholesky decomposition of the matrix

4 1 1
152]

1 2 3

A=

[terative methods (Indirect Methods)

Gauss elimination and its derivatives are called direct method, an entirely
different way to solve many systems is through iteration. In this we start with an
initial estimate of the solution vector and proceed to refine this estimate.

When the system of equation can be ordered so that each diagonal entry of the
coefficient matrix is larger in magnitude that the sum of the magnitude of the
other coefficients in that row, then such system is called diagonally dominant and
the iteration will converge for any stating values. Formally we say that an nxn
matrix A is diagonally dominant if and only if for each i=1, 2, 3....n

la;;| > Z|aij| foralli
J#i
The iterative method depends on the arrangement of the equations in this manner
Let us consider a system of n equations in n unknowns
aq1X1 + Ay2X9 + -+ Ay Xy, = by

a21x1 + azzxz + -+ aann == b2

We write the original system as

by — (ajpx; + ay3x3 + -+ + agpxy)

X1 =
a1

by — (az1x1 + az3x3 + - + axpxy)

x2 =
az;
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bn - (anlxl T+ ApaXy + 00+ ann—lxn)

xn
a’TLTL

Now we can computer x;, X, ... X, by using initial guess for these values. The
new values area gain used to compute the next set of x values. The process can
continue till we obtain a desired level of accuracy in x values.

1.Gauss Jacobi Iteration method:
Example:
Solve the equation using Gauss Jacobi iteration method
6x1 — 2x, + x3 =11
X, +2x, —5x3 = —1
—2x1 +7x, +2x3 =5

Now, first we recorder the equation so that coefficient matrix is diagonally
dominant

6x1 — 2x, + x3 =11

—2x1 +7x, + 2x3 =5

X, +2x, —5x3 = —1
Now,

11 — (=2x, + x3)
Xl =

6
5 - (_le + 2x3)
xz = 7
_1 - (x1 + ZXZ)
X3 = _( 5
We can simplify as:
11 2 1
x1 =Z+gX2_gx3
5 2 2
xz =§+;x1—;x3
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1 1 2
X3 =§+§x2 +§x3

We begin with some initial approximation to the value of the variables, let’s take
as:

X1 = O,xz = 0,x3 = 0,

Then new approximation using above formula will be as follows

x;=1.833333
x,=0.714286
x3=0.200000

2 Iteration
x,=2.038095
x, =1.180952
x3=0.852381

3 Iteration

x,=2.084921
x,=1.053061
x5=1.080000

4 Tteration

x,=2.004354
x,=1.001406
x3=1.038209

5 Iteration

x,=1.994100
x,=0.990327
x3=1.001433

6 Iteration

x,=1.996537
x,=0.997905
x3=0.994951

7 Iteration
x,=2.000143
x,=1.000453
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x3=0.998469

8lteration

x,=2.000406
x,=1.000478
x3=1.000210

9 Iteration

x,=2.000124
x,=1.000056
x3=1.000273

10 Iteration

x,=1.999973
x,=0.999958
x3=1.000047

11 Iteration

x,=1.999978
x,=0.999979
x3=0.999978

12 Iteration

x,=1.999997
x,=1.000000
x3=0.999987

12 Iteration
the final
result 1s :

,=1.999997
x,=1.000000
x5=0.999987

Practice: Solve the equation using Gauss Jacobi Iteration method.
10X1 - 2x2 - X3—X4 = 11

—2x1 + 10xy — x3—x, = 15
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—x1 - x2 + 10.X3 - 2x4 = 27
—X1 — Xy — 2x3 + 10x, = =9
result

X1 = 1,x2 = 2,x3 = 3,X4 = O,

2.Gauss Seidel Iteration method
This is simple modification of Gauss Jacobi method, as before

Let us consider a system of n equations in n unknowns
A11X1 + 12Xy + -+ Xy = by

a21x1 + azzxz + -+ aann == b2

We write the original system as:

by — (ajpx; + ay3x3 + -+ + agpxy)

x1 =
a1

by — (az1x; + az3x3 + - + axpxy)

x2 =
az;

bn - (anlxl + An2Xy + -t ann—lxn)

Xn =
Ann

Now, we can compute: x4, X5 ... X, by using initial guess for these values. Here
we use the updated values of x4, x, ... x,, in calculating new values of x in each
iteration till we obtain a desired level of accuracy in x values. This method is
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more rapid in convergence than gauss Jacobi method. The rate of convergence of
gauss seidel method is roughly twice that of gauss Jacobi.

Example
Solve the equation using Gauss Seidel iteration method .
8x1 — 3x, + 2x3 = 20
6x; + 3x, + 12x3 = 35
4x, + 11x, — x3 = 33
Now, first we know the equation so that coefficient matrix is diagonally dominant
8x1 — 3x, + 2x3 = 20
4x; +11x, — x3 = 33

6X1 + 3x2 + 12.X3 == 35

Now

_ 20 + 3x2 - ZX3

X1 = 3
33 - 4x1 + x3

xz -

11
. 35 - 6x1 - 3XZ

s = 12

We begin with some initial approximation to the value of the variables, let’s take
as:

Xy = 0, x3 == 0,
Then new approximation using above formula will be as follows

20+3%x0—2%0
x1= 8 =2.5

33—4%25+40
X2 = 11

= 2.0909
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2 iteration

3 iteration

4 iteration

_35-6%2.5—-3%2.0909

X3 = B = 1.1439
20 + 3 % 2.0909 — 2 x 1.1439
X, = - = 2.9981
33 — 4% 2.9981 + 1.1439
X, = T = 2.0138
35 — 6%2.9981 — 3 x 1.7018
X3 = - = 0.9142
20+ 3%2.0138 — 2 % 0.9142
X, = - = 3.0266
33 — 4 %3.0266 + 0.9142
X, = = 1.9825
2 11
35 — 6% 3.0266 — 3 * 1.9825
X3 = - = 0.9077
20 + 3 % 1.9825 — 2 % 0.9077
X, = - = 3.0165
33 — 4 % 3.0165 + 0.9077
Xy = T = 1.9856
35 — 6% 3.0165 — 3 x 1.9856
X3 = = 0.9120

12
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5 iteration

_ 20+ 3%1.9856 — 2% 0.9120

X, = 3 = 3.0166
33 —4%3.0166 + 0.9120
Xy = 11 = 1.9860
35—-6%3.0166 — 3 x1.9860
X3 = 17 = 0.9119
6 iteration
20+ 3 %1.9860—2%0.9119
X, = 3 = 3.0168
33—4%3.0168 + 0.9119
X, = 11 = 1.9859
35—-6%3.0168 — 3 x 1.9859
X3 = 17 = 0.9118
7 iteration
20+ 3%1.9859 — 209118
X, = 3 = 3.0168
33 —4%3.0168 + 0.9118
Xy = 11 = 1.9859
35—-6%3.0168 — 3 x1.9859
X3 = 17 = 0.9118

Since the 6™ and 7" approximate are almost same up to 4 decimal places, we can
say the solution vector is :
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x; = 3.0168,x, = 1.9859,x; = 0.9118

Practice:
Solve the equation using Gauss Seidel iteration method
2x,+ x5 +x3=5
3x; + 5x, + 2x3 = 15
2x1 + x5, +4x3 =8
Practice: Solve the following systems using Jacobi and Gauss Seidel method

1. 3x1—2x2=5, —x1+2x2—x3=0,—2x2+x3=—1
2. le - 7x2 - 10x3 == _17, le + Xy + 3x3 - 14, X1 + 1OXZ + 9X3 ==
7

3.Relaxation Iterative method:
Solve the following system of equations by relaxation method:

10x -2y +z =12
x+9y—-z=10

2x —y+ 11z = 20

Now obtaining residues:
12 — 10x + 2y — z =Ry
10— x—-9y+z=R;

20— 2x+y—11z=Rs
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Now, the increments in Xx, y, z are dx, dy, dz so, dx=-R1/-10 , dy = -R2/-9 and
dz =-Rs/-11

Iterative Table:

1 X y zZ Ri R> R3 Incrmnts.
1 0 0 0 12 10 20 dz=-20/-11=1.8182
2 0 0 1.8182 | 10.1818 | 11.8182 | -0.0002 | dy=-11.8182/-9=1.3131
3 0 1.3131|1.8182 | 12.8080 | 0.0003 |0.0003 |dx=-12.8080/-10=1.2808
4 1.2808 [ 1.3131|1.8182 |0 -1.2805 [-1.2487 | dy=-(-1.2805)/-9=-0.142
5 1.2808 [ 1.1708 | 1.8182 | -0.2846 | 0.002 -1.3910 | dz=-(-1.3910)/-11=-0.126
6 1.2808 [ 1.1708 | 1.6917 |-0.1581 |-0.1263 |0.0005 |dx=-(-0.1581)/-10=
-0.158
1.2650 | 1.1708 | 1.6917 |-0.0001 |-0.1105 |0.0321 |dy=-(-0.1105)/-9= -
0.0123
X1 [1.2650]
Therefore, the solution vector, X =[y] =[1.1708 Ans.
z4 11.69171

Power method:

Power method is a single value method used for determining the dominant eigen
value of a matrix. It as an iterative method implemented using an initial starting
vector x. the starting vector can be arbitrary if no suitable approximation is
available. Power method is implemented as follows

Y=AX————— (a)
X—Y b
FT T (b)

The new value of X is obtained in b is the used in equation a to compute new
value of Y and the process is repeated until the desired level of accuracy is
obtained. The parameter k is called scaling factor is the element of Y with largest
magnitude.
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Example: find the largest Eigen value A and the corresponding vector v, of the
matrix using power method

1 2 0

2 1 0

0 0 -1

A=

Solution assume X be column vector to be eigen vector of given matrix, now let
0
1| be the eigen vector
0

X =

Now iteration 1

1 2 01770 2
Y=AX=12 1 0 ]||1|=|1 =111 =10.5
0 0 -1110 0
1teration 2
1 2 O 1 2 Y 1 [ 2 0.8
SO | A T R A W
0O 0 -11L0 0 “LO0 0
iteration 3
1 2 0”0.8] [2.8] Y 1 [2.8]
Y=AX=12 1 0 11=126 X=—=—126
o o -tlol Lo k281
1
=10.929
0
1teration 4
1 2 2.858 Y
Y=4X=12 1 0929 2928 X:E
0 O —1
2858 0976
=m 2928

1teration 5
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1 2 0. 976 2.976 Y
Y=A4AX=12 1 2. 952 X = T
0 0 —1
2. 976
=—2976 2952 0992
1teration 6
1 2 2.984 Y
Y=A4X=1|2 1 ”0992] [2992] X=E
0 0 -1
2.984 0. 997
= m 2. 992
1teration 7
1 2 0. 997 2.997 Y
Y=A4X=1|2 1 2. 994 X = T
0 0 —1
2. 997
= m 2. 994 0. 999
1teration &
1 2 2.998 Y
Y=4X=12 1 0999 2999 X=E
0 0 —1

:mszzq H
o=l =l l

Since the value of X is same for 8" and 9'" iteration so eigen value is A = 3 and

1
1]
0

iteration 9

Y =AX =

eigen vector is X =
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Practice: Determine the Numerically largest eigen value and the
corresponding eigen vector of the following matrix, using power method

1 3 0
2 0 -4

1
0.04508
0.06854

[251 2

Eigen value is 25.18, eigen vector =

Chapter 5 Solution of ordinary differential Equations

Many of the laws in physics, chemistry, engineering, economics are based on
empirical observations that describe changes in the state of the system.
Mathematical models that describe the state of such system are often expressed
in terms of not only certain system parameters but also their derivatives, such
mathematical model which uses differential calculus to express relationship
between variables are known as differential equations.

Examples:

1. Kirchhoff’s law L % +iR=v

2. m¥ =

dt

@y Ay
3.mdt2+adt+ky—0
Here

e The quantity y that is being differentiated is called dependent variable.

e The quantity with respect to which the dependent variable is differentiated
is called independent variable.

e [f there is only one independent variable then the equation is called an
ordinary differential equation.
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e [fthe equation contains more than one independent variable then it is called
partial differential equation
0*u  9%u
2ty T fxy)
Order of equation:
The highest derivative that appears in the equation is called order. If there is only
first derivative then it called first order differential equation.

Degree of equation:

The degree of differential equation is the power of the highest order derivative
xy +x%y' =2y +3 order =2,degree = 1
(y")?+5y' =2y +3 order =3,degree = 2

Initial value problem (IVP)

In order to obtain the values of the integration constant, we need additional
information for example consider the solution y = ae”* to the equation y’ = y. if
we are giving a value of y for some x, the constant a can be dertermined, suppose
y=1 when x=0, then y(0) = ae® =1,

~ a = 1 and particular solution is y = e*

It is also possible to specify the condition at different values of the independent
variables such problems are called boundary value problem (BVP).

Example

y =flyy)y(@=4yb)=
B where a & b are two dif ferent points.

Solution of ordinary differential equations
1. Taylor’s series method
Euler’s method
Heun’s method
Runge’s method
Runge’s Kutta 4™ order method
Shooting method
Picard’s method
R.K method for simultaneous equations

S A o

Solution of higher order differential equation
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1. Taylor’s series
Taylor series is often used in determining the order of errors for methods and the
series itself is the basic for some numerical procedures.

Lety' = f(x,y), y(x0) = ¥o
(7)

Be the differential equation to which the numerical solution is required.
Expanding y(x) about x = x, by Taylor Series we get

(x=x0)y' (x0) |, (x=x0)*y"'(x0)
Y(x) = y(xp) + ETRLC0) y Coxo) v (o)

(8)

(x=x0)yy , (x=x0)2yy

=Y + T + ” + .. (9)

Putting x = xy + h = x;, h=difference we have

h h3 "
y1=y0r) =y + 20 4 BN L BN (10)

"

Here vyg,v4,V¢ .. can be found using equation (1) and its successive
differentiation at x = x,. The series in (4) can be truncated at any stage if ‘h’ is
n

small. Now having obtained y,we can calculate y;, y;’, y;" from equation (1) at
x=x9+h

Now expanding y(x) by Taylor series about x = x,, we get

hy! h2y!! h3y!"!
Vo = V1 + 1!1 2'1 + 3|1 (11)

Proceeding further we get

hy'_ hzyll_ h3y”'
Yn =Yn-1t 1n, -+ 27!1 : 3 (12)

By taking sufficient number of terms in above series the value of y,, can be
obtained without much error

If a Taylor series is truncated while there are still non-zero derivatives of higher
order the truncated power series will not be exact. The error term for a truncated
Taylor Series can be written in several ways but the most useful form when the
series is truncated after nt"* term is
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Example:

Using Taylor series method, solve Z—i’ =x?—-y,y(0)=1
0.1,0.2,0.3 &0.4.
Solution

Giveny' = x% —y,y(0) =1,
X =07y,=1,h=01,x=01,x=02,x=03x=04
Now

y/=x2_y y(’):xg—yozo_]_:_l

y'=2x-y' Vo =2x—yp=2%0—-(-1) =1
y'=2-y" Yo' =2-y) =1
yv = —y" v = -y =-1
By Taylor Series
Y1 =vo+ hiv!"’ + hz; 0 4 h33y!g' h‘zgv
y1 =y(0.1)
S G (0.1)%x1 N 0.13+1  0.1%x(-1)

1! 2! 3! 4!
=1-0.1 4+ 0.005 + 0.0001667 — 0.00000417
=0.90516
Now
y1 = x% —y; = (0.1)2 — 0.90516=-0.89516
yi =2x; —y; = 2%(0.1) — (—0.89516) = 1.09516
y{ =2—y,/ =2-1.0951 = 0.90484

yv = —y!I" = _0.90484

at

X =
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By Taylor Series

hy, Ry Ry htyp
Ya=nt ottty

v, =y(0.2)

0.1x(-0.89516) , (0.1)2%1.09516 , 0.13x0.90484  0.1*x(-)
1 + o + 3 + A

=0.90516 +

=0.90516 — 0.089516 + 0.0054758 + 0.000150 — 0.00000377
=0.821266

Now

yy, = x5 —y, = (0.2)2 — 0.8212352 = —0.7812352

yy = 2x, —ys = 2% (0.2) — (—0.7812352) = 1.1812352

yy' =2 -y =2-11812352 = 0.8187648

yiv = —yy" = —0.8187648

By Taylor Series

hy,  hyy  Ryy"  htyy
Ys=Yat ot ot Ty

ys = y(0.3)
0.1 % (—0.7812352) (0.1)2 * 1.1812352
= 0.8212352 + 1 + o0
0.13 + 0.8187648 0.1* * (—0.8187648)
+ +
3! 4!

= 0.7491509
Now

ys = x5 —y; = (0.3)%2 — 0.7491509 = —0.6591509
y3 = 2x3 —y3 =2 *(0.3) — (—0.6591509) = 1.2591509

y3' =2—y3 =2—-1.2591509 = 0.740849
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vy = —y3' = —0.740849
By Taylor Series

hyt, h%y§y R3yY' h*yY
Ya=Yst ot Tty

vs = y(0.4)
0.1 * (—0.6591509) (0.1)% * 1.2591509
= 0.7491509 + T + T
0.13 * 0.740849
+ +
31
= 0.6896519

Similarly we can find the values of y,, for n=5, 6, 7.....

2. Euler’s method:
Euler’s method is the simplest one step method. It has limited application because
of its low accuracy. From Taylor’s theorem we have

(x = x0)y' (x0) = (x = x0)%y"" (%)

V() = (o) + - e

Taking only first two terms only
y(x) = y(xo) + ¥ (x0) (x — x0)
Now, we get,
y(x1) = y1 = y(xo) + (1 — x0) f (x0, ¥0)
where x = x4, f (o, ¥0) = y'(x0)
Now let h = x; — xg
Y1 = Yo + hf (X0, ¥0)

Similarly

Y2 =y1 +hf(x1,¥1)

123



In general

Yit1 = Yi + hf (i, yi)

This formula is known as Euler’s method and can be used recursively to evaluate
y1, y2 ... starting from the initial condition y5 = y(x,)

e A new value of y is estimated using the previous value of y as initial
condition.

e The term hf(x;,yi) represents the incremental value of y and f(xi,y;) is the
slope of y(x) at (Xi,yi), the new value is obtained by extrapolating linearly
over the step size h using the slope at its previous value.

1.e. new value =old value + slope x step size

Example : Given the equation y’(x) = 3x2 + 1, with y(1)=2, estimate y(2),
using Euler’s method using h=0.5 & h=0.25,

Solution
y'(x)=f(x,y)=3x*+1
y(1) = 2,y(x0) = y0, %0 = 1,¥0 = 2
We know that
Yit1 = Yi + hf (xi, yi)
a. h=0.5

y1 =y +0.5) = y(1.5) = yo + hf (x0,¥0)
=y(1) + 0.5 x (3 x 12+ 1)
=2+05x4
=4
y1 =y(2.0) + y(1.5+0.5) = y; + hf (x1,y1) = y(1.5) + 0.5 X f (x5, ¥15)
=4+05x(3x15%+1)
= 7.8750
~y(2) = 7.8750

b. h=0.25

y(1) =2

y; = y(1+0.25) = y(1.25) = yo + hf (xo,v9) = 2 + 0.25 X f(1,2)
=24+0253x12+1) =3

v, = y(1.25 + 0.25) = y(1.5) = y, + hf (x1,y,) = 3 + 0.25 x £(1.25,3)
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=340.25(3x 1.25%2+ 1) = 44218
y3 = y(1.5+ 0.25) = y(1.75) = y, + hf (x3,¥,)
= 4.4218 + 0.25 x f(1.5,4.4218)
= 44218+ 0.25(3 x 1.52 + 1) = 6.3593
ys = Y¥(1.75 + 0.25) = y(2.0) = y3 + hf (x3,¥3)
= 6.3593 + 0.25 x f(1.75,6.3593)
= 6.3593 + 0.25(3 x 1.75% + 1) = 8.9061
~y(2.0) = 8.9061

3. Heun’s method:

Euler’s method is the simplest of all one step methods. It is easy to implement on
computers. One of the major weakness is large truncation error in Euler’s method.
This is due to the fact that Euler’s method uses only the first two terms of Taylor’s
series. Now heun’s method also called improved Euler’s method.

In Euler’s method the slope at the beginning of the interval is used to extrapolate
yi to yi+1 over the entire interval, thus y;,; = y; + mh........ a where m; 1s the
slope at(xi,yi).

Alternative is to use the line which is parallel to the tangent at the point
[xi+1, ¥(x;+1)] to extrapolate from y; to y;,1

Viv1r = Yi + mzh ........ b

Where, m; is the slope at [x;,1, V(x;11)]. Note that the estimate appears to be
overestimated.

Now a third approach is to use a line whose slope is the average of the slopes at
the end points of the interval, i.e

my +m,

Vi1 =Yi + ( >

This gives the better approximation to y;, 1, this approach is known as Heun’s
method.

The formula for implementing Heun’s method can be constructed easily as

y'(x) = flxy)
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We can obtain:
my =y'(x;) = f(x,¥1)
my =Y (xi+1) = f(Xit1, Vis1)

_ M tm, _ foy) + (X Vivn)
2 2

Now, the equation (c) becomes:

h
Yinn =Yit5 f i yi) + f (i, Yiz )] d

Note that the term yi+1 appears on both sides. The value yi+1 cannot be calculated
until the value of yi+1 inside the function f(xi+1,yi+1) 1s available. This value can be
predicted using Euler’s formula as

Yit1 = Yi + hf (xi, y:)

Then, the Heun’s formula can be written as:

h
Yirr =Vit 3 [f (i, v) + f (g1, Voir)]

Putting the value of Euler’s formula in above equation we get

h
Yirr =Vits [f (xi,yi) + yi + hf (x, 1)

Example : Given the equation y'(x) = 273/ with y(1)=2, estimate y(2) using 1)

Euler’s method 2) Heun’s method and compare the result. Take h=0.25
I.  Euler’s method

h=0.25, y(1)=2
2X2
2X3
y(15) =y, = y1 + hf (1, 31) = 3+ 0.25/(1.25,3) = 3+ 025 x ——=

= 4.2
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y(1.75) = y3 = y, + hf (x3,y,) = 4.2 + 0.25f(1.5,4.2)

—42+025><2X4'2—56
— 4. _ =

y(2) =y, =y3+ hf(x3,y3) = 5.6 +0.25f(1.75,5.6)
2 X 5.6
= 5.6+ 0.25 x =72

1.75
II. Heun’s method:
Iteration 1:
we know
my; +m,
Yisr = i+ (——Dh
m; +m,

Yi=Yot+ (T)h

Given the initial condition y(x,) = y, = y(1) = 2
my +m
y(1+0.25) = y(1.25) = y1 = yo + (—,—h
2X?2
my = f(xo,YO) =f(1,2) = 1 4
m, = f(xO + h,yo + mlh)

= f(1+4 0.25,2 + 4 X 0.25)

= f(1.25,3)
B 2X3
~1.25
= 4.8
my +m, 4+ 4.
y(1.25) =y, + ( > )h = ( 5 )0.25 = 3.1
Iteration 2:
m; +m,
y(1.254+0.25) =y(1.5) =y, =y, + (T)h

2x3.1
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m, = f(xl + h;yl + mlh)
= f(1.25 4 0.25,3.1 + 4.96 x 0.25)
= £(1.5,4.34)

_ 2 X 4.34
15

= 5.7867

my; +m, 4.96 + 5.7867
—) h=31+ (

0.25 = 4.44
2 2 )

y(15) =y, + (

Iteration 3:

m, +m
y(1.5 + 0.25) = y(1.75) = y5 = y, + (1Tz)h

2X4.44

m, = f(x, + h,y, + myh)
= f(1.5 + 0.25,4.44 + 5.92 x 0.25)
= £(1.75,5.92)

_ 2x%5.92
175

= 6.77

592 +6.77
—) 0.25 =6.03

m,+m
y(1.75) = y5 = y, + <1TZ> h =444 + (
Iteration 4:

m,; +m
y(1.75 + 0.25) = y(1.5) = y, = ys + (%)h

2 X 6.03
my = f(x3y3) = f(1.75,6.03) = ———— = 6.89

m, = f(x3 + h,y3 + myh)
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= f(1.75 + 0.25,6.03 + 6.89 x 0.25)

= f(2,7.75)
_2Xx775
2
= 7.75
mq +m, 6.89 + 7.75
y2) =y, =y;+ (T) h =6.03 + (—) 0.25 =7.86

The above equation can be done using the following formula, note this is
same problem but done using later formula, you can use any method which

ever you feel easy to use.
Iteration 1:

We know that

h
Yirr =Vit3 [f (i, v) + f (g1, Voir)]

We know
2y  2X2
f(x0,¥0) = f(1,2) = T
¥e(1.25) = y(1) + h x f(x;,y(1))
=2+ 0.25f(1,2)

2 X2
=24+0.25x%
=3

h
y(1.25) = y(1) + > [f Cery) + f(%ir1 Yeirn)]

=2+ 0'725 [£(1,2) + f(1.25,3)]
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Iteration 2:

h
y(1.5) = y(1.25) + = [f(x1 25:Y125) T [ (X15,Ve15)]

y(1.5) = y(1.25) + [f(l 25,3.1) + f(x15,Ye15)]

Ye(1.25) = y(1.25) + h X f (%125, Y1.25)
= 3.1+ 0.25£(1.25,3.1)

—31+025><2x3'1
o ' 1.25

=434

y(1.5) = y(1.25) + [f(l 25,3.1) + f(x15,¥,15)]

y(1.5) = 3.1 + % [£(1.25,3.1) + f(1.5,4.34)]

_31+0.25 - 3.1 +2><4'34
o 2 1.25 1.5
= 4.4433

Iteration 3:

h
y(1.75) = y(1.5) + = [f(x1 5, ¥15) + f(X1.75, Ve175)]

Ye(1.75) = y(1.5) + h X f(x15,¥15)
= 4.4433 + 0.25f(1.5,4.4433)
2 X 4.4433

— 4.4433 + 0.25 X
+ 15

= 5.9244
y(1.75) = y(1.5) + = [f(l 5,4.4433) + f(x,5,5.9244)]

44433 4 .25 - 4.4433 . 5.9244]
T 2 1.5 1.75
= 6.0302

Iteration 4:

h
y(2) =y(1.75) + = [f(x1 75 ¥1.75) T f(x2,¥¢2)]
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Ye(2) = y(1.75) + h X f(x1.75,Y1.75)
= 6.0302 + 0.25f(1.75,6.0302)
2 %X 6.0302

= 6.0302 + 0.25 X Toc

= 7.7531
y(2) = y(1.75) + g [£(1.75,6.0302) + f(2,7.7531)]

— 6.0302 4 0.25 5 6.0302 +2x 7.7531]
2 1.75 2
= 7.8608
The exact solution of the equation y’(x) = 2 % with y(1) = 2 is obtained as
y(x) = 2x2

y(2) =2X% 22 =8
error =8-7.8608=0.1392

Runge Kutta method:
Runge Kutta method refers to a family of one step methods used for numerical
solution of initial value problems. They are all based on the general form of the
extrapolation equation:

Yi+1 = Vi + slope X interval size
=Y + mh

Where m represents the slope that is weighted averages of the slope at various
points in the interval h. Runge Kutta (RK) methods are known by their order. For
instance an RK method is called r-order Runge Kutta method when slope at r
points are used to construct the weighted average slope m.

Euler’s method is the first order RK method because it uses only one slope at
(xi,yi) to estimate y; 4.

Huen’s method is a second order RK method because it employs slope at two
ends points of the interval. It demonstrated that higher order would be better the
accuracy of estimates.
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Fourth order Runge Kutta method (Classical fourth order Runge Kutta
method)
The classical fourth order Runge Kutta method is given as:

my +2m, + 2m3; +my

Yit1 =Yi + ( 6 )h
Where
my = f(x;,¥i)
h myh
m2=f(xi+§;)’i+ > )
h myh
m3=f(xi+§»J’i+ > )

my = f(x; + h,y; + mgh)

Runge Kutta (3" order RK method)
my +4m, +m,
6

Vir1 =Yi + ( )h

Where,
my = f(x;, i)
my = f(x; + h,y; + mh)

ms = f(x; + h,y; + myh)

h h
my = f(x; +§»3’i +m1§)

Example : Use the classical RK method to estimate y(0.4) when y'(x) = x? +
y2with y(0) = 0, assume h=0.2.

Solution
Given condition

y(0) =0,f(x,y) =x* +y*
We know that,
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my +2m, + 2m3; +my

Yit1 =Yi + ( 6 )h

Where,

my = f(x;,¥;)

h mqh
my = f(x; +5. i +T)

h myh
mg=f(x;+=5,y +

2 2)

my = f(x; + h,y; + mzh)

iteration 1:

my + 2my + 2m; + my
6

my = f(x0,¥0) = f(0,0) =0

h myh 02  0x02
m2=f(x0+5;}70+_2 ):f(0+7,0+ >

=0.1%2 + 0.0%2 = 0.01

y(0.2) =y + (

) = f£(0.1,0)

h myh 0.2 0.01 % 0.2
ms = f(xg +2. 0t — ) = f(0 +7,0 +T) = £(0.1,0.001)

=0.12 4+ 0.001% = 0.01

= 0.1%2 + 0.0022 = 0.04

m;+2m;+2m.+m
y(0-2)=yo+( : — 4)h
0+2x0.01+2x0.01+0.04
y(0.2)=0+( G )0.2=0.00267

Iteration 2

my +2my + 2mz +my

y(0.4) = y1 + ( - h
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y1=y(0.2)
my = f(xO_Z,yo_Z) = f(02,000267) = 0.04

0.2 0.04 X 0.2
m, = f(0.2 +—-,0.00267 + ————) = f(03,0.0067)
= 0.32 + 0.00672 = 0.09004

0.2 0.09004 x 0.2
my = (0.2 +—-,0.00267 + >

= 0.32 4+ 0.01167% = 0.09014

) = £(0.3,0.01167)

m, = £(0.2 + 0.2,0.00267 + 0.9014 x 0.2) = £(0.4,0.02070)
= 0.42 + 0.020702 = 0.16043

m,+2m, +2m.+m
y(0-4)=yo+( e 4>h
0.04 + 2 X 0.09004 + 2 X 0.09014 + 0.16043
y(0.4) = 0.00267 + ( 6 )O.Z

= 0.02136

Runge Kutta method for simultaneous first order equations:
Consider the simultaneous equation

dy 2 dx
7 = hey2) & ——=f(xy,2)

With the initial conditions y(xy) = y,,z(xo) = Zo now starting from (xq, ¥, Zg)
the increment k and | in y and z are given by the following formula

ki = hfi1(X0,Y0,20) ; U1 = hf2(x0,Y0,20)

ok
ky=hfi(xo+5,Y0 +=

, 2
2 2 Zo +5)

l1 h kl
A +7)i l, = hf;(xg +§»3’0 +?'
o ok, L ok, L
ks = hf;(xg +§r3’o +7rZo +E) ; I3 = hf(x +§»J’o +7»Zo +E)
ky = hfi(xo + h,yo + ks, zo +13); Ly = hfy(xg + h,yo + k3,2¢ + 13)
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 (ky + 2Ky + 2k + ky)

B 6

I (I + 2L, + 21, + 1)
6

k

yi=Yot+Kk z; =20 +1
To compute y»,z> we simply replace xo,yo0,Z0 by Xi1,y1,z1 in the above formulae
If we consider the second order R.K method
ki = hf1(X0,¥0,20) ; 11 = hf2(X0, Y0, Zo)
ky =hfi(xo + hyyo + ki, zo +11); L =hfa(xo +hyo + ki, 2o + 1)

ki + ks L+,
k = ;L=
2 2

y1=y0+k;21=Z0+k

Example: Solve % =yzZ + x; 2—i =xz+y given that y(0)=1,z(0)=-1 for
y(0.1),z(0.1)
Solution:
Here,
Loy, z) =yz+x; fL(x,y,2z) =xz+y
let h=0.1 x0=0, yo=1, zo=-1
ki, = hfi(x9, Yo, 29) = 0.1£;(0,1,—1) = 0.1(1 x -1+ 0) = —0.1

ll = hfZ(XOJyOIZO) = Olfz(o,l,_l) = 01(0 X —1 + 1) =0.1

h kL
ky = hfi (xo +5: Yot 5,20t —>

2 2 2
= 0.1 (0+0'11+_0'1 1+0'1)
=01h4 2’ 2 2

= 0.1f,(0.05,0.95, —0.95)
= 0.1(0.95 X —0.95 + 0.05)
= —0.08525
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kL
lz = hfz (XO +§,y0 +?,ZO +E)

od (0+0.11+—0.1 1+0.1)
=017 2 2’ 2

= 0.1(0.05 x —0.95 + 0.95)
= 0.09025

ks = h ( PR +l2)
3 = hf; (xo 2;3’0 Z'ZO 5

0.1  —0.08525 0.09025
:0.1f1<0+ b 1 )

= 0.1£,(0.05,0.95738, —0.95738)

= 0.1(0.95738 x —0.95738 + 0.05) = —0.08666

h k, [,

I3 = hfz(xo +§:J’0 +7'ZO +E)
0.1 —0.0891 0.0903
=O.1f2<0+7,1+7,—1+ 2 )

= 0.1/,(0.05,0.95738,—0.95738)
= 0.1(0.05 x —0.95738,+0.95738)
= 0.09095
ko = hfi(xo + h,yo + k3,20 + 13)
= 0.1f,(0 + 0.1,1 + (—0.08666), —1 + 0.09095)
= 0.1f;(0.1,0.91334,—0.90905)
= 0.1(0.91334 x —0.90905 + 0.1)

= —0.07303
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ly = hfa(xo + hyo + k3,20 + 13)
=0.1f,(0+ 0.1,1 + (—0.0862), —1 + 0.0907)
= 0.1£,(0.1,0.91334,—-0.90905)
= 0.1(0.1 x —0.90905 + 0.91334)

= 0.08224

o (a+ 2ky + 2ks + k)
6

(—0.1 + 2 x —0.8525+ 2 x —0.08666 — 0.07303)
6

= —0.08614

I (I, + 2L, + 215+ 1,)
B 6

(0.1 +42x0.09025 + 2 x 0.09095 + 0.082224)
B 6

= 0.09077

yi =y(0.1)=y,+k =1+ (—-0.08614) = 0.91386
7z, =2(01)=2y,+1=-1+0.09077 = —0.90923
Practice: Compute y(0.2) & z(0.2) in the above solution.

Higher order equations:
A higher order differential equation is in the form

d™y dy d’y
dx—m—f(x,y,a,ﬁ....) ...... a

With m initial conditions given as

y(x0) = ag,y' (x0) = az..... Y™ (xo) = am
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we can replace equation a by a system of first order equation as follows. Let us

denote
__dy diy
Y=Yv g Yo = Ve
then
@ — (xp) = =a
I =2 Y1(Xo0) = V1,0 1
@ — (xp) = =a
T )3 Y2(Xo) = Y2, 2
dym—l _ (x ) = =a
I Vi Ym-1Xo Ym-1,0 m-1
ay,
d_;Cn = f(X1, Y2, Y2 Ym) Ym(X0) = Ymo = Om

This system is similar to the system of first order with the condition,
fi=yi+i=12,....m—1

fm = FG Y1 Y20 Yim)

RK method for second order differential equations:
Consider the second order differential equation

d? d I} 1
—==¢ [x iz ﬁ] y(xo) = ¥0,¥" (x0) = 'y, 2(x0) = 7g........ (a)
2
Letd—y = z,then,d—y e
dx dx? dx

Substituting equation (a) we get

dz

a =Z = @(X,y,z);)’(xo) = yO'Z(xO) = Zo

The problem reduces to

Y = fi(69,2) & = 2" = f(x,y,2) subjected to Y(xp) = Yo, 2(xp) =

Zy and this can be solved as before.
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Example : Solve y' = xy’ — y,y(0) = 3,y'(0) = 0 to approximate y(0.1).
Given:
Y =xy —y,y(0)=3,y(0)=0,h=0.1

d ! :
Let d—z =y’ =z, theny = z’, above equation reduces to

v =z=fixy2)
y =z'=xy'—y=xz-y=f,(x,y,2)
Subjected to y(0)=3 & z(0) =0 .i.exy =0, yo =3, z, =0
Now,
ki = hfi(x0,Y0,20) = h(29) =01x0=0
Ly = hf,(x0, Y0, 20) = hf5(0,3,0) =0.1 X (0x0—3) =-0.3

k,=h ( L. +ll>
2 = hfi | xg 2»3’0 Z'ZO >

=h 0+O'13+00+< 0'3)
= hfi 277 2

= hf,(0.05,3,—0.15)

= 0.1(-0.15)
= —0.015
l, =01 <0+0'1 34,0 0'3)
2= 0172 27720 2

= 0.1£,(0.05,3,—0.15)
= 0.1(0.05 x —0.0015 - 3) = —0.3001

0.1 —0.15 —0.3001
k3 = hf1<0+7’3+T,O+T)
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= 0.1f,(0.05,2.925,—0.1501)
= 0.1 x —0.1501

= —0.0150

01 _ -015  —0.3001
s = hfp(0+—,3+——,0+———)

= 0.1£,(0.05,2.925,—0.1501)

= 0.1(0.05 x —0.1501 — 2.925)
= —0.2933
ks = hfi(0 + 0.1,3 + (—=0.0150),0 + (—0.2933))
= 0.1£,(0.1,2.9850, —2.933)
= 0.1 x —0.2933

= —0.0293

l, = hf,(0 +0.1,3 + (—0.0150),0 + (—0.2933))
= 0.1/,((0.1,2.9850,—2.933))
= 0.1(0.1 x —0.293 — 2.9850)

= —0.3014

- (ky + 2k, + 2ks + k,)
6

~ (0+2x-0.015+ 2 x —0.0150 — 0.0293)
B 6

= —0.0149
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(421, + 21, + 1)
| =
6
(—0.3 4+ 2 x —0.3001 + 2 x —0.2933 — 0.3014)
B 6
= —0.2980

y, = y(0.1) =y, + k =3 + (—0.3014) = 2.6986

z; =2(0.1) =z, + 1 = 0 —0.2980 = —0.2980

Picard method of successive approximation
Consider the first order differential equation Z—i = f(x,y) subjected to y(x,) =

Yo- We can integrate this to obtain the solution in the interval(xo,x).
The above equation can be written as dy = f(x,y)dx

Integrating between the limits , we get

£w=fﬁmwx

0

y—yo=f f(x,y)dx
y=yo+f f(x,y)dx

ﬂ@=y@w+Jf&JMx

Since y appears under the integral sign on the right, the integration cannot be
formed. The dependent variable should be replaced by either a constant or a
function of x, since we know the initial value of y at x=xo we may use this as a
first approximation to the solution and the result can be used on the right hand
side to obtain the next approximation.

Now by Picard’s methods first approximation we replace y by yo in f(x,y) i.e
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X
Y1 =Yo +f f(x,y0)dx

Xo

For second approximation yz replace y by yi

X
Y2 = Yo +f f(x;yl)dx .....
Xo

X
Yn = Yo +f f(x, yn-1)dx
Xo
The process is to be stopped when two values of y, are same to desired degree of
accuracy
Note:

1. This method is applicable only to a limited class of equations in which the
successive integration can be perform easily.

2. Sometimes it may not be possible to carry out the integration.

3. It is not convenient method for computer-based solution.

Example : Use Picard’s method to approximate the value of y when
x=0.1,0.2,0.3,0.4 & 0.5. given that y=1 at x=0, y’=1+xy, correct up to three
decimal places

Given

Y a0 =1

f,y)=1+xy,y0=1,% =0

first approximation

X X
Y1 = Yo +f f,ye)dx =1 ‘|‘f (1 + xyo)dx
0

X0

X
=1+j (1 + x)dx
0

142



Second approximation

X

Y2 = Yo +f f(x,y1)dx

Xo

X
=1 +j (1+ xy,)dx
0

X xZ
=1+f <1+x<1+x+—>)dx
0 2

Third approximation

X
Y3 = Yo +] f(x,y;)dx
X

0

X
=1 +j 1+ xy,)dx
0

X x2 .X'3 x4
=14+ | [1+x(l+x+=+5+=]]d
jo x( X+t +3 8) X

Fourth approximation

X
Ya = Yo +j f(x,y3)dx

Xo

X
=1 +j (1 + xy3)dx
0

X xZ x3 x4- x5 X6
1+ (14+x(1+x+T++=+—+—]]|d
fo x< T2 T3 T8 15 48) ¥
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x2 x3 x* x5 x® X7 x8

= 1+x+7+?+§+ﬁ+ﬁ+ﬁ+%

Now at x=0.1

Y=1.1050

Y>=1.1053

Y5=1.1053

Since the value is correct up to three decimal places y(0.1)=1.105

Shooting method

This method is called shooting method because it resembles an artillery problem.
In this method the given boundary value problem is first converted into an
equivalent initial value problem an then solved using any of the method discussed
in previous section.

Consider the equation

y =fxyy)y@) =4yb) =B

Letting y' = z, we obtain the following set of two equations y' =z,z' =
f(x,y,z). In order to solve this set as initial value problem we need two
conditions at x=a, we have one condition y(a)=A and therefore require another
condition for z at x=a. let us assume that z(a) = M;, where M, is a guess. Note
M, represents the slope y'(x) at x = a thus the problem is reduced to as system
two first order equation with initial conditions

y=z yla=A4
z'=f(xvy,2) z(a) =M, ... .. (a)

Equation a can be solved for y and z, using any one step method, using steps of
h, until the solution at x=b is reached. Let the estimated value of y(x) at x=b be
Bi, if Bi=B then we have obtained the required solution. In practice it is very
unlikely that our initial guess z(a)=M; is correct.

If B; # B then we obtain the solution with another guess say z(a) =M. Let new
estimate of y(x) be at x=b be B.. If B> is not equal to B then process is continued
till we obtain the correct estimate of y(b). However the procedure can be
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accelerated by suing an improves guess for z(a) after estimates of B1 & B: are
obtained.

y'(a)=M2 B2

B1

y'(a)=M1

x0 x4

Let us assume that z(a)=M3 lead to the value of y(b)=B, if we assume that values
of M and B are linearly related then

M;—-M, M;—M
B—-B, B,—B

- B,

M; =M, + M, —M
3 2 BZ_Bl( 2 1)
BZ_B
M3=M2_BZ—Bl(M2_M1)

Now with z(a)=M3s, we can again obtain the solution of y(x).

2
Example : using shooting method solve the equation %= 6x, y(1) =
2,y(2) = 9 in the interval (1,2)
Solution

By transformation

dy_ B =2 dz_6 B
—=2=fiy2,y(1) =2, = 6x = ,(x,7,7)
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Let us assume that z(1) = y'(1) = 2(M; say), applying Heun’s method we
obtain the solution as follows

Iteration 1:
h=0.5, xo=1, y(1)=yo=2, z(1)=20=2

m; +m,
2

my (1) = f1(X0, Y0, 20) = f1(1,2,2) = 25 = 2
my(2) = f2(x0,Y0,20) = f2(1,2,2) = 6xp =6 X1 =6

m,(1) = f1(xo + h,yo + my(1)h, 2y + hm, (2))

Yit1 =Yi + ( )h

= f,(14+052+2x052+6x0.5)
= f,(1.5,3,5)
=5
m,(2) = fz(xo + h,yo + my(1h, z, + hm1(2))
= £,(1+0.52+2x%0.52+ 6 x0.5)
= f,(1.5,3,5)
=6Xx
=6Xx1.5

=9

my(1) +my(1) 245

m(1) = 5 5 = 3.5
m2) = my (2) er m,(2) _6 er % s

y(x;) =y(@.5) =y(1)+m(@)h=2+3.5%x0.5=3.75
z(x;) =2(1.5) =z(1) + m(2)h =2+ 7.5x%x 0.5 =5.75
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iteration 2 :
h=0.5, x1=1.5, yi1=3.75, z1=5.75
mi(1) = f1(x1,¥1,21) =2, = 5.75
my(2) = fo(x1,y1,21) = 6x; =6X15=9

m,(1) =f; (x1 + h,y; +my(1)h,z; + hm1(2))
= f,(1.5+0.5,3.75 + 5.75 X 0.5,5.75 + 9 x 0.5)
= f,(2,6.625,10.25)
= 10.25
my(2) = fo(x1 + by, + my(h, z; + hm; (2))
= f,(1.5+0.5,3.75 + 5.75 X 0.5,5.75 + 9 X 0.5)
= £,(2,6.625,10.25)

=6XXx
=6X2
=12
m,(1) + m,(1 5.75 + 10.25
m(ty = T+ M) _S75+1035 _
m4(2) + m,(2 94+ 12
(@) = 1<)2 2(2) _ 1205

y(x;) =y2)=y(1)+m(1)h=3.75+8x 0.5 =775
This gives B1=7.75 which is less than B=9
Now let us assume z (1) =y’ (1) =4(M2) and again estimate y (2)
Iteration 1:

h=0.5, xo=1, y(1)=yo=2, z(1)=z0=4
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my +m,

2 oh

Yirr = Yi t (
my(1) = f1(x0,Y0,%20) = f1(1,2,4) =z, = 4
my(2) = f2(%0,¥0,20) = f2(1,24) = 6xy =6X1=6
my(1) = fi(xo + b, yo + my (DA, zo + hm,(2))
= f,(1+052+4x054+6x0.5)
= £,(1.5,4,7)
=7
m,(2) = f(xo + h,yo + my(1h, zy + hm, (2))
= £,(1+0.52+4x 054+ 6 x 0.5)
= f,(1.5,4,7)
=6Xx
=6Xx1.5

=9

my(1) +my(1) 4+7

m(1) = 5 5= 5.5
m2) = my (2) er m,(2) _6 er % s

y(x;) =y(1.5) =y(1)+m(1)h=2+5.5x%x0.5=4.75

z(x;) =2z(1.5) =z(1) + m(2)h =4+ 75%x 0.5 =7.75

iteration 2 :

h=0.5, xi=1.5, yi=4.75, z1=7.75
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mqy(1) = f1(x1,¥1,21) = 2, =7.75
my(2) = fo(x1,y1,2;) =6x;, =6%x15=9

m,(1) = f; (x1 + h,y; + my(1)h,z, + hml(Z))
= £,(1.5 + 0.5,4.75 + 7.75 X 0.5,7.75 + 9 x 0.5)
= £,(2,8.625,12.25)
= 12.25
m,(2) = fo(x1 + hy; + my(h, z; + hm;(2))
= £,(1.5 + 0.5,4.75 + 7.75 x 0.5,7.75 + 9 x 0.5)

= £,(2,8.625,12.25)

=6XXx
=6X2
=12
m,(1) + m,(1 7.75 + 12.25
ety =MD M) 77541225 _
my(2) + m,(2 9412
m2) = 1()2 2(2) _ s 105

y(xy) = y(2) = y(1) + m(1)h = 4.75 + 10 x 0.5 = 9.75

Which is greater than B=9, now let us have the third estimate of z(1)=M3 using
the relationship

BZ_B
M3=M2_BZ_Bl(M2—M1)
Ve -4 9.75 -9 4—2)
37 9.75 — 7.75

= 3.25

The new estimate for z(1)=y’(1)=3.25
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Iteration 1:

h=0.5, xo=1, y(1)=yo=2, z(1)=20=3.25

my +m,
Yir = ¥i + (——Dh

my(1) = f1(x0,Y0,29) = f1(1,2,3.25) = z, = 3.25
my(2) = f2(X0, Y0, 20) = f2(1,2,3.25) = 6xy =6 X1 =6
m,(1) = f1(xo + b,y + my(1)h, zy + hm, (2))
= £,(1+ 0.5,2 + 3.25 X 0.5,3.25 + 6 X 0.5)
= £,(1.5,3.625,6.25)
= 6.25
m,(2) = fo(xo + b, yo + my (DA, zo + hm,(2))
= £,(1 + 0.5,2 + 3.25 X 0.5,3.25 + 6 X 0.5)
= £,(1.5,3.625,6.25)
=6Xx
=6 X 1.5

=9

_my(1) +my(1)  3.25+6.25

m(1) - > = 475
m(2) = mq(2) 42‘7”2(2) _b ‘; 9 _ 7

y(x;) =y(@.5) =y(A) + m(1)h =2+ 4.75 x 0.5 = 4.375
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z(x;) = 2z(1.5) =z(1) + m(2)h =3.25+7.5%x 0.5 =7.

1teration 2 :
h=0.5, xi=1.5, y1=4.375, z1=7

mi(1) = fi(x,y1,21) =2, =7
ml(Z) = fz(xl,yl,zl) = 6x1 = 6 X 15 = 9

my(1) = fi(x; + by, + my(h, z; + hm;(2))
= £,(1.5 + 0.5,4375 + 7 X 0.5,7 + 9 x 0.5)
= £,(2,7.875,11.5)
=11.5
m,(2) = fo(x1 + h,y1 + my(Dh, z; + hm, (2))
= £,(1.5 + 0.5,4375 + 7 X 0.5,7 + 9 x 0.5)
= £,(2,7.875,11.5)

=6XXx
=6X2
=12
m,(1) + m,(1 7+ 11.5
m(1) = 1()2 2(1) _ . _ g5
m,(2) +m,(2 9412
m2) = 1()2 2(2) _ ' 105

y(x,) =y(2) =y(1) + m(1)h =4.375+9.25x 0.5=9

The solution is y(1)=2, y(1.5)=4.375, y(2)=9 the exact solution is y(x) = x3 + 1

and therefore y(1.5)=4.375
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Practice :

1. Solve Z—z =1—-y,y(0) =0intherange 0 < x < 0.3, using
a. Euler’s method b. Heun’s method

2. Solve Z—z =y— Zy—x,y(O) = 0intherange 0 < x < 0.2, using
b. Euler’s method b. Heun’s method

3. Using Runge Kutta method of fourth order solve for y(0.1), y(0.2) & y(0.3)
given that y' = xy + y?2,y(0)=1

4. Solve the following equation by Picard’s method y'(x) = x? + y2,y(0) =

0 estimate y(0.1),y(0.2)
5. Applying shooting method to solve the boundary value problem, solve

y =y(x),y(0) = 0and y(1) = 1, i.e find y’(0)
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Chapter 6: Solution of partial differential equations

Many physical phenomena in applied science and engineering when formulated
into mathematical models fall into a category of system known as partial
differential equations. A partial differential equation is a differential equation
involving more than one in independent variables.

We can write a second order equation involving two independent variables in
general form as :

ad’f ba f cd*f of of
=F0,y,=—, =) iiininn.
dx? +6x6y+ dy? (ay 0x ay)

Where a,b,c may be constant or function of x & y
The equation 1 is classified as

1. Elliptical if b? — 4ac <0
ii.  Parabolic if b?> —4ac =0
iii.  Hyperbolic if b — 4ac > 0

Two approaches of solving PDEs are:

1. Finite difference method (where regions are regular).
2. Finite element method (where regions are irregular).

Finite difference method:

The finite difference method is based on the formula for approximating first and
second order derivatives of a function. In this method derivatives that occurs in
partial differential equation are replaced by their finite difference equivalents.
The difference equation is then written for each grid points using function values
at the surrounding grid points. Solving these equations simultaneously give the
values of the function of each grid points.
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yi+1

: (i)
Yi

yi1

yi-2

Figure: two-dimensional finite difference grid
Xiy1 = X + h
Yir1 =Yi+h

We have already discussed that if the function f(x) has a continuous fourth
derivative, then it’s first and second derivatives are given by the following central
difference approximation.

fOi+h) = fla—h)

fl(x) = oh
, Jir1—fima
fro=t I 2
fv-(xi)=f(xi+h)_2fh(:ci)—f(xi—h)
! i+1—2fi — fi—1
ot

The subscripts on f indicate the x value at which the function is evaluated. When
fis a function of two variables x and y, the partial derivatives of f with respect x
or y are the ordinary derivatives of f with respect to x or y when y or x does not
change. We can use the equations 2 and 3 in the x direction to determine
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derivatives with respect to x and in the y direction to determine derivatives with
respect to y. thus we have

W — FuGy) = fXiv1,¥5) ;f (Xi-1,¥;)
%;y,-) £ G y) = f (X0 Yj+1) ;f (X1, Yj-1)
W = oy, = f(xiv1,y) — 2f (;lczz yi) + f(xic1, ¥5)
azfa(—;iz,yj) = G y)) = f(xiyje1) — 2f (;12 yi) + f(xi, ¥j-1)

azf(xi,yj) _ f(xi+1»3’j+1) - f(xi+1:yj—1) - f(xi—1»)’j+1) + f(xi—1»)’j—1)
dxdy 4hk

It would be convenient to use double subscripts 1,j on f to indicate x and y values.
Then above equation become

P fivr,j — fi-1,)
X,l,] h
£ fij+1 — fij—1
V,ij 2
_ fivry — 2+ fiug
fxx,i,j - h2
_Sijr1 = 2fijtfij-a

i fi+1,j+1 - fi+1,j—1 - fi—1,j+1 + fi—1,j—1

Jayii 2hk

We will use these finite difference equivalents of the partial derivatives to
construct various types of differential equations.

Elliptical equations
Elliptical equations are governed by condition on the boundary of closed domain.
We consider here the two most commonly encountered elliptical equations.

a. Laplace’s equation
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b. Poisson’s equation

Laplace’s equation
Any equation of the form V2f = 0 is called laplace’s equation, where

02 02
2= — 4+ — ... 4
v d0x?  0y?
o’f 9 f ..
gty =V =08

Where a=1,b=0,c=1 and F(X,y,g—f a—f) 0

Where V? is called Laplacian operator, above equation can be written as

Uex + Uy, =0
Replacing the second order derivatives by their finite difference equivalents, at
points (x;, y;) we get

fisrj — 2fij + fim1;  fijer — 2fij + fij—1
szl] W2 + 2 =

If we assume for simplicity, h=k, then we get

sz f1+1] zfij + fi—1,j n fi,j+1 - 2fij + fi.f—l
ij h2 h?2

Vi = _Jinny Aoy =Yy H it fij ;
ij hz

fivrnj + ficrj—4fij+fijer+ fij-1=0
This 1s called Laplace’s equation

Above equation contains four neighboring points around central points (x;, y;) as
shown in figure, the above equation is known as five point difference formula for
Laplace’s equation.
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i-1,j <+ ) < -4 i+1,j

figure: Grid for Laplace equation

we can also represent the relationship of pivotal values pictorially as below.

1

1
v2ﬁ1=ﬁ{1 —4 1}fij=o ....... 8
1

From above equation we can show that the function value at grid point(x;, y;) is
the average of the values at the four adjoining points. i.e

1
fij = Z(fi+1,j + fi—1,j+fi,j+1 + fi,j—l) ........ 9

To evaluate numerically the solution of Laplace equation at the grid points we
can apply equation 9 at the grid points where f;; is required thus obtaining a

system of linear equations in the pivotal values of f;;. The system of linear

equations may be solved using either direct or iterative methods.

Example: Consider a steel plate of size 15¢cm x 15¢cm, if two of the sides are held
at 100°c and other two sides are held at 0°c, what are the steady state temperatures
at interior points assuming a grid of size Scm x Scm.

Note: A problem with values known on each boundary is said to have Dirichlet
boundary condition. This problem is illustrated below.
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100 100
100

f; >
100 ! 0

f3 fa

100

The system of equation is as follows:

Point 1:

100+ 100+ f3+f,—4f;,=0.......1
Point 2:

fi+100+f, +0—4f, =0........ 2
Point 3:

100+ f;,+0+f, —4f3=0........ 3
Point 4:

fa+f+0+0—-4f, =0........ 4

On solving above four equations we get the values as:

fl = 75,f2 = 50,f3 == 50,f4 = 25
So we can see the interior temperature points as above.

Note: for solving use any iterative methods that you have learned in chapter 4.
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Poisson’s equation
If we put a=1, b=0, c=1 in the equation and F(x,y.,f5, f,)=g(x,y) then

2 2 2
ad’f  bo’f  co f=F< of g)

0x2  0Oxdy  dy? x'y’ﬁ’ay
We get
92f  co?f
ox7 t oyz =90
Vif = g(x,y) a.....a

The above equation a is called poisson’s equation using the notation g;; =

g(x;,y;) and laplace equation may be modified to solve the equation a. the finite
difference formula for solving poisson’s equation then takes of the form

fivrj + fierj + fijer + fijo1 — 4fij = h*gij o b

Example: Solve the poisson’s equation V2f = 2x2y? over the square domain 0 <
x < 3 &0 <y < 3 with f=0 on the boundary and h=1.

The domain is divided into squares of one unit size as in figure.

f1 f2

f3 fa
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By applying equations b at each grid points

Point 1:
0+0+f3+f, —4f; =1°g(1,2)
fotfs — 4f; = 2x1%x22
fotfs—4fi =8........ 1
Point 2:
fit0+0+f,—4f, =129(2,2)
fitfa —4f, = 2x22x22
fi—4f,+fa=32........ 2
Point 3:
0+fi+0+f,—4f; =12g(1,1)
fitfs —4f; = 2x1%x1?
fi—4fs+fa=2........ 3
Point 4:

f3+f,+0+0—-4f, = 12g(2,1)
fotfz — 4fy = 2x22

f2+f3_4‘f4=8 ........ 4

On solving we get

22 43 13 22

h=-—ghh=-ph=-7h="7

Therefore the interior points are as above.
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Note: we can use any problem-solving methods already discussed for solving the
values of fi

Parabolic equations

Elliptical equations studies previously described problems that are time
independent, such problems are known as steady state problems, but we come
across problems that are not steady state. This means that the function is
dependent on both space and time. Parabolic equations for which b? — 4ac = 0,
describes the problem that depend on space and time variables.

A popular case for parabolic type of equation is the study of heat flow in one-
dimensional direction in an insulated rod, such problems are governed by both
boundary and initial conditions.

insulation

~
&
o

<:| rod

f(L1)

f0.9)

" b - ——

x=L

Figure : heat flow in a rod

Let f represent the temperature at any points in rod, whose distance from left end
is x. Heat is flowing from left to right under the influence of temperature gradient.
The temperature f(x,t) in the at position x and time t governed by the heat
equation.

of of
klﬁ = k2k3§a

Where k;is coefficient of thermal conductivity, k, is the specific heat and k5 is
density of the material.

Equation a can be simplified as

kf(x,t) = fi(x,t) .......b
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ky

2k3

Where k =

The initial condition will be the initial temperatures at all points along the rod .
f(x,0)=f(x)0<x<L

The boundary conditions f(0,t) and f(L,t) describes the temperature at each end
of the rod as function of time, if they are held at constant then

f(O,t) = C10 S<t< o
f(L,t)=c, 0<t< o
solution of heat equation

we can solve the heat equation in equation using the finite difference formula
given below.

fl,t+1)— f(xt)

T

ft(x) t) =

1
SET O

PO A Zf% O+ fx+h o)

1
= ﬁ(fi—l,j - Zfi,j+fi+1,j) ...... d

Substituting ¢ and d in equation b we can obtain

Solving for f; ;41

27k Tk
fij+1 = (1 - ?) fij + ﬁ(fi—l,j + fir1j)

= -2y)fij + V(fi—l,j + fi+1,j) e f

Where y = ;—lz
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Bender Schmidt method
The recurrence of equation allows us to evaluate f at each point x and at any point
t. if we choose step size At & Ax, such that

27k
1—2]/21—?:0 ...... g

Equation f simplifies to

1
fl',j+1 = E(fi.{.lj + fi—l,j) h

Equation h is known as Bender Schmidt recurrence equation. This equation
determines the value of fat x = x;, at time t = t; + T as the average of the values
right and left of x; at time ¢;.

Note that the step size in At obtained from equation g.

h2

T=ﬁ

Gives the equation h , equation f'is stable if and only if the we step size 7 satisfies
the condition

hZ
< —
t=2k

Example : Solve the parabolic equation 2f,,(x,t) = f;(x,t), given the initial
condition

f(x,0)=504—x) 0<x<+4
And boundary conditions
f0,6)=0
f(4,t)=0, 0<t<15
Solution
If we assume Ax = h = 1, At = 1 (using Bender Schmidt method)

h? 12
< —_—_ =025
TS0k T 2x2
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Taking T = 0.25, we have

1
fij+1 = E(fi_l'j + fi+1,j)

From the initial boundary condition : f(0,t) = 0 or, f(0,j) =0 for all values of ;.
ie. £(0,0)=0

£01) =0

£(0.2) =0

£(03)=0

f0,4) =0

f(0,5) =0

f(0,6) =0

From the final boundary condition: f(4,t) = 0 or £(4,j) = 0 for all values of j.

£(4,0)=0
f(41) =0
f(42)=0
£(4,3) =0
f(44) =0

Now, again from the given initial condition:
f(x,0) =50(4 —x)
Or, f(i,0) = 50(4 — i) for all values of i.

£(1,0) = 50(4 — 1)=150

£(2,0) = 50(4 — 2)=100

£(3,0) = 50(4 — 3)=50
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Now, again from Bender Schmidt recursive formula,

foser =5 (fierj + fianj) cooen (A)

Put j=0 in (A) we get,

fir =5 (fimso + fia10)covonmeom (B)

Put i=1, 2, 3 respectively in (B) we get,
1 1

fin =73 (foo + fz,o)zg (0 + 100)=50
1 1

fo1 =35 (fio + f3,o):§ (150 + 50)=100

1 1
f31= > (fz,o + f4,0):5 (100 + 0)=50

Again take j=1 and 1= 1.2, 3 respectively to find f;, f,,f3, and take j=2, j=3,
j=4 and j=6 and find the corresponding values for i=1, i=2 and i=3 for each j’ .

Using the formula we can generate successfully f(x,t). the estimated are recorded
in the following table at each interior point, the temperature at any single point is
just average of the values at the adjacent points of the previous points.

x 10 (i=0) [1G=1) [2(=2) [3G=3) [4(i=4)
t
0.00(;=0) | 0 150 100 50 0
0.25 (j=1) | 0 50(f) | 100(fa1) |50(f1) [0
0.50(;=2) | 0 50 50 50 0
0.75 (j=3) | 0 25 50 25 0
1.00G=4) |0 25 25 25 0

Hyperbolic equation

Hyperbolic equation models the vibration of structure such as building beams and
machines we here consider the case of a vibrating string that is fixed at both the
ends as figure.
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The lateral displacement of string f varies with time t and distance x along the
string. The displacement f(x,t) is governed by the wave equation

02f  o%f
ox2 _ Por2

Where T is the tension in the string and p is the mass per unit length.

Hyperbolic problems are governed by both boundary and initial conditions, if
time is one of the independent variables. Two boundary conditions are the
vibrating string problems under consideration are

f(0,t)=0, 0<t<bh
f(L,t)=0, 0<t<bh
Two initial conditions are:
f(x,0)=f(x),0<t<a
fi(x,0)=9gx),0<t<a
Solution hyperbolic equations

The domain of interest 0 <t <aand 0 <t < b is partitioned as shown in
figure, the rectangle size is Ax = h,At =t
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tj+ 1
At

t

Figure : Grid for solving hyperbolic equation

The difference equation for f,,(x,t) and f;:(x,t) are

_fx=ht)=2f(,t)+ f(x+ht)

fxx(x, t) =
ety = LD ng’ 0+ f(x,t+71)

This implies that
Tfi—l,j = 2fij + fir1,) _ pfi,j—l —2fij + fij+1

h2 T2

Solving this for f; j, 41, we obtain

2

Tt Tt?
fi,j+1 = —fi’j_1 +2(1 _p? fij +W(fi+1,j + fi—l,j)

Tt?

If we make 1 —W= 0

Then we have

fi,j+1 = _fi,j—l + fi+1,j + fi_l,]- ......... d
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The values of fat x = x; and t = t; + 7 is equal to the um of the values of f, at
the point x = x; — h and x = x; + h at the time t = t;(previous time) minus
the value of f at x = x; at time t = t; — 7. From figure we can say f, = fp +
fo—fe

Starting values

We need two rows of starting values, corresponding to j=1 and j=2, in order to
computer the values of the third row. First row is obtained using the condition.

f(x,0) = f(x)

The 2™ row can be obtained using the 2" initial condition as f;(x,0) = g(x)

We know that

fi,0+1 - fi,o—l _

ft(x; 0) = 2T 9i

fi-1 = fin — 2tg; for t = 0 only
Substituting this in equation d, we get for t = t;
1
fi,l = E(fi+1,() + fi—l,O) +79;.....e€

In many cases g(x;) = 0 then we have

1
fi1= > (fi+1,0 + fi—1,0)

Example: Solve numerically the wave equation
fie (6, t) = 4f, (x, )0 < x <5&0<t <25
With boundary condition

f(0,t) =0 andf(5,t) =0
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And initial values
fx,0)=f(x)=x(5-x)
fi(x,0) =g(x) =0
Solution

Let h=1

) T
Given 5 =4

2
Assuming 1 — 4% =0

We get
1
T2
The values estimated using equations d and e
0 1 2 3 4 5
X
t
0.0 0 4 6 6 4 0
0.5 0 3* 5 ** 5 3 0
1.0 0 1 2 2 1 0
1.5 0 o S -2 -2 -1 0
2.0 0 -3 -5 -5 -3 0
2.5 0 -4 -6 -6 -4 0
vz 2¥0 :4%6 *kx= 2 4+ 0 —3
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Chapter 6: Solution of partial differential equations

Many physical phenomena in applied science and engineering when formulated
into mathematical models fall into a category of system known as partial
differential equations. A partial differential equation is a differential equation
involving more than one in independent variables.

We can write a second order equation involving two independent variables in
general form as :

ad®f ba*f o2 of 0
f_|_ f.|_ f:F(x,y,—f,—f) ..........
0x2 = 9xdy  0y? ox dy

Where a,b,c may be constant or function of x & y
The equation 1 is classified as

iv.  Elliptical if b? — 4ac <0
v.  Parabolic if b> — 4ac =0
vi.  Hyperbolic if b?> — 4ac >0

Two approaches of solving are

3. Finite difference method (where regions are regular)
4. Finite element method (where regions are irregular)

Finite difference method

The finite difference method is based on the formula for approximating first and
second order derivatives of a function. In this method derivatives that occurs in
partial differential equation are replaced by their finite difference equivalents.
The difference equation is then written for each grid points using function values
at the surrounding grid points. Solving these equations simultaneously give the
values of the function of each grid points.
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yi+1

: (i)
Yi

yi1

yi-2

Figure: two-dimensional finite difference grid
Xiy1 = X + h
Yir1 =Yi+h

We have already discussed that if the function f(x) has a continuous fourth
derivative, then it’s first and second derivatives are given by the following central
difference approximation.

fOi+h) = fla—h)

fl(x) = oh
, Jir1—fima
fro=t I 2
fv-(xi)=f(xi+h)_2fh(:ci)—f(xi—h)
! i+1—2fi — fi—1
ot

The subscripts on f indicate the x value at which the function is evaluated. When
fis a function of two variables x and y, the partial derivatives of f with respect x
or y are the ordinary derivatives of f with respect to x or y when y or x does not
change. We can use the equations 2 and 3 in the x direction to determine
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derivatives with respect to x and in the y direction to determine derivatives with
respect to y. thus we have

W — FuGy) = f (xi+1'Yj)2_hf (Xi-1,¥;)
%;y,-) £ G y) = f (xiJYj+1)2_kf (X1, Yj-1)
W = oy, = f(xiv1,y) — 2f (;lczz yi) + f(xic1, ¥5)
azfa(—;iz,yj) = G y)) = f(xiyje1) — 2f (;12 yi) + f(xi, ¥j-1)

azf(xi,yj) _ f(xi+1»3’j+1) - f(xi+1:yj—1) - f(xi—1»)’j+1) + f(xi—1»)’j—1)
dxdy 4hk

It would be convenient to use double subscripts 1,j on f to indicate x and y values.
Then above equation become

P fivr,j — fi-1,)
X,l,] h
£ fij+1 — fij—1
V,ij 2
_ fivry — 2+ fiug
fxx,i,j - h2
_Sijr1 = 2fijtfij-a

i fi+1,j+1 - fi+1,j—1 - fi—1,j+1 + fi—1,j—1

Jayii 2hk

We will use these finite difference equivalents of the partial derivatives to
construct various types of differential equations.

Elliptical equations
Elliptical equations are governed by condition on the boundary of closed domain.
We consider here the two most commonly encountered elliptical equations.

c. Laplace’s equation
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d. Poisson’s equation

Laplace’s equation
Any equation of the form V2f = 0 is called laplace’s equation, where

02 02
2= — 4+ — ... 4
v d0x?  0y?
o’f 9 f ..
gty =V =08

Where a=1,b=0,c=1 and F(X,y,g—f a—f) 0

Where V? is called Laplacian operator, above equation can be written as

Uex + Uy, =0
Replacing the second order derivatives by their finite difference equivalents, at
points (x;, y;) we get

fisrj — 2fij + fim1;  fijer — 2fij + fij—1
szl] W2 + 2 =

If we assume for simplicity, h=k, then we get

sz f1+1] zfij + fi—1,j n fi,j+1 - 2fij + fi.f—l
ij h2 h?2

Vi = _Jinny Aoy =Yy H it fij ;
ij hz

fivrnj + ficrj—4fij+fijer+ fij-1=0
This 1s called Laplace’s equation

Above equation contains four neighboring points around central points (x;, y;) as
shown in figure, the above equation is known as five point difference formula for
Laplace’s equation.
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i-1,j <+ ) < -4 i+1,j

figure: Grid for Laplace equation

we can also represent the relationship of pivotal values as,

1

1
v2ﬁ1=ﬁ{1 —4 1}fij=o ....... 8
1

From above equation we can show that the function value at grid point(x;, y;) is
the average of the values at the four adjoining points. 1.e

1
fij = Z(fi+1,j + fi—1,j+fi,j+1 + fi,j—l) ........ 9

To evaluate numerically the solution of Laplace equation at the grid points we
can apply equation 9 at the grid points where f;; is required thus obtaining a
system of linear equations in the pivotal values of f;;. The system of linear

equations may be solved using either direct or iterative methods.

Example: Consider a steel plate of size 15¢cm x 15¢cm, if two of the sides are held
at 100°c and the other two sides are held at 0°c. What are the steady state
temperatures at interior points(nodes) assuming a grid of Scm x Scm.

Note: a problem with values known on each boundary is said to have Dirichlet
boundary condition. This problem is illustrated below.
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100 100
100

f; >
100 ! 0

f3 fa

100

The system of equation is as follows

Point 1:

100+ 100+ f3+f,—4f;,=0.......1
Point 2:

fi+100+f, +0—4f, =0........ 2
Point 3:

100+ f;,+0+f, —4f3=0........ 3
Point 4:

fa+f+0+0—-4f, =0........ 4

On solving above four equations we get the values as:
fi=75/f =50,f3 =50,f, =25
So we can see the interior temperature points as above.

Note: for solving use any methods that have learned in before chapters.
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Poisson’s equation
If we put a=1, b=0, c=1 in the equation and F(x,y,f,f5, fy)=g(Xx,y) then

2 2 2
ad’f  bo’f  co f=F< of g)

0x2  0Oxdy  dy? x'y’ﬁ’ay
We get
92f  co?f
ox7 t oyz =90
Vif = g(x,y) a.....a

The above equation a is called poisson’s equation using the notation g;; =

g(x;,y;) and laplace equation may be modified to solve the equation a. the finite
difference formula for solving poisson’s equation then takes of the form

fivrj + fierj + fijer + fijo1 — 4fij = h*gij o b

Example: Solve the poisson’s equation V2f = 2x2y? over the square domain 0 <
x < 3 &0 <y < 3 with f=0 on the boundary and h=1.

The domain is divided into squares of one unit size as in figure.

f1 f2

f3 fa
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By applying equations b at each grid points

Point 1:
0+0+f3+f, —4f; =1°g(1,2)
fotfs — 4f; = 2x1%x22
fotfs—4fi =8........ 1
Point 2:
fit0+0+f,—4f, =129(2,2)
fitfa —4f, = 2x22x22
fi—4f,+fa=32........ 2
Point 3:
0+fi+0+f,—4f; =12g(1,1)
fitfs —4f; = 2x1%x1?
fi—4fs+fa=2........ 3
Point 4:

f3+f,+0+0—-4f, = 12g(2,1)
fotfz — 4fy = 2x22

f2+f3_4‘f4=8 ........ 4

On solving we get

22 43 13 22

h=-—ghh=-ph=-7h="7

Therefore the interior points are as above.
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Note: we can use any problem-solving methods already discussed for solving the
values of fi

Parabolic equations

Elliptical equations studies previously described problems that are time
independent, such problems are known as steady state problems, but we come
across problems that are not steady state. This means that the function is
dependent on both space and time. Parabolic equations for which b? — 4ac = 0,
describes the problem that depend on space and time variables.

A popular case for parabolic type of equation is the study of heat flow in one-
dimensional direction in an insulated rod, such problems are governed by both
boundary and initial conditions.

insulation

~
&
o

<:| rod

f(L1)

f0.9)

" b - ——

x=L

Figure : heat flow in a rod

Let f represent the temperature at any points in rod, whose distance from left end
is x. Heat is flowing from left to right under the influence of temperature gradient.
The temperature f(x,t) in the at position x and time t governed by the heat
equation.

of of
klﬁ = k2k3§a

Where k;is coefficient of thermal conductivity, k, is the specific heat and k5 is
density of the material.

Equation a can be simplified as

kf(x,t) = fi(x,t) .......b
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ky

2k3

Where k =

The initial condition will be the initial temperatures at all points along the rod .
f(x,0)=f(x)0<x<L

The boundary conditions f(0,t) and f(L,t) describes the temperature at each end
of the rod as function of time, if they are held at constant then

f(O,t) = C10 S<t< o
f(L,t)=c, 0<t< o
solution of heat equation

we can solve the heat equation in equation using the finite difference formula
given below.

fl,t+1)— f(xt)

T

ft(x) t) =

1
SET O

PO A Zf% O+ fx+h o)

1
= ﬁ(fi—l,j - Zfi,j+fi+1,j) ...... d

Substituting ¢ and d in equation b we can obtain

Solving for f; ;41

27k Tk
fij+1 = (1 - ?) fij + ﬁ(fi—l,j + fir1j)

= -2y)fij + V(fi—l,j + fi+1,j) e f

Where y = ;—lz
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Bender Schmidt method
The recurrence of equation allows us to evaluate f at each point x and at any point
t. if we choose step size At & Ax, such that

27k
1—2]/21—?:0 ...... g

Equation f simplifies to

1
fl',j+1 = E(fi.{.lj + fi—l,j) h

Equation h is known as Bender Schmidt recurrence equation. This equation
determines the value of fat x = x;, at time t = t; + T as the average of the values
right and left of x; at time ¢;.

Note that the step size in At obtained from equation g.

h2

T=ﬁ

Gives the equation h , equation f'is stable if and only if the we step size 7 satisfies
the condition

hZ
< —
t=2k

Example: Solve the equation 2f,,(x,t) = f;(x,t) and given the initial
condition:

f(x,0)=504—x) 0<x<4
And boundary conditions:
f@0,8) =0,
f4t)=t+1, 0<t<15
Solution
If we assume Ax = h = 1, At = 1 (using Bender Schmidt method)

h? 12
< —_—_ =025
TS0k T 2x2
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Taking T = 0.25, we have

1
fij+1 = E(fi_l'j + fi+1,j)

Using the formula we can generate successfully f(x,t). the estimated are recorded
in the following table at each interior point, the temperature at any single point is
just average of the values at the adjacent points of the previous points.

X(i) [0 1 2 3 4
t ()

0.00(0) |0 150 100 50 0
0.25(1) |0 50(fi) | 100 50 0
0.502) |0 50 50 50 0
0.75 0 25 25 25 0
1.00 0 12.5 25 12.5 0
1.25 0 12.5 12.5 12.5 0
1.50 0 6.25 12.5 6.25 0

f(0,t) =0, £(0,))=0 for all values ofj.

Again from the given final boundary condition: f(4,t) =0 , f(4,j)=0 for all values
of j.

Also from the given initial condition:f (i,0) = 50(4 — i) for all values of i.

Hyperbolic equation

Hyperbolic equation models the vibration of structure such as building beams and
machines we here consider the case of a vibrating string that is fixed at both the
ends as figure.
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The lateral displacement of string f varies with time t and distance x along the
string. The displacement f(x,t) is governed by the wave equation

02f  o%f
ox2 _ Por2

Where T is the tension in the string and p is the mass per unit length.

Hyperbolic problems are governed by both boundary and initial conditions, if
time is one of the independent variables. Two boundary conditions are the
vibrating string problems under consideration are

f(0,t)=0, 0<t<bh
f(L,t)=0, 0<t<bh
Two initial condition are
f(x,0)=f(x),0<t<a
fi(x,0)=9gx),0<t<a
Solution hyperbolic equations

The domain of interest 0 <t <aand 0 <t < b is partitioned as shown in
figure, the rectangle size is Ax = h,At =t
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tj+ 1
At

t

Figure : Grid for solving hyperbolic equation

The difference equation for f,,(x,t) and f;:(x,t) are

_fx=ht)=2f(,t)+ f(x+ht)

fxx(x, t) =
ety = LD ng’ 0+ f(x,t+71)

This implies that
Tfi—l,j = 2fij + fir1,) _ pfi,j—l —2fij + fij+1

h2 T2

Solving this for f; j, 41, we obtain

2

Tt Tt?
fi,j+1 = —fi’j_1 +2(1 _p? fij +W(fi+1,j + fi—l,j)

Tt?

If we make 1 —W= 0

Then we have

fi,j+1 = _fi,j—l + fi+1,j + fi_l,]- ......... d
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The values of fat x = x; and t = t; + 7 is equal to the um of the values of f, at
the point x = x; — h and x = x; + h at the time t = t;(previous time) minus
the value of f at x = x; at time t = t; — 7. From figure we can say f, = fp +
fo—fe

Starting values

We need two rows of starting values, corresponding to j=1 and j=2, in order to
computer the values of the third row. First row is obtained using the condition.

f(x,0) = f(x)

The 2™ row can be obtained using the 2" initial condition as f;(x,0) = g(x)

We know that

fi,0+1 - fi,o—l _

ft(x; 0) = 2T 9i

fi-1 = fin — 2tg; for t = 0 only
Substituting this in equation d, we get for t = t;
1
fi,l = E(fi+1,() + fi—l,O) +79;.....e€

In many cases g(x;) = 0 then we have

1
fi1= > (fi+1,0 + fi—1,0)

Example: solve numerically the wave equation
fee (0, t) =4f, (x, )0 < x <5&0<t <25
With boundary condition

f(0,t) =0 andf(5,t) =0
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And initial values
fx,0)=f(x)=x(5-x)
fi(x,0) =g(x) =0
Solution

Let h=1

) T
Given 5 =4

2
Assuming 1 — 4% =0

We get
1
T2
The values estimated using equations d and e
0 1 2 3 4 5
X
t
0.0 0 4 6 6 4 0
0.5 0 3* 5 ** 5 3 0
1.0 0 1 2 2 1 0
1.5 0 o Sl -2 -2 -1 0
2.0 0 -3 -5 -5 -3 0
2.5 0 -4 -6 -6 -4 0
vz 2¥0 :4%6 *kx= 2 4+ 0 —3
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