CHAPTER 6

Exploring Swing

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JAppletDemo.class" width=200 height=200>
</applet>
*/
public class JAppletDemo extends JApplet{
public void init(){
setLayout(new FlowlLayout());
JButton bl=new JButton("Alpha");
JButton b2=new JButton("Beta");
JLabel [abel=new JLabel("Press a button");

bl.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
label.setText("You have pressed Alpha");

}
1;

b2.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
label.setText("You have pressed Beta");

}

1;
add(b1);

add(b2);
add(label);

JLabel and Imagelcon

JLabel is Swing’s easiest-to-use component. It creates a label and
was introduced in the preceding chapter.

JLabel can be used to display text and/or an icon. It is a passive
component in that it does not respond to user input. JLabel defines
several constructors. Here are three of them:

— JLabel(lcon icon)

— JLabel(String str)

— JLabel(String str, Icon icon, int align)

Here, str and icon are the text and icon used for the label.

The align argument specifies the horizontal alignment of the text
and/or icon within the dimensions of the label.

It must be one of the following values:
LEFT, RIGHT, CENTER, LEADING, or TRAILING.

These constants are defined in the SwingConstants interface, along
with several others used by the Swing classes.

The easiest way to obtain an icon is to use the Imagelcon class.
Imagelcon implements Icon and encapsulates an image.

Thus, an object of type Imagelcon can be passed as an argument to
the lcon parameter of JLabel’s constructor.

There are several ways to provide the image, including reading it
from a file or downloading it from a URL.

Here is the Imagelcon constructor used by the example in this
section:

Imagelcon(String filename)
It obtains the image in the file named filename.

The icon and text associated with the label can be obtained by the
following methods:

lcon getlcon()
String getText()

The icon and text associated with a label can be set by these
methods:

void setlcon(lcon icon)
void setText(String str)

Here, icon and str are the icon and text, respectively. Therefore,
using setText() it is possible to change the text inside a label during
program execution.

import javax.swing.*;
class SwingDemo({
public SwingDemo(){
JFrame f=new JFrame("Swing Demo");
f.setSize(400,400);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

JLabel I=new JLabel("Swing is more powerful than AWT");
f.add(l);
f.setVisible(true);
}
public static void main(String [Jargs){
new SwingDemo();

}

|£: Swing Demo

Swing is more powerful than AWT

import javax.swing.*;
class JiImagelconDemo({
public JiImagelconDemo(){
JFrame f=new JFrame("Swing Demo");
f.setSize(400,400);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Imagelcon imagel=new Imagelcon("images.jpg");
JLabel I=new JLabel(imagel);
f.add(l);
f.setVisible(true);
}
public static void main(String [Jargs){
new JImagelconDemo();

}

JTextField

JTextField is the simplest Swing text component. It is also probably its
most widely used text component.

JTextField allows you to edit one line of text. It is derived from
JTextComponent, which provides the basic functionality common to
Swing text components.

Three of JTextField’s constructors are shown here:
— JTextField(int cols)
— JTextField(String str, int cols)
— JTextField(String str)

Here, str is the string to be initially presented, and cols is the number
of columns in the text field. If no string is specified, the text field is
initially empty. If the number of columns is not specified, the text
field is sized to fit the specified string.

JTextField generates events in response to user interaction.

For example, an ActionEvent is fired when the user presses
ENTER.

A CaretEvent is fired each time the caret (i.e., the cursor)
changes position. (CaretEvent is packaged in
javax.swing.event.)

Other events are also possible.

In many cases, your program will not need to handle these
events. Instead, you will simply obtain the string currently in
the text field when it is needed.

To obtain the text currently in the text field, call getText().

The Swing Buttons

Swing defines four types of buttons: JButton, JToggleButton,
JCheckBox, and JRadioButton.

All are subclasses of the AbstractButton class, which extends
JComponent. Thus, all buttons share a set of common traits.

AbstractButton contains many methods that allow you to control
the behavior of buttons. For example, you can define different icons
that are displayed for the button when it is disabled, pressed, or
selected.

Another icon can be used as a rollover icon, which is displayed
when the mouse is positioned over a button. The following
methods set these icons:

— void setDisabledlcon(lcon di)
— void setPressedlcon(lcon pi)
— void setSelectedlcon(lcon si)
— void setRolloverlcon(lcon ri)

Here, di, pi, si, and ri are the icons to be used for the indicated
purpose.

The text associated with a button can be read and written via
the following methods:

String getText()
void setText(String str)
Here, str is the text to be associated with the button.

The model used by all buttons is defined by the ButtonModel
interface. A button generates an action event when it is
pressed. Other events are possible.

JButton

The JButton class provides the functionality of a push button. You
have already seen a simple form of it in the preceding chapter.

JButton allows an icon, a string, or both to be associated with the
push button. Three of its constructors are shown here:

JButton(lcon icon)

JButton(String str)

JButton(String str, Icon icon)

Here, str and icon are the string and icon used for the button.
When the button is pressed, an ActionEvent is generated.

Using the ActionEvent object passed to the actionPerformed()
method of the registered ActionlListener, you can obtain the action
command string associated with the button.

By default, this is the string displayed inside the button. However,
you can set the action command by calling setActionCommand() on
the button.

* You can obtain the action command by calling
getActionCommand() on the event object. It is declared like
this:

e String getActionCommand()

* The action command identifies the button. Thus, when using
two or more buttons within the same application, the action
command gives you an easy way to determine which button
was pressed.

JToggleButton

A useful variation on the push button is called a toggle button.

A toggle button looks just like a push button, but it acts differently
because it has two states: pushed and released.

That is, when you press a toggle button, it stays pressed rather than
popping back up as a regular push button does.

When you press the toggle button a second time, it releases (pops
up). Therefore, each time a toggle button is pushed, it toggles
between its two states.

Toggle buttons are objects of the JToggleButton class. JToggleButton
implements AbstractButton. In addition to creating standard toggle
buttons, JToggleButton is a superclass for two other Swing
components that also represent two-state controls.

These are JCheckBox and JRadioButton, which are described later in
this chapter.

Thus, JToggleButton defines the basic functionality of all two-state
components. JToggleButton defines several constructors.

The one used by the example in this section is shown here:
JToggleButton(String str)

This creates a toggle button that contains the text passed in str. By
default, the button is in the off position. Other constructors enable
you to create toggle buttons that contain images, or images and text.

JToggleButton uses a model defined by a nested class called
JToggleButton.ToggleButtonModel. Normally, you won’t need to
interact directly with the model to use a standard toggle button.

Like JButton, JToggleButton generates an action event each time it is
pressed. Unlike JButton, however, JToggleButton also generates an
item event. This event is used by those components that support the
concept of selection. When a JToggleButton is pressed in, it is
selected.

When it is popped out, it is deselected. To handle item events, you
must implement the ItemListener interface.

Object getltem()

A reference to the button is returned. You will need to cast this
reference to JToggleButton.

The easiest way to determine a toggle button’s state is by calling
the isSelected() method (inherited from AbstractButton) on the
button that generated the event. It is shown here:

boolean isSelected()
It returns true if the button is selected and false otherwise.

Here is an example that uses a toggle button. Notice how the item
listener works. It simply calls isSelected() to determine the button’s
state.

import java.awt.*;
import java.awt.event.|*;
import javax.swing.*;
public class JToggleButtonDemo {
public JToggleButtonDemo(){
JFrame frame = new JFrame("JLabel and Icon Demi");
frame.setSize(200, 200);

frame.setLayout(new FlowLayout());

JLabel I1=new JLabel("Button is off");
JToggleButton jtbtn=new JToggleButton("on/off");
jtbtn.addItemListener(new ItemListener() {

@Override
public void itemStateChanged(ltemEvent e) {
if(jtbtn.isSelected()){
|1.setText("button is on");
telse{
|1.setText("button is off");

}
}

};
frame.add(jtbtn);

frame.add(l1);
frame.setVisible(true);

}

public static void main(String[] args) {
new JToggleButtonDemo();

}
}

|| JLabel and lcon Demi

n/off

Button is off

Check Boxes

The JCheckBox class provides the functionality of a check box. Its
immediate superclass is JToggleButton, which provides support for
two-state buttons, as just described.

JCheckBox defines several constructors. The one used here is
JCheckBox(String str)

It creates a check box that has the text specified by str as a label.
Other constructors let you specify the initial selection state of the
button and specify an icon.

When the user selects or deselects a check box, an ItemEvent is
generated. You can obtain a reference to the JCheckBox that
generated the event by calling getltem() on the ItemEvent passed to
the itemStateChanged() method defined by ItemListener. The easiest
way to determine the selected state of a check box is to call
isSelected() on the JCheckBox instance.

Radio Buttons

Radio buttons are a group of mutually exclusive buttons, in which only
one button can be selected at any one time. They are supported by
the JRadioButton class, which extends JToggleButton. JRadioButton
provides several constructors.

JRadioButton(String str)

Here, stris the label for the button. Other constructors let you specify
the initial selection state of the button and specify an icon.

In order for their mutually exclusive nature to be activated, radio
buttons must be configured into a group.

Only one of the buttons in the group can be selected at any time. For
example, if a user presses a radio button that is in a group, any
previously selected button in that group is automatically deselected.

A button group is created by the ButtonGroup class. Its default
constructor is invoked for this purpose. Elements are then added to
the button group via the following method:

void add(AbstractButton ab)
Here, ab is a reference to the button to be added to the group.

A JRadioButton generates action events, item events, and change
events each time the button selection changes.

Most often, it is the action event that is handled, which means
that you will normally implement the ActionListener interface.

Recall that the only method defined by ActionListener is
actionPerformed(). Inside this method, you can use a number of
different ways to determine which button was selected.

First, you can check its action command by calling
getActionCommand(). By default, the action command is the
same as the button label, but you can set the action command to
something else by calling setActionCommand() on the radio
button.

Second, you can call getSource() on the ActionEvent object and
check that reference against the buttons.

Third, you can check each radio button to find out which one is
currently selected by calling isSelected() on each button.

* Finally, each button could use its own action event handler
implemented as either an anonymous inner class or a lambda
expression.

e Remember, each time an action event occurs, it means that the
button being selected has changed and that one and only one
button will be selected.

JTabbedPane

JTabbedPane encapsulates a tabbed pane. It manages a set of
components by linking them with tabs.

Selecting a tab causes the component associated with that tab to
come to the forefront.

JTabbedPane defines three constructors.

We will use its default constructor, which creates an empty control
with the tabs positioned across the top of the pane.

The other two constructors let you specify the location of the tabs,
which can be along any of the four sides.

JTabbedPane uses the SingleSelectionModel model. Tabs are added
by calling addTab(). Here is one of its forms:

void addTab(String name, Component comp)

Here, name is the name for the tab, and comp is the component
that should be added to the tab. Often, the component added to a
tab is a JPanel that contains a group of related components. This
technique allows a tab to hold a set of components.

 The general procedure to use a tabbed pane is outlined here:
— 1. Create an instance of JTabbedPane.
— 2. Add each tab by calling addTab().
— 3. Add the tabbed pane to the content pane.

import javax.swing.*;
public class JTabbedPaneDemo {
public JTabbedPaneDemo() {
JFrame frame = new JFrame("JLabel and Icon Demi");
frame.setSize(400, 400);
JTabbedPane jtp = new JTabbedPane();
jtp.addTab("Cities", new CitiesPanel());
jtp.addTab("Colors", new ColorPanel());
jtp.addTab("Flavors", new FlavorPanel());
frame.add(jtp);
frame.setLocationRelativeTo(null);
frame.setVisible(true);
}
public static void main(String[] args) {
new JTabbedPaneDemo();

}
}

class CitiesPanel extends JPanel{
public CitiesPanel(){

JButton bl=new JButton("New York");
add(b1);
JButton b2=new JButton("London");
add(b2);
JButton b3=new JButton("HondKong");
add(b3);
JButton b4=new JButton("Tokyo");
add(b4);

}

class ColorPanel extends JPanel{
public ColorPanel(){

JCheckBox cb1=new JCheckBox("Red");
add(cb1);

JCheckBox cb2=new JCheckBox("Green");
add(cb?2);

JCheckBox cb3=new JCheckBox("Blue");
add(cb3);

}

class FlavorPanel extends JPanel{

public FlavorPanel(){
JComboBox jcb=new JComboBox();
jcb.addltem("vanilla");
jcb.addltem("Chocolate");
jcb.addItem("Strawberry");
add(jcb);

I8

|&| JLabel and Icon Demi

" Cities

Colors

Flavors

vanilla

JScrollPane

JScrollPane is a lightweight container that automatically handles the
scrolling of another component.

The component being scrolled can be either an individual component,
such as a table, or a group of components contained within another
lightweight container, such as a JPanel.

In either case, if the object being scrolled is larger than the viewable
area, horizontal and/or vertical scroll bars are automatically provided,
and the component can be scrolled through the pane.

Because JScrollPane automates scrolling, it usually eliminates the
need to manage individual scroll bars.

The viewable area of a scroll pane is called the viewport.
It is @ window in which the component being scrolled is displayed.

Thus, the viewport displays the visible portion of the component
being scrolled.

The scroll bars scroll the component through the viewport.

In its default behavior, a JScrollPane will dynamically add or remove
a scroll bar as needed.

For example, if the component is taller than the viewport, a vertical
scroll bar is added. If the component will completely fit within the
viewport, the scroll bars are removed.

JScrollPane defines several constructors. The one used in this
chapter is shown here:

— JScrollPane(Component comp)

The component to be scrolled is specified by comp. Scroll bars are
automatically displayed when the content of the pane exceeds the
dimensions of the viewport.

Here are the steps to follow to use a scroll pane:
1. Create the component to be scrolled.

2. Create an instance of JScrollPane, passing to it the object to
scroll.

3. Add the scroll pane to the content pane.

import java.awt.*
import javax.swing.*;
public class JScrollPaneDemo {
public JScrollPaneDemo() {
JFrame frame = new JFrame("Checkbox Demo");
// frame.setLayout(new GridlLayout(2, 1));
frame.setSize(400,400);
JPanel p = new JPanel(new GridLayout(20,20));
int b=0;
for(int i=0;i<20;i++){
for(int j=0;j<20;j++){
p.add(new JButton("Button"+b));
++b;

)

JScrollPane jsp=new JScrollPane(p);
frame.add(jsp);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);
}
public static void main(String[] args) {
new JScrollPaneDemo();

JList

In Swing, the basic list class is called JList.
It supports the selection of one or more items from a list.

Although the list often consists of strings, it is possible to create a
list of just about any object that can be displayed.

In the past, the items in a JList were represented as Object
references.

However, beginning with JDK 7, JList was made generic and is now
declared like this:

— class JList<E>

Here, E represents the type of the items in the list.

JList provides several constructors. The one used here is
— JList(E[] items)

This creates a JList that contains the items in the array specified by
items.

JList is based on two models. The first is ListModel. This interface
defines how access to the list data is achieved.

The second model is the ListSelectionModel interface, which defines
methods that determine what list item or items are selected.

Although a JList will work properly by itself, most of the time you will
wrap a JList inside a JScrollPane.

This way, long lists will automatically be scrollable, which simplifies
GUI design.

It also makes it easy to change the number of entries in a list without
having to change the size of the JList component.

A JList generates a ListSelectionEvent when the user makes or changes
a selection.

This event is also generated when the user deselects an item. It is
handled by implementing ListSelectionListener.

This listener specifies only one method, called valueChanged(), which
is shown here:

void valueChanged(ListSelectionEvent le)

Here, le is a reference to the event. Although ListSelectionEvent
does provide some methods of its own, normally you will
interrogate the JList object itself to determine what has occurred.

Both ListSelectionEvent and ListSelectionListener are packaged in
javax.swing.event.

By default, a JList allows the user to select multiple ranges of items
within the list, but you can change this behavior by calling
setSelectionMode(), which is defined by JList. It is shown here:

void setSelectionMode(int mode)

Here, mode specifies the selection mode. It must be one of these
values defined by ListSelectionModel: SINGLE_SELECTION
SINGLE_INTERVAL_SELECTION MULTIPLE_INTERVAL_SELECTION

The default, multiple-interval selection, lets the user select multiple
ranges of items within a list.

With single-interval selection, the user can select one range of
items.

With single selection, the user can select only a single item.

Of course, a single item can be selected in the other two modes,
too. It’s just that they also allow a range to be selected.

You can obtain the index of the first item selected, which will also be
the index of the only selected item when using single-selection
mode, by calling getSelectedIindex(), shown here:

int getSelectedIindex()

Indexing begins at zero. So, if the first item is selected, this method
will return O.

If no item is selected, —1 is returned. Instead of obtaining the index
of a selection, you can obtain the value associated with the selection
by calling getSelectedValue():

E getSelectedValue()

It returns a reference to the first selected value. If no value has been
selected, it returns null.

import java.awt.event.*;
Import java.awt.*;

import javax.swing.*;
import javax.swing.event.*;

public class JListDemo {

JList<String> jlist;

JLabel city;

JScrollPane jspane;

public JListDemo() {
JFrame frame = new JFrame("JLabel and Icon Demi");
frame.setSize(200, 200);
frame.setLayout(new FlowlLayout());

String cities[] = {"New York", "Chicago", "Houston", "Paris", "LA",
"kathmandu", "New Delhi"};

jlist=new JList<>(cities);
jlist.setSelectionMode(ListSelectionModel. SINGLE_SELECTION);
jspane=new JScrollPane(jlist);

jspane.setPreferredSize(new Dimension(120,90));

city=new JLabel("Choose a city");

jlist.addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {
int idx=jlist.getSelectedIndex();
if(idx!=-1){
city.setText("Current Selection:"+cities[idx]);
lelse{
city.setText("Choose a city");

}
1;

frame.add(jspane);
frame.add(city);
frame.setVisible(true);

}

public static void main(String[] args) {
new JListDemo();

New York
Chicago
Houston
Paris

[«

Choose a city

JComboBox

Swing provides a combo box (a combination of a text field and a
drop-down list) through the JComboBox class.

A combo box normally displays one entry, but it will also display a
drop-down list that allows a user to select a different entry.

You can also create a combo box that lets the user enter a selection
into the text field.

In the past, the items in a JComboBox were represented as Object
references. However, beginning with JDK 7, JComboBox was made
generic and is now declared like this: class JComboBox<E>

Here, E represents the type of the items in the combo box. The
JComboBox constructor used by the example is shown here:

JComboBox(E[] items)
Here, items is an array that initializes the combo box.

JComboBox uses the ComboBoxModel. Mutable combo boxes
(those whose entries can be changed) use the
MutableComboBoxModel.

In addition to passing an array of items to be displayed in the drop-
down list, items can be dynamically added to the list of choices via
the addltem() method, shown here:

void addItem(E obj)

Here, obj is the object to be added to the combo box. This method
must be used only with mutable combo boxes.

JComboBox generates an action event when the user selects an
item from the list.

JComboBox also generates an item event when the state of
selection changes, which occurs when an item is selected or
deselected.

Thus, changing a selection means that two item events will occur:
one for the deselected item and another for the selected item.

Often, it is sufficient to simply listen for action events, but both
event types are available for your use.

One way to obtain the item selected in the list is to call
getSelectedltem() on the combo box. It is shown here:

Object getSelectedltem()

You will need to cast the returned value into the type of object
stored in the list

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class JComboBoxDemo extends JFrame{
JLabel jlab;
JComboBox<String> jcb;
String timepiece[]={"morning","Afternoon","evening","night"};
public JComboBoxDemo(){
setLayout(new FlowlLayout());
jcb=new JComboBox<String>(timepiece);
add(jcb);
JLabel jlab=new JLabel("Choose time");
add(jlab);
jcb.addActionListener(new ActionListener() {

@Override
public void actionPerformed(ActionEvent e) {
String s=(String)jcb.getSelectedltem();
jlab.setText("Your selection: "+s);

}

};
setSize(200,200);

setVisible(true);

}
public static void main(String[] args) {

new JComboBoxDemo();

JTable

JTable is a component that displays rows and columns of data.
You can drag the cursor on column boundaries to resize columns.

You can also drag a column to a new position. Depending on its
configuration, it is also possible to select a row, column, or cell
within the table, and to change the data within a cell.

However, in its default configuration, JTable still offers substantial
functionality that is easy to use—especially if you simply want to
use the table to present data in a tabular format.

JTable has many classes and interfaces associated with it. These are
packaged in javax.swing.table.

At its core, JTable is conceptually simple. It is a component that
consists of one or more columns of information.

At the top of each column is a heading. In addition to describing the
data in a column, the heading also provides the mechanism by
which the user can change the size of a column or change the
location of a column within the table.

JTable does not provide any scrolling capabilities of its own. Instead,
you will normally wrap a JTable inside a JScrollPane.

JTable supplies several constructors. The one used here is
JTable(Object data[][], Object colHeads]])

Here, data is a two-dimensional array of the information to be
presented, and colHeads is a one-dimensional array with the
column headings. JTable relies on three models. The first is the
table model, which is defined by the TableModel interface.

This model defines those things related to displaying data in a two
dimensional format.

The second is the table column model, which is represented by
TableColumnModel.

JTable is defined in terms of columns, and it is TableColumnModel
that specifies the characteristics of a column.

These two models are packaged in javax.swing.table.

The third model determines how items are selected, and it is
specified by the ListSelectionModel, which was described when
JList was discussed.

A JTable can generate several different events.

The two most fundamental to a table’s operation are
ListSelectionEvent and TableModelEvent.

A ListSelectionEvent is generated when the user selects something
in the table.

By default, JTable allows you to select one or more complete rows,
but you can change this behavior to allow one or more columns, or
one or more individual cells to be selected.

A TableModelEvent is fired when that table’s data changes in some
way. Handling these events requires a bit more work than it does to
handle the events generated by the previously described
components and is beyond the scope of this book.

However, if you simply want to use JTable to display data (as the
following example does), then you don’t need to handle any events.

Here are the steps required to set up a simple JTable that can be
used to display data:

1. Create an instance of JTable.

2. Create a JScrollPane object, specifying the table as the object to
scroll.

3. Add the table to the scroll pane.
4. Add the scroll pane to the content pane.

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JTable;

public class JTableDemo extends JFrame{

public JTableDemo() {
String[] colhead = {"Name", "Address", "Phone number"};
Object[][] data = {{"Ram", "kathmandu", "9841111111"},
{"Shyam", "Lalitpur", "9841222222"},
{"Hari", "Pokhara", "984133333"},
{"Joshna", "Biratnagar", "9841444444"},
{"Nikhil", "Birgunj", "9841555555"},
{"Narayan", "Bhairawa", "9841666666"},
{"Pratik", "Nepalgunj", "9841777777"},
{"Shanti", "Dhangadi", "9841888888"},
{"Bishal", "Chitwan", "9841999999"},
{"MAdhav", "Argakhanchi", "9841234567"},};

JTable table=new JTable(data,colhead);
JScrollPane jsp=new JScrollPane(table);
add(jsp);
setSize(200,200);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

}
public static void main(String[] args) {
new JTableDemo();

}
}

£ — s
Mame | Address | FPhone ...
Fam kathma... (984111, | =~

shyam |Lalitpur (984122,
Hari Fokhara [984133..
Joshna |Biratna.. 984744 | _
Mikhil Birgunj (984155 .
Marayan [Bhairawa|984166...
FPratik Mepalg... (984177 ...
shanti [Dhanga...|984188...
Rizhal [Chilwan (92844100

SWING MENUS

JMenuBar
JMenu

JMenultem

— JRadioButtonMenultem
— JCheckBoxMenultem

— Jseperator

— JPopupMenu

