
CHAPTER 6

Exploring Swing

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

/*

<applet code="JAppletDemo.class" width=200 height=200>

</applet>

*/

public class JAppletDemo extends JApplet{

 public void init(){

 setLayout(new FlowLayout());

 JButton b1=new JButton("Alpha");

 JButton b2=new JButton("Beta");

 JLabel label=new JLabel("Press a button");

 b1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 label.setText("You have pressed Alpha");

 }

 });

 b2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 label.setText("You have pressed Beta");

 }

 });

 add(b1);

 add(b2);

 add(label);

 }

}

JLabel and ImageIcon

 • JLabel is Swing’s easiest-to-use component. It creates a label and

was introduced in the preceding chapter.

• JLabel can be used to display text and/or an icon. It is a passive

component in that it does not respond to user input. JLabel defines

several constructors. Here are three of them:

– JLabel(Icon icon)

– JLabel(String str)

– JLabel(String str, Icon icon, int align)

• Here, str and icon are the text and icon used for the label.

• The align argument specifies the horizontal alignment of the text

and/or icon within the dimensions of the label.

• It must be one of the following values:

• LEFT, RIGHT, CENTER, LEADING, or TRAILING.

• These constants are defined in the SwingConstants interface, along

with several others used by the Swing classes.

• The easiest way to obtain an icon is to use the ImageIcon class.

• ImageIcon implements Icon and encapsulates an image.

• Thus, an object of type ImageIcon can be passed as an argument to

the Icon parameter of JLabel’s constructor.

• There are several ways to provide the image, including reading it

from a file or downloading it from a URL.

• Here is the ImageIcon constructor used by the example in this

section:

• ImageIcon(String filename)

• It obtains the image in the file named filename.

• The icon and text associated with the label can be obtained by the

following methods:

• Icon getIcon()

• String getText()

• The icon and text associated with a label can be set by these

methods:

• void setIcon(Icon icon)

• void setText(String str)

• Here, icon and str are the icon and text, respectively. Therefore,

using setText() it is possible to change the text inside a label during

program execution.

import javax.swing.*;

class SwingDemo{

 public SwingDemo(){

 JFrame f=new JFrame("Swing Demo");

 f.setSize(400,400);

 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JLabel l=new JLabel("Swing is more powerful than AWT");

 f.add(l);

 f.setVisible(true);

 }

 public static void main(String []args){

 new SwingDemo();

 }

}

import javax.swing.*;

class JImageIconDemo{

 public JImageIconDemo(){

 JFrame f=new JFrame("Swing Demo");

 f.setSize(400,400);

 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 ImageIcon image1=new ImageIcon("images.jpg");

 JLabel l=new JLabel(image1);

 f.add(l);

 f.setVisible(true);

 }

 public static void main(String []args){

 new JImageIconDemo();

 }

}

JTextField
• JTextField is the simplest Swing text component. It is also probably its

most widely used text component.

• JTextField allows you to edit one line of text. It is derived from

JTextComponent, which provides the basic functionality common to

Swing text components.

• Three of JTextField’s constructors are shown here:

– JTextField(int cols)

– JTextField(String str, int cols)

– JTextField(String str)

• Here, str is the string to be initially presented, and cols is the number

of columns in the text field. If no string is specified, the text field is

initially empty. If the number of columns is not specified, the text

field is sized to fit the specified string.

• JTextField generates events in response to user interaction.

• For example, an ActionEvent is fired when the user presses

ENTER.

• A CaretEvent is fired each time the caret (i.e., the cursor)

changes position. (CaretEvent is packaged in

javax.swing.event.)

• Other events are also possible.

• In many cases, your program will not need to handle these

events. Instead, you will simply obtain the string currently in

the text field when it is needed.

• To obtain the text currently in the text field, call getText().

The Swing Buttons
• Swing defines four types of buttons: JButton, JToggleButton,

JCheckBox, and JRadioButton.

• All are subclasses of the AbstractButton class, which extends

JComponent. Thus, all buttons share a set of common traits.

• AbstractButton contains many methods that allow you to control

the behavior of buttons. For example, you can define different icons

that are displayed for the button when it is disabled, pressed, or

selected.

• Another icon can be used as a rollover icon, which is displayed

when the mouse is positioned over a button. The following

methods set these icons:

– void setDisabledIcon(Icon di)

– void setPressedIcon(Icon pi)

– void setSelectedIcon(Icon si)

– void setRolloverIcon(Icon ri)

• Here, di, pi, si, and ri are the icons to be used for the indicated

purpose.

• The text associated with a button can be read and written via

the following methods:

• String getText()

• void setText(String str)

• Here, str is the text to be associated with the button.

• The model used by all buttons is defined by the ButtonModel

interface. A button generates an action event when it is

pressed. Other events are possible.

JButton
• The JButton class provides the functionality of a push button. You

have already seen a simple form of it in the preceding chapter.

• JButton allows an icon, a string, or both to be associated with the

push button. Three of its constructors are shown here:

• JButton(Icon icon)

• JButton(String str)

• JButton(String str, Icon icon)

• Here, str and icon are the string and icon used for the button.

• When the button is pressed, an ActionEvent is generated.

• Using the ActionEvent object passed to the actionPerformed()

method of the registered ActionListener, you can obtain the action

command string associated with the button.

• By default, this is the string displayed inside the button. However,

you can set the action command by calling setActionCommand() on

the button.

• You can obtain the action command by calling

getActionCommand() on the event object. It is declared like

this:

• String getActionCommand()

• The action command identifies the button. Thus, when using

two or more buttons within the same application, the action

command gives you an easy way to determine which button

was pressed.

JToggleButton
• A useful variation on the push button is called a toggle button.

• A toggle button looks just like a push button, but it acts differently

because it has two states: pushed and released.

• That is, when you press a toggle button, it stays pressed rather than

popping back up as a regular push button does.

• When you press the toggle button a second time, it releases (pops

up). Therefore, each time a toggle button is pushed, it toggles

between its two states.

• Toggle buttons are objects of the JToggleButton class. JToggleButton

implements AbstractButton. In addition to creating standard toggle

buttons, JToggleButton is a superclass for two other Swing

components that also represent two-state controls.

• These are JCheckBox and JRadioButton, which are described later in

this chapter.

• Thus, JToggleButton defines the basic functionality of all two-state

components. JToggleButton defines several constructors.

• The one used by the example in this section is shown here:

• JToggleButton(String str)

• This creates a toggle button that contains the text passed in str. By

default, the button is in the off position. Other constructors enable

you to create toggle buttons that contain images, or images and text.

• JToggleButton uses a model defined by a nested class called

JToggleButton.ToggleButtonModel. Normally, you won’t need to
interact directly with the model to use a standard toggle button.

• Like JButton, JToggleButton generates an action event each time it is

pressed. Unlike JButton, however, JToggleButton also generates an

item event. This event is used by those components that support the

concept of selection. When a JToggleButton is pressed in, it is

selected.

• When it is popped out, it is deselected. To handle item events, you

must implement the ItemListener interface.

• Object getItem()

• A reference to the button is returned. You will need to cast this

reference to JToggleButton.

• The easiest way to determine a toggle button’s state is by calling
the isSelected() method (inherited from AbstractButton) on the

button that generated the event. It is shown here:

• boolean isSelected()

• It returns true if the button is selected and false otherwise.

• Here is an example that uses a toggle button. Notice how the item

listener works. It simply calls isSelected() to determine the button’s
state.

import java.awt.*;

import java.awt.event.I*;

import javax.swing.*;

public class JToggleButtonDemo {

 public JToggleButtonDemo(){

 JFrame frame = new JFrame("JLabel and Icon Demi");

 frame.setSize(200, 200);

 frame.setLayout(new FlowLayout());

 JLabel l1=new JLabel("Button is off");

 JToggleButton jtbtn=new JToggleButton("on/off");

 jtbtn.addItemListener(new ItemListener() {

@Override

 public void itemStateChanged(ItemEvent e) {

 if(jtbtn.isSelected()){

 l1.setText("button is on");

 }else{

 l1.setText("button is off");

 }

 }

 });

frame.add(jtbtn);

 frame.add(l1);

 frame.setVisible(true);

 }

 public static void main(String[] args) {

 new JToggleButtonDemo();

 }

}

Check Boxes
• The JCheckBox class provides the functionality of a check box. Its

immediate superclass is JToggleButton, which provides support for

two-state buttons, as just described.

• JCheckBox defines several constructors. The one used here is

• JCheckBox(String str)

• It creates a check box that has the text specified by str as a label.

Other constructors let you specify the initial selection state of the

button and specify an icon.

• When the user selects or deselects a check box, an ItemEvent is

generated. You can obtain a reference to the JCheckBox that

generated the event by calling getItem() on the ItemEvent passed to

the itemStateChanged() method defined by ItemListener. The easiest

way to determine the selected state of a check box is to call

isSelected() on the JCheckBox instance.

Radio Buttons
• Radio buttons are a group of mutually exclusive buttons, in which only

one button can be selected at any one time. They are supported by

the JRadioButton class, which extends JToggleButton. JRadioButton

provides several constructors.

• JRadioButton(String str)

• Here, str is the label for the button. Other constructors let you specify

the initial selection state of the button and specify an icon.

• In order for their mutually exclusive nature to be activated, radio

buttons must be configured into a group.

• Only one of the buttons in the group can be selected at any time. For

example, if a user presses a radio button that is in a group, any

previously selected button in that group is automatically deselected.

• A button group is created by the ButtonGroup class. Its default

constructor is invoked for this purpose. Elements are then added to

the button group via the following method:

• void add(AbstractButton ab)

• Here, ab is a reference to the button to be added to the group.

• A JRadioButton generates action events, item events, and change

events each time the button selection changes.

• Most often, it is the action event that is handled, which means

that you will normally implement the ActionListener interface.

• Recall that the only method defined by ActionListener is

actionPerformed(). Inside this method, you can use a number of

different ways to determine which button was selected.

• First, you can check its action command by calling

getActionCommand(). By default, the action command is the

same as the button label, but you can set the action command to

something else by calling setActionCommand() on the radio

button.

• Second, you can call getSource() on the ActionEvent object and

check that reference against the buttons.

• Third, you can check each radio button to find out which one is

currently selected by calling isSelected() on each button.

• Finally, each button could use its own action event handler

implemented as either an anonymous inner class or a lambda

expression.

• Remember, each time an action event occurs, it means that the

button being selected has changed and that one and only one

button will be selected.

JTabbedPane
• JTabbedPane encapsulates a tabbed pane. It manages a set of

components by linking them with tabs.

• Selecting a tab causes the component associated with that tab to

come to the forefront.

• JTabbedPane defines three constructors.

• We will use its default constructor, which creates an empty control

with the tabs positioned across the top of the pane.

• The other two constructors let you specify the location of the tabs,

which can be along any of the four sides.

• JTabbedPane uses the SingleSelectionModel model. Tabs are added

by calling addTab(). Here is one of its forms:

• void addTab(String name, Component comp)

• Here, name is the name for the tab, and comp is the component

that should be added to the tab. Often, the component added to a

tab is a JPanel that contains a group of related components. This

technique allows a tab to hold a set of components.

• The general procedure to use a tabbed pane is outlined here:

– 1. Create an instance of JTabbedPane.

– 2. Add each tab by calling addTab().

– 3. Add the tabbed pane to the content pane.

import javax.swing.*;

public class JTabbedPaneDemo {

 public JTabbedPaneDemo() {

 JFrame frame = new JFrame("JLabel and Icon Demi");

 frame.setSize(400, 400);

 JTabbedPane jtp = new JTabbedPane();

 jtp.addTab("Cities", new CitiesPanel());

 jtp.addTab("Colors", new ColorPanel());

 jtp.addTab("Flavors", new FlavorPanel());

 frame.add(jtp);

 frame.setLocationRelativeTo(null);

 frame.setVisible(true);

 }

 public static void main(String[] args) {

 new JTabbedPaneDemo();

 }

}

class CitiesPanel extends JPanel{

 public CitiesPanel(){

 JButton b1=new JButton("New York");

 add(b1);

 JButton b2=new JButton("London");

 add(b2);

 JButton b3=new JButton("HondKong");

 add(b3);

 JButton b4=new JButton("Tokyo");

 add(b4);

 }

}

class ColorPanel extends JPanel{

 public ColorPanel(){

 JCheckBox cb1=new JCheckBox("Red");

 add(cb1);

 JCheckBox cb2=new JCheckBox("Green");

 add(cb2);

 JCheckBox cb3=new JCheckBox("Blue");

 add(cb3);

 }

}

class FlavorPanel extends JPanel{

 public FlavorPanel(){

 JComboBox jcb=new JComboBox();

 jcb.addItem("vanilla");

 jcb.addItem("Chocolate");

 jcb.addItem("Strawberry");

 add(jcb);

 } }

JScrollPane
• JScrollPane is a lightweight container that automatically handles the

scrolling of another component.

• The component being scrolled can be either an individual component,

such as a table, or a group of components contained within another

lightweight container, such as a JPanel.

• In either case, if the object being scrolled is larger than the viewable

area, horizontal and/or vertical scroll bars are automatically provided,

and the component can be scrolled through the pane.

• Because JScrollPane automates scrolling, it usually eliminates the

need to manage individual scroll bars.

• The viewable area of a scroll pane is called the viewport.

• It is a window in which the component being scrolled is displayed.

• Thus, the viewport displays the visible portion of the component

being scrolled.

• The scroll bars scroll the component through the viewport.

• In its default behavior, a JScrollPane will dynamically add or remove

a scroll bar as needed.

• For example, if the component is taller than the viewport, a vertical

scroll bar is added. If the component will completely fit within the

viewport, the scroll bars are removed.

• JScrollPane defines several constructors. The one used in this

chapter is shown here:

– JScrollPane(Component comp)

• The component to be scrolled is specified by comp. Scroll bars are

automatically displayed when the content of the pane exceeds the

dimensions of the viewport.

• Here are the steps to follow to use a scroll pane:

• 1. Create the component to be scrolled.

• 2. Create an instance of JScrollPane, passing to it the object to

scroll.

• 3. Add the scroll pane to the content pane.

import java.awt.*

import javax.swing.*;

public class JScrollPaneDemo {

 public JScrollPaneDemo() {

 JFrame frame = new JFrame("Checkbox Demo");

 // frame.setLayout(new GridLayout(2, 1));

 frame.setSize(400,400);

 JPanel p = new JPanel(new GridLayout(20,20));

 int b=0;

 for(int i=0;i<20;i++){

 for(int j=0;j<20;j++){

 p.add(new JButton("Button"+b));

 ++b;

 }

 }

JScrollPane jsp=new JScrollPane(p);

 frame.add(jsp);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

 public static void main(String[] args) {

 new JScrollPaneDemo();

 }

}

JList
• In Swing, the basic list class is called JList.

• It supports the selection of one or more items from a list.

• Although the list often consists of strings, it is possible to create a

list of just about any object that can be displayed.

• In the past, the items in a JList were represented as Object

references.

• However, beginning with JDK 7, JList was made generic and is now

declared like this:

– class JList<E>

• Here, E represents the type of the items in the list.

• JList provides several constructors. The one used here is

– JList(E[] items)

• This creates a JList that contains the items in the array specified by

items.

• JList is based on two models. The first is ListModel. This interface

defines how access to the list data is achieved.

• The second model is the ListSelectionModel interface, which defines

methods that determine what list item or items are selected.

• Although a JList will work properly by itself, most of the time you will

wrap a JList inside a JScrollPane.

• This way, long lists will automatically be scrollable, which simplifies

GUI design.

• It also makes it easy to change the number of entries in a list without

having to change the size of the JList component.

• A JList generates a ListSelectionEvent when the user makes or changes

a selection.

• This event is also generated when the user deselects an item. It is

handled by implementing ListSelectionListener.

• This listener specifies only one method, called valueChanged(), which

is shown here:

• void valueChanged(ListSelectionEvent le)

• Here, le is a reference to the event. Although ListSelectionEvent

does provide some methods of its own, normally you will

interrogate the JList object itself to determine what has occurred.

• Both ListSelectionEvent and ListSelectionListener are packaged in

javax.swing.event.

• By default, a JList allows the user to select multiple ranges of items

within the list, but you can change this behavior by calling

setSelectionMode(), which is defined by JList. It is shown here:

• void setSelectionMode(int mode)

• Here, mode specifies the selection mode. It must be one of these

values defined by ListSelectionModel: SINGLE_SELECTION

SINGLE_INTERVAL_SELECTION MULTIPLE_INTERVAL_SELECTION

• The default, multiple-interval selection, lets the user select multiple

ranges of items within a list.

• With single-interval selection, the user can select one range of

items.

• With single selection, the user can select only a single item.

• Of course, a single item can be selected in the other two modes,

too. It’s just that they also allow a range to be selected.
• You can obtain the index of the first item selected, which will also be

the index of the only selected item when using single-selection

mode, by calling getSelectedIndex(), shown here:

• int getSelectedIndex()

• Indexing begins at zero. So, if the first item is selected, this method

will return 0.

• If no item is selected, –1 is returned. Instead of obtaining the index

of a selection, you can obtain the value associated with the selection

by calling getSelectedValue():

• E getSelectedValue()

• It returns a reference to the first selected value. If no value has been

selected, it returns null.

import java.awt.event.*;

Import java.awt.*;

import javax.swing.*;

import javax.swing.event.*;

public class JListDemo {

 JList<String> jlist;

 JLabel city;

 JScrollPane jspane;

 public JListDemo() {

 JFrame frame = new JFrame("JLabel and Icon Demi");

 frame.setSize(200, 200);

 frame.setLayout(new FlowLayout());

 String cities[] = {"New York", "Chicago", "Houston", "Paris", "LA",
"kathmandu", "New Delhi"};

 jlist=new JList<>(cities);

 jlist.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 jspane=new JScrollPane(jlist);

 jspane.setPreferredSize(new Dimension(120,90));

 city=new JLabel("Choose a city");

jlist.addListSelectionListener(new ListSelectionListener() {

public void valueChanged(ListSelectionEvent e) {

 int idx=jlist.getSelectedIndex();

 if(idx!=-1){

 city.setText("Current Selection:"+cities[idx]);

 }else{

 city.setText("Choose a city");

 }

 }

 });

 frame.add(jspane);

 frame.add(city);

 frame.setVisible(true);

 }

 public static void main(String[] args) {

 new JListDemo();

 }

}

JComboBox
• Swing provides a combo box (a combination of a text field and a

drop-down list) through the JComboBox class.

• A combo box normally displays one entry, but it will also display a

drop-down list that allows a user to select a different entry.

• You can also create a combo box that lets the user enter a selection

into the text field.

• In the past, the items in a JComboBox were represented as Object

references. However, beginning with JDK 7, JComboBox was made

generic and is now declared like this: class JComboBox<E>

• Here, E represents the type of the items in the combo box. The

JComboBox constructor used by the example is shown here:

• JComboBox(E[] items)

• Here, items is an array that initializes the combo box.

• JComboBox uses the ComboBoxModel. Mutable combo boxes

(those whose entries can be changed) use the

MutableComboBoxModel.

• In addition to passing an array of items to be displayed in the drop-
down list, items can be dynamically added to the list of choices via
the addItem() method, shown here:

• void addItem(E obj)

• Here, obj is the object to be added to the combo box. This method
must be used only with mutable combo boxes.

• JComboBox generates an action event when the user selects an
item from the list.

• JComboBox also generates an item event when the state of
selection changes, which occurs when an item is selected or
deselected.

• Thus, changing a selection means that two item events will occur:
one for the deselected item and another for the selected item.

• Often, it is sufficient to simply listen for action events, but both
event types are available for your use.

• One way to obtain the item selected in the list is to call
getSelectedItem() on the combo box. It is shown here:

• Object getSelectedItem()

• You will need to cast the returned value into the type of object
stored in the list

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class JComboBoxDemo extends JFrame{

 JLabel jlab;

 JComboBox<String> jcb;

 String timepiece[]={"morning","Afternoon","evening","night"};

 public JComboBoxDemo(){

 setLayout(new FlowLayout());

 jcb=new JComboBox<String>(timepiece);

 add(jcb);

 JLabel jlab=new JLabel("Choose time");

 add(jlab);

 jcb.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 String s=(String)jcb.getSelectedItem();

 jlab.setText("Your selection: "+s);

 }

 });

 setSize(200,200);

 setVisible(true);

 }

 public static void main(String[] args) {

 new JComboBoxDemo();

 }

}

JTable
• JTable is a component that displays rows and columns of data.

• You can drag the cursor on column boundaries to resize columns.

• You can also drag a column to a new position. Depending on its
configuration, it is also possible to select a row, column, or cell
within the table, and to change the data within a cell.

• However, in its default configuration, JTable still offers substantial
functionality that is easy to use—especially if you simply want to
use the table to present data in a tabular format.

• JTable has many classes and interfaces associated with it. These are
packaged in javax.swing.table.

• At its core, JTable is conceptually simple. It is a component that
consists of one or more columns of information.

• At the top of each column is a heading. In addition to describing the
data in a column, the heading also provides the mechanism by
which the user can change the size of a column or change the
location of a column within the table.

• JTable does not provide any scrolling capabilities of its own. Instead,
you will normally wrap a JTable inside a JScrollPane.

• JTable supplies several constructors. The one used here is

• JTable(Object data[][], Object colHeads[])

• Here, data is a two-dimensional array of the information to be

presented, and colHeads is a one-dimensional array with the

column headings. JTable relies on three models. The first is the

table model, which is defined by the TableModel interface.

• This model defines those things related to displaying data in a two

dimensional format.

• The second is the table column model, which is represented by

TableColumnModel.

• JTable is defined in terms of columns, and it is TableColumnModel

that specifies the characteristics of a column.

• These two models are packaged in javax.swing.table.

• The third model determines how items are selected, and it is

specified by the ListSelectionModel, which was described when

JList was discussed.

• A JTable can generate several different events.

• The two most fundamental to a table’s operation are
ListSelectionEvent and TableModelEvent.

• A ListSelectionEvent is generated when the user selects something
in the table.

• By default, JTable allows you to select one or more complete rows,
but you can change this behavior to allow one or more columns, or
one or more individual cells to be selected.

• A TableModelEvent is fired when that table’s data changes in some
way. Handling these events requires a bit more work than it does to
handle the events generated by the previously described
components and is beyond the scope of this book.

• However, if you simply want to use JTable to display data (as the
following example does), then you don’t need to handle any events.

• Here are the steps required to set up a simple JTable that can be
used to display data:

• 1. Create an instance of JTable.

• 2. Create a JScrollPane object, specifying the table as the object to
scroll.

• 3. Add the table to the scroll pane.

• 4. Add the scroll pane to the content pane.

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JTable;

public class JTableDemo extends JFrame{

 public JTableDemo() {

 String[] colhead = {"Name", "Address", "Phone number"};

 Object[][] data = {{"Ram", "kathmandu", "9841111111"},

 {"Shyam", "Lalitpur", "9841222222"},

 {"Hari", "Pokhara", "984133333"},

 {"Joshna", "Biratnagar", "9841444444"},

 {"Nikhil", "Birgunj", "9841555555"},

 {"Narayan", "Bhairawa", "9841666666"},

 {"Pratik", "Nepalgunj", "9841777777"},

 {"Shanti", "Dhangadi", "9841888888"},

 {"Bishal", "Chitwan", "9841999999"},

 {"MAdhav", "Argakhanchi", "9841234567"},};

JTable table=new JTable(data,colhead);

 JScrollPane jsp=new JScrollPane(table);

 add(jsp);

 setSize(200,200);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setVisible(true);

 }

 public static void main(String[] args) {

 new JTableDemo();

 }

}

SWING MENUS

• JMenuBar

• JMenu

• JMenuItem

– JRadioButtonMenuItem

– JCheckBoxMenuItem

– Jseperator

– JPopupMenu

