CHAPTER 5

SWING



The Origins of Swing

Swing did not exist in the early days of Java.

Rather, it was a response to deficiencies present in Java's
original GUI subsystem: the Abstract Window Toolkit.

The AWT defines a basic set of controls, windows, and dialog
boxes that support a usable, but limited graphical interface.

One reason for the limited nature of the AWT is that it
translates its various visual components into their
corresponding, platform-specific equivalents, or peers.

This means that the look and feel of a component is defined
by the platform, not by Java.

Because the AWT components use native code resources,
they are referred to as heavyweight.



The use of native peers led to several problems.

First, because of variations between operating systems, a
component might look, or even act, differently on different
platforms.

This potential variability threatened the overarching
philosophy of Java: write once, run anywhere.

Second, the look and feel of each component was fixed
(because it is defined by the platform) and could not be
(easily) changed.

Third, the use of heavyweight components caused some
frustrating restrictions. For example, a heavyweight
component is always rectangular and opaque



Not long after Java's original release, it became apparent that
the limitations andrestrictions present in the AWT were
sufficiently serious that a better approach was needed.

The solution was Swing.

Introduced in 1997, Swing was included as part of the
JavaFoundation Classes (JFC).

Swing was initially available for use with Java 1.1 as a separate
library.

However, beginning with Java 1.2, Swing (and the rest of the
JFC) was fully integrated into Java



Swing Is Built on the AWT

Although Swing eliminates a number of the limitations
inherent in the AWT, Swing does not replace it.

Instead, Swing is built on the foundation of the AWT.
This is why the AWT is still a crucial part of Java.

Swing also uses the same event handling mechanism as the
AWT.

Therefore, a basic understanding of the AWT and of event
handling is required to use Swing.



Two Key Swing Features

As just explained, Swing was created to address the
limitations present in the AWT.

It does this through two key features: lightweight components
and a pluggable look and feel.

Together they provide an elegant, yet easy-to-use solution to
the problems of the AWT.

More than anything else, it is these two features that define
the essence of Swing



1. Swing Components Are Lightweight

With very few exceptions, Swing components are lightweight.

This means that they are written entirely in Java and do not
map directly to platform-specific peers.

Because light weight components are rendered using graphics
primitives, they can be transparent, which enables
nonrectangular shapes.

Thus, lightweight components are more efficient and more
flexible.

Furthermore, because lightweight components do not translate
into native peers, the look and feel of each component is
determined by Swing, not by the underlying operating system.

This means that each component will work in a consistent
manner across all platforms.



2. Swing Supports a Pluggable Look and Feel

Swing supports a pluggable look and feel (PLAF).

Because each Swing component is rendered by Java code rather
than by native peers, the look and feel of a component is under
the control of Swing.

This fact means that it is possible to separate the look and feel
of a component from the logic of the component, and this is
what Swing does.

Separating out the look and feel provides a significant
advantage: it becomes possible to change the way that a
component is rendered without affecting any of its other
aspects.

In other words, it is possible to "plug in" a new look and feel for
any given component without creating any side effects in the
code that uses that component.



Moreover, it becomes possible to define entire sets of look-
and-feels that represent different GUI styles.

To use a specific style, its look and feel is simply "plugged in."
Once this is done, all components are automatically rendered
using that style

Pluggable look-and-feels offer several important advantages.

It is possible to define a look and feel that is consistent across
all platforms.

Conversely, it is possible to create a look and feel that acts like
a specific platform.

For example, if you know that an application will be running
only in a Windows environment, it is possible to specify the
Windows look and feel.

It is also possible to design a custom look and feel.



Finally, the look and feel can be changed dynamically at run
time.

Java SE 6 provides look-and-feels, such as metal and Motif,
that are available to all Swing users.

The metal look and feel is also called the Java look and feel.

It is platform-independent and available in all Java execution
environments.

It is also the default look and feel.

Windows environments also have access to the Windows and
Windows Classic look and feel.

This topic uses the default Java look and feel (metal) because
it is platform independent



The MVC Connection

* In general, a visual component is a composite of three distinct

aspects:-
— The way that the component looks when rendered on the

screen
— The way that the component reacts to the user

— The state information associated with the component

 No matter what architecture is used to implement a
component, it must implicitly contain these three parts.

* Over the years, one component architecture has proven itself
to be exceptionally effective:
* Model-View-Controller, or MVC for short.



The MVC architecture is successful because each piece of the
design corresponds to an aspect of a component.

In MVC terminology, the model corresponds to the state
information associated with the component.

For example, in the case of a check box, the model contains a
field that indicates if the box is checked or unchecked.

The view determines how the component is displayed on the
screen, including any aspects of the view that are affected by
the current state of the model.

The controller determines how the component reacts to the
user.



For example, when the user clicks a check box, the controller
reacts by changing the model to reflect the user 's choice
(checked or unchecked).

This then results in the view being updated. By separating a
component into a model, a view, and a controller, the specific
implementation of each can be changed without affecting the
other two.

For instance, different view implementations can render the
same component in different ways without affecting the model
or the controller

Although the MVC architecture and the principles behind it are
conceptually sound, the high level of separation between the
view and the controller is not beneficial for Swing components.



Instead, Swing uses a modified version of MVC that combines
the view and the controller into a single logical entity called the
Ul delegate.

For this reason, Swing's approach is called either the Model-
Delegate architecture or the Separable Model architecture.

Therefore, although Swing's component architecture is based
on MVC, it does not use a classical implementation of it.

Swing's pluggable look and feel is made possible by its Model-
Delegate architecture.

Because the view (look) and controller (feel) are separate from
the model, the look and feel can be changed without affecting
how the component is used within a program.

Conversely, it is possible to customize the model without
affecting the way that the component appears on the screen or
responds to user input



To support the Model-Delegate architecture, most Swing
components contain two objects.

— The first represents the model.
— The second represents the Ul delegate.
Models are defined by interfaces.

For example, the model for a button is defined by the
ButtonModel interface.

Ul delegates are classes that inherit ComponentUI.
For example, the Ul delegate for a button is ButtonUl.

Normally, your programs will not interact directly with the Ul
delegate.



Components and Containers

A Swing GUI consists of two key items: components and
containers. However, this distinction is mostly conceptual
because all containers are also components.

The difference between the two is found in their intended
purpose: As the term is commonly used, a component is an
independent visual control, such as a push button or slider.

A container holds a group of components. Thus, a container is a
special type of component that is designed to hold other
components. Furthermore, in order for a component to be
displayed, it must be held within a container.

Thus, all Swing GUIs will have at least one container. Because
containers are components, a container can also hold other
containers.

This enables Swing to define what is called a containment
hierarchy, at the top of which must be a top-level container



