
CHAPTER 5

SWING

The Origins of Swing
• Swing did not exist in the early days of Java.

• Rather, it was a response to deficiencies present in Java's

original GUI subsystem: the Abstract Window Toolkit.

• The AWT defines a basic set of controls, windows, and dialog

boxes that support a usable, but limited graphical interface.

• One reason for the limited nature of the AWT is that it

translates its various visual components into their

corresponding, platform-specific equivalents, or peers.

• This means that the look and feel of a component is defined

by the platform, not by Java.

• Because the AWT components use native code resources,

they are referred to as heavyweight.

• The use of native peers led to several problems.

• First, because of variations between operating systems, a

component might look, or even act, differently on different

platforms.

• This potential variability threatened the overarching

philosophy of Java: write once, run anywhere.

• Second, the look and feel of each component was fixed

(because it is defined by the platform) and could not be

(easily) changed.

• Third, the use of heavyweight components caused some

frustrating restrictions. For example, a heavyweight

component is always rectangular and opaque

• Not long after Java's original release, it became apparent that

the limitations andrestrictions present in the AWT were

sufficiently serious that a better approach was needed.

• The solution was Swing.

• Introduced in 1997, Swing was included as part of the

JavaFoundation Classes (JFC).

• Swing was initially available for use with Java 1.1 as a separate

library.

• However, beginning with Java 1.2, Swing (and the rest of the

JFC) was fully integrated into Java

Swing Is Built on the AWT

• Although Swing eliminates a number of the limitations

inherent in the AWT, Swing does not replace it.

• Instead, Swing is built on the foundation of the AWT.

• This is why the AWT is still a crucial part of Java.

• Swing also uses the same event handling mechanism as the

AWT.

• Therefore, a basic understanding of the AWT and of event

handling is required to use Swing.

Two Key Swing Features

• As just explained, Swing was created to address the

limitations present in the AWT.

• It does this through two key features: lightweight components

and a pluggable look and feel.

• Together they provide an elegant, yet easy-to-use solution to

the problems of the AWT.

• More than anything else, it is these two features that define

the essence of Swing

1. Swing Components Are Lightweight

• With very few exceptions, Swing components are lightweight.

• This means that they are written entirely in Java and do not

map directly to platform-specific peers.

• Because light weight components are rendered using graphics

primitives, they can be transparent, which enables

nonrectangular shapes.

• Thus, lightweight components are more efficient and more

flexible.

• Furthermore, because lightweight components do not translate

into native peers, the look and feel of each component is

determined by Swing, not by the underlying operating system.

• This means that each component will work in a consistent

manner across all platforms.

2. Swing Supports a Pluggable Look and Feel

• Swing supports a pluggable look and feel (PLAF).

• Because each Swing component is rendered by Java code rather

than by native peers, the look and feel of a component is under

the control of Swing.

• This fact means that it is possible to separate the look and feel

of a component from the logic of the component, and this is

what Swing does.

• Separating out the look and feel provides a significant

advantage: it becomes possible to change the way that a

component is rendered without affecting any of its other

aspects.

• In other words, it is possible to "plug in" a new look and feel for

any given component without creating any side effects in the

code that uses that component.

• Moreover, it becomes possible to define entire sets of look-

and-feels that represent different GUI styles.

• To use a specific style, its look and feel is simply "plugged in."

Once this is done, all components are automatically rendered

using that style

• Pluggable look-and-feels offer several important advantages.

• It is possible to define a look and feel that is consistent across

all platforms.

• Conversely, it is possible to create a look and feel that acts like

a specific platform.

• For example, if you know that an application will be running

only in a Windows environment, it is possible to specify the

Windows look and feel.

• It is also possible to design a custom look and feel.

• Finally, the look and feel can be changed dynamically at run

time.

• Java SE 6 provides look-and-feels, such as metal and Motif,

that are available to all Swing users.

• The metal look and feel is also called the Java look and feel.

• It is platform-independent and available in all Java execution

environments.

• It is also the default look and feel.

• Windows environments also have access to the Windows and

Windows Classic look and feel.

• This topic uses the default Java look and feel (metal) because

it is platform independent

The MVC Connection

• In general, a visual component is a composite of three distinct
aspects:·

– The way that the component looks when rendered on the
screen

– The way that the component reacts to the user

– The state information associated with the component

• No matter what architecture is used to implement a
component, it must implicitly contain these three parts.

• Over the years, one component architecture has proven itself
to be exceptionally effective:

• Model-View-Controller, or MVC for short.

• The MVC architecture is successful because each piece of the

design corresponds to an aspect of a component.

• In MVC terminology, the model corresponds to the state

information associated with the component.

• For example, in the case of a check box, the model contains a

field that indicates if the box is checked or unchecked.

• The view determines how the component is displayed on the

screen, including any aspects of the view that are affected by

the current state of the model.

• The controller determines how the component reacts to the

user.

• For example, when the user clicks a check box, the controller

reacts by changing the model to reflect the user 's choice

(checked or unchecked).

• This then results in the view being updated. By separating a

component into a model, a view, and a controller, the specific

implementation of each can be changed without affecting the

other two.

• For instance, different view implementations can render the

same component in different ways without affecting the model

or the controller

• Although the MVC architecture and the principles behind it are

conceptually sound, the high level of separation between the

view and the controller is not beneficial for Swing components.

• Instead, Swing uses a modified version of MVC that combines

the view and the controller into a single logical entity called the

UI delegate.

• For this reason, Swing's approach is called either the Model-

Delegate architecture or the Separable Model architecture.

• Therefore, although Swing's component architecture is based

on MVC, it does not use a classical implementation of it.

• Swing's pluggable look and feel is made possible by its Model-

Delegate architecture.

• Because the view (look) and controller (feel) are separate from

the model, the look and feel can be changed without affecting

how the component is used within a program.

• Conversely, it is possible to customize the model without

affecting the way that the component appears on the screen or

responds to user input

• To support the Model-Delegate architecture, most Swing
components contain two objects.

– The first represents the model.

– The second represents the UI delegate.

• Models are defined by interfaces.

• For example, the model for a button is defined by the
ButtonModel interface.

• UI delegates are classes that inherit ComponentUI.

• For example, the UI delegate for a button is ButtonUI.

• Normally, your programs will not interact directly with the UI
delegate.

Components and Containers
• A Swing GUI consists of two key items: components and

containers. However, this distinction is mostly conceptual

because all containers are also components.

• The difference between the two is found in their intended

purpose: As the term is commonly used, a component is an

independent visual control, such as a push button or slider.

• A container holds a group of components. Thus, a container is a

special type of component that is designed to hold other

components. Furthermore, in order for a component to be

displayed, it must be held within a container.

• Thus, all Swing GUIs will have at least one container. Because

containers are components, a container can also hold other

containers.

• This enables Swing to define what is called a containment

hierarchy, at the top of which must be a top-level container

