Desighing Good Designed Database

Functional Dependencies:
Partial dependencies
Transitive dependency
Join dependency
Multivalued dependency
Update anomalies
Normalization

Normal Form:
First, second, third, fourth, fifth

INFORMAL DESIGN GUIDE LINES FOR RELATION SCHEMAS

Semantics of the attributes

eReducing the redundant values in tuples AND update anomalies
eReducing the null values in tuples

eDisallowing the possibility of generating spurious tuples

Semantics of the attributes

 GUIDELINE 1.
e Design a relation schema so that it is easy to explain its meaning.

* Do not combine attributes from multiple entity types and relationship
types into a single relation.

* Intuitively, if a relation schema corresponds to one entity type or one
relation-ship type, it is straightforward to explain its meaning. Other
wise, if the relation corresponds to a mixture of multiple entities and
relationships, semantic ambiguities will result and the relation cannot
be easily explained.

(&) EMP_DEPT

|
EMNAME | SSN BDATE ADDRESS DNUMBER DNAME J DMGRSSN]

4) ! 4
| i }

b} EMP_PROJ

‘ SSN | PNUMBER | HOURS ENAME PMNAME PLOCATION

FO _+

Fo2

FO3

Reducing the redundant values in tuples & update
anomalies

* GUIDELINE2

* Design the base relation schemas so that no insertion, deletion, or
modification anomalies are present in the relations.

* If any anomalies are present, note them clearly and make sure that
the programs that update the database will operate correctly

Reducing the null values in tuples

Nulls can have multiple interpretations, such as the following:
* The attribute does not apply to this tuple.

* The attribute value for this tuple is unknown.
* The value is known but absent; that is, it has not been recorded yet.

GUIDELINES3.

* As far as possible, avoid placing attributes in a base relation whose
values may frequently be null.

* If nulls are unavoidable, make sure that they apply in exceptional
cases only and do not apply to a majority of tuples in the relation.

Disallowing the possibility of generating spurious
tuples

GUIDELINEA4.

* Design relation schemas so that they can be joined with equality

conditions on attributes that are either primary keys or foreign keys in a
way that guarantees that no spurious tuples are generated.

* Avoid relations that contain matching

 Attributes that are not(foreign key, primary key) combinations,
because joining on such attributes may produce spurious tuples.

FUNCTIONALDEPENDENCIES

Definition.

A functional dependency, denoted by X =Y, between two sets of
attributes X and Y that are subsets of R specifies a constraint on the
possible tuples that can form a relation state r of R. The constraint is

that, for any two tuples t1 and t2 in r that
have (| A] = ;| A], they must also have §Y] =]Y].

This means that the values of the Y component of a tuple in r depend
on, or are determined by, the values of the X component; alternatively,
the values of the X component of a tuple uniquely (or functionally)
determine the values of the Y component.

We also say

* that there is a functional dependency from Xto Y, or thatY is
functionally dependent on X.

* The abbreviation for functional dependency is FD or f.d. The set of

attributes X is called the left-hand side of the FD , and Y is called the
right-hand side.

* Thus, X functionally determines Y in a relation schema R if, and only if,
whenever two tuples of r(R) agree on their X- value, they must
necessarily agree on their Y-value.

Inference Rules for Functional Dependencies

The following six rules IRl through IR6 are well known inference rules
for functional dependencies:

R (reflexive rule®): [fX D Y, then X =Y,

R (augmentation nle): (X =Y EXZ =YL

K3 (transitive rule): X = Y, Y2 Z} F XS Z

R4 (decomposition, or projective, rule): {X = Y21 F X = .

IR5 (union, or additive, rule): { X =Y, X =2} F X = YZ
IR6 (pseudotransitive rule: { X =Y, WY =2} E WX = 2.

Normalization

* Normalization is the process of decomposing a “bad” relation by
breaking up their attributes into smaller relations.

* The process of normalization through decomposition should conform
the following two properties:

* The lossless join or non additive join property, which guarantees that the
spurious tuple generation problem does not occur with respect to the
relation schemas created after decomposition

e The dependency preservation property, which ensures that each functional
dependency is represented in some individual relation resulting after
decomposition

* During normalization we analyze the given relation schema based on
their functional dependencies(FD) and primary key to achieve the
desired properties of

* Minimizing redundancy and
* Minimizing insertion, deletion and update anomalies.

* Unsatisfactory relation schemas that do not meet certain conditions:
the normal form test are performed so that those unsatisfactory
relation are decomposed into smaller relation schemas that meet the
tests and hence possess the desirable properties.

* Hence, a normal form is a condition using keys and FD’s of a relation
to certify whether a relation schema is in a particular normal form.

Practical use of Normal Forms:

* Normalization is carried out in practice so that the resulting designs
are of high quality and meet the desirable properties.

* Although several higher normal forms have been defined, the
practical utility of these normal forms becomes questionable when
the constraints on which they are based are hard to understand or to
detect by the database designer and users who must discover these
constraints.

* Thus database design as practiced in industry today pay particular
attention to normalization only up to 3NF, BCNF or 4NF.

* The process of storing the Join of higher normal form relations which
isin a lower normal form is known as denormalization

First Normal Form(1NF)

* First normal form (INF) is now considered to be part of the formal
definition of a relation in the basic (flat) relational model.

e Historically, it was defined to disallow multival- ued attributes, composite
attributes, and their combinations.

* It states that the domain of an attribute must include only atomic (simple,
indivisible) values and that the value of any attribute in a tuple must be a
single value from the domain of that attribute.

* Hence, INF disallows having a set of values, a tuple of values, or a
combination of both as an attribute value for a single tuple.

* In other words, INF disallows "relations within relations" or "relations as
attribute values within tuples.” The only attribute values permitted by INF
are single atomic (or indivisible) values.

DEPARTMENT

!
. DNAME DNUMBER DMGRSSN DLOCATIONS }

A A A

* Consider the DEPARTMENT relation schema shown in above Figure,
whose primary key is DNUMBER

 We assume that each department can have a number of locations.

 \We see that this relation is not in 1INF because DLOCATION is not an
atomic attributes.

e To achieve 1NF for such a relation, we remove attribute DLOCATION
that violates 1NF and place it in a separate relation DEPT_LOCATION
along with the primary key DNUMBER of DEPERTMENT.

* The primary key is the combination of {DNUMBER,DLOCATION}

DEPARTMENT DEPT_LOCATIONS

DNAME | DNUMBER | DMGRSSN DNUMBER DLOCATION(

Second normal form (2NF)

e Second normal form (2NF) is based on the concept of full functional
dependency.

* A functional dependency X = Y is a full functional dependency if removal
of any attribute A from X means that the dependency does not hold any
more; that is, for any attribute A € X, (X - {A}) does not functionally
determine Y.

* A functional dependency X = Y is a partial dependency if some attribute A
€ X can be removed from X and the dependency still holds; that is, for some
AEX, (X-{A}) =Y.

* In Figure {SSN, PNUMBER} - HOURS is a full dependency (neither SSN -
HOURS nor PNUMBER - HOURS holds). However, the dependency {SSN,
PNUMBER} - ENAME is partial because SSN - ENAME holds.

e Definition.

A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R.

(a) EMP_PROJ

! SSN PNUMBER HOURS | ENAME | PNAME PLOCATION

FD1 *
Fo2 4
- | ! }

\I\J/ 2NF NORMALIZATION

EP1 EP2 EP3
SSN | PNUMBER | HOURS SSN | ENAME PNUMBER PNAME | PLOCATION

FD1 * FD2 & | FD3 + ,j

The above relation schema is not in 2NF, it can be "second normalized" or "2NFnormalized" into a number of
2NFrelations in which nonprime attributes are associated only with the part of the primary key on which they
are fully functionally dependent.

Hence, the decomposition of EMP_PROJ into the three relation schemas EPI, EP2, and EP3 shown in Figure can
achieve 2NF.

General Definition of 2NF

A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally dependent on the primary
key of R

Third normal form (3NF)

* Third normal form (3NF) is based on the concept of transitive
dependency.

* A functional dependency X =Y in a relation schema R is a transitive
dependency if there is a set of attributes Z that is neither a candidate
key nor a subset of any key of R, and both X - Zand Z =Y hold.

[1]] EMP DEPT

| ENAME SSN BEDATE ADDRESS | DMUMEBER DMAME DMGRSSM |

L -
+ - o
J\L 3MF NORMALLIZATION
ED1 EDz2
ENAME 55N l BDATE ADDRESS DHUMBER | DMUMEER DMAME DMGRSSM ‘

I 1] | } 1

* The dependency SSN - DMGRSSN is transitive through DNUMBER in
EMP_DEPT table as shown in the figure above because both the
dependencies SSN - DNUMBER and DNUMBER - DMGRSSN hold
and DNUMBER is neither a key itself nor a subset of the key of
EMP_DEPT.

e Definition.

A relation schema R is in 3NF if it satisfies 2NF and no nonprime attribute of R is
transitively dependent on the primary key.

* The relation schema EMP_DEPT in above Figure is in 2NF, since no
partial dependencies on a key exist. However, EMP_DEPT is not in
3NF because of the transitive dependency of DMGRSSN (and also
DNAME) on SSN via DNUMBER.

* We can normalize EMP_DEPT by decomposing it into the two
3NFrelation schemas EDI and ED2 shown in Figure.

General Definition of Third Normal Form

A relation schema R is in third normal form (3NF) if, whenever a
nontrivial functional dependency X A holds in R,

either (a) X is a super key of R,
or (b) A is a prime attribute of R.

BOYCE-CODD NORMAL FORM(BCNF)

* BCNF is simpler than 3NF but strict than 3NF. Every relation in BCNF is
also in 3NF, however a relation in 3NF is not necessarily in BCNF.

* Definition. A relation schema R is in BCNF if whenever a nontrivial
functional dependency X - A holds in R, then X is a super key of R.

* The formal definition of BCNF differs slightly from the definition of
3NF. The only difference between the definitions of BCNF and 3NF is

that condition (b) of 3NF, which allows A to be prime, is absent from
BCNF

Consider the following example:

(@) LOTS1A

PROPERTY_ID#

COUNTY_NAME

LOT#

AREA

FO1

"

A

!

FDS +

BCNF Normalization
LOTS1AX LOTS1AY
E PROPERTY _ID# AREA LOT# AREA

COUNTY_NAME

Multivalued Dependencies and Fourth Normal Form

(a) The EMP relation with two MVDs: ENAME —>> PNAME and ENAME —>> DNAME.

(@) EMP
ENAME PNAME DNAME
Smith X John
Smith Y Anna
Smith X Anna
Smith Y John

Definition:

A multivalued dependency (MVD) X —>> Y specified on relation
schema R, where X and Y are both subsets of R, specifies the following
constraint on any relation state r of R:

If two tuples t, and t, exist in r such that t,[X] = t,[X], then two tuples t,
and t, should also exist in r with the following properties, where we use
Z to denote (R- (X U Y)):

t1X] = £,[X] = £,[X] = £,[X].
t,[Y] = t,[Y] and t,[¥] = £,[V].
t,[Z] = t,[Z] and t,[Z] = t,[Z].

An MVD X —>> Y in R is called a trivial MVD if (a) Y is a subset of X, or (b)
XU Y=R.

Join Dependencies and Fifth Normal Form

Definition:

A join dependency (JD), denoted by JD(R,, ..., R.), specified on
relation schema R, specifies a constraint on the states r of R. The
constraint states that every legal state r of R should have a non-
additive join decomposition into R,, R,, ..., R.; that is, for every
such r we have

* (g (r), o (r), ..oy 7o (F)) =1

A join dependency JD(R,, , R.), specified on relatlon schema R,
is a trivial JD if one of ttlte reIatlon schemas R. in JID(R,, ..., R) is
equal to R.

Definition:

A relation schema R is in fifth normal form (5NF) (or Project-Join
Normal Form (PJNF)) with respect to a set F of functional,
multivalued, and join dependencies if, for every nontrivial join

dependency JD(R,, R,, ..., R) in F* (that is, implied by F), every R. is
a superkey of R.

