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Chapter 6: Transactions 
Transaction Concept 

1. A transaction is a unit of program execution that accesses and  possibly updates 
various data items. 

2. A transaction must see a consistent database. 
3. During transaction execution the database may be inconsistent. 
4. When the transaction is committed, the database must be consistent. 
5. Two main issues to deal with: 

 Failures of various kinds, such as hardware failures and system crashes 
 Concurrent execution of multiple transactions 

 

ACID Properties 
To preserve integrity of data, the database system must ensure: 

1. Atomicity.  Either all operations of the transaction are properly reflected in the 
database or none are. 

2. Consistency.  Execution of a transaction in isolation preserves the consistency of 
the database. 

3. Isolation.  Although multiple transactions may execute concurrently, each 
transaction must be unaware of other concurrently executing transactions.  
Intermediate transaction results must be hidden from other concurrently executed 
transactions.   

a. That is, for every pair of transactions Ti and Tj, it appears to Ti that either 
Tj, finished execution before Ti started, or Tj started execution after Ti 
finished. 

4. Durability.  After a transaction completes successfully, the changes it has made 
to the database persist, even if there are system failures.  

 

Example of Fund Transfer 
1. Transaction to transfer $50 from account A to account B: 

read(A) 
A := A – 50 
write(A) 
read(B) 
B := B + 50 
write(B) 

2. Consistency requirement – the sum of A and B is unchanged by the execution of 
the transaction. 

3. Atomicity requirement — if the transaction fails after step 3 and before step 6, the 
system should ensure that its updates are not reflected in the database, else an 
inconsistency will result. 

4. Durability requirement — once the user has been notified that the transaction has 
completed (i.e., the transfer of the $50 has taken place), the updates to the 
database by the transaction must persist despite failures. 

5. Isolation requirement — if between steps 3 and 6, another transaction is allowed 
to access the partially updated database, it will see an inconsistent database  
(the sum A + B will be less than it should be). 
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Can be ensured trivially by running transactions serially, that is one after the 
other.  However, executing multiple transactions concurrently has significant 
benefits, as we will see. 

 
Transaction State 

1. Active, the initial state; the transaction stays in this state while it is executing 
2. Partially committed, after the final statement has been executed. 
3. Failed, after the discovery that normal execution can no longer proceed. 
4. Aborted, after the transaction has been rolled back and the database restored 

to its state prior to the start of the transaction.  Two options after it has been 
aborted: 
a. restart the transaction – only if no internal logical error 
b. kill the transaction 

5. Committed, after successful completion. 
 

 
 

Concurrent Executions 
1. Multiple transactions are allowed to run concurrently in the system.  

Advantages are: 
a. increased processor and disk utilization, leading to better transaction 

throughput: one transaction can be using the CPU while another is reading 
from or writing to the disk 

b. reduced average response time for transactions: short transactions need 
not wait behind long ones. 

2. Concurrency control schemes – mechanisms  to achieve isolation, i.e., to 
control the interaction among the concurrent transactions in order to prevent 
them from destroying the consistency of the database 
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Schedules 
1. Schedules – sequences that indicate the chronological order in which 

instructions of concurrent transactions are executed 
 a schedule for a set of transactions must consist of all instructions of those 

transactions 
 must preserve the order in which the instructions appear in each individual 

transaction. 
 

Example Schedules 
1. Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to 

B.  The following is a serial schedule (Schedule 1 in the text), in which T1 is 
followed by T2.  

 
 
2. Let T1 and T2 be the transactions defined previously.  The following schedule 

(Schedule 3 in the text) is not a serial schedule, but it is equivalent to Schedule 
1. 

 
In both Schedule 1 and 3, the sum A + B is preserved. 
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3. The following concurrent schedule (Schedule 4 in the text) does not preserve 
the value of the the sum A + B. 

 
Serializability 

1. Basic Assumption – Each transaction preserves database consistency. 
2. Thus serial execution of a set of transactions preserves database consistency. 
3. A (possibly concurrent) schedule is serializable if it is equivalent to a serial 

schedule.  Different forms of schedule equivalence give rise to the notions of: 
a) conflict serializability 

 

Concurrency Control 
Lock-Based Protocols 

1. A lock is a mechanism to control concurrent access to a data item 
2. Data items can be locked in two modes : 

a. exclusive (X) mode. Data item can be both read as well as written. X-
lock is requested using  lock-X instruction. 

b. shared (S) mode. Data item can only be read. S-lock is requested using  
lock-S instruction. 

3. Lock requests are made to concurrency-control manager. Transaction can 
proceed only after request is granted. 

4. Lock-compatibility matrix 

 
 
5. A transaction may be granted a lock on an item if the requested lock is 

compatible with locks already held on the item by other transactions 
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6. Any number of transactions can hold shared locks on an item, but if any 
transaction holds an exclusive on the item no other transaction may hold any 
lock on the item. 

7. If a lock cannot be granted, the requesting transaction is made to wait till all 
incompatible locks held by other transactions have been released.  The lock is 
then granted. 

8. Example of a transaction performing locking: 
                       T2: lock-S(A); 
                             read (A); 
                             unlock(A); 
                             lock-S(B); 
                             read (B); 
                             unlock(B); 
                             display(A+B) 

9. A  locking protocol is a set of rules followed by all transactions while 
requesting and releasing locks. Locking protocols restrict the set of possible 
schedules. 

 
Pitfalls of Lock-Based Protocols 

1. Consider the partial schedule 
 

 
 

2. Neither T3 nor T4 can make progress — executing  lock-S(B) causes T4 to wait 
for T3 to release its lock on B, while executing  lock-X(A) causes T3  to wait for 
T4 to release its lock on A. 

3. Such a situation is called a deadlock.  
a. To handle a deadlock one of T3 or T4 must be rolled back  

and its locks released. 
4. The potential for deadlock exists in most locking protocols. Deadlocks are a 

necessary evil. 
5. Starvation is also possible if concurrency control manager is badly designed. For 

example: 
a. A transaction may be waiting for an X-lock on an item, while a sequence 

of other transactions request and are granted an S-lock on the same item.   
b. The same transaction is repeatedly rolled back due to deadlocks. 

6. Concurrency control manager can be designed to prevent starvation. 
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The Two-Phase Locking Protocol 
1. This is a protocol which ensures conflict-serializable schedules. 
2. Phase 1: Growing Phase 

a. transaction may obtain locks  
b. transaction may not release locks 

3. Phase 2: Shrinking Phase 
a. transaction may release locks 
b. transaction may not obtain locks 

4. The protocol assures serializability. It can be proved that the transactions can be 
serialized in the order of their lock points  (i.e. the point where a transaction 
acquired its final lock 

5. Two-phase locking does not ensure freedom from deadlocks 
 

Implementation of Locking 
1. A Lock manager can be implemented as a separate process to which transactions 

send lock and unlock requests 
2. The lock manager replies to a lock request by sending a lock grant messages (or a 

message asking the transaction to roll back, in case of  a deadlock) 
3. The requesting transaction waits until its request is answered 
4. The lock manager maintains a data structure called a lock table to record granted 

locks and pending requests 
5. The lock table is usually implemented as an in-memory hash table indexed on the 

name of the data item being locked 

 
Timestamp-Based Protocols 

1. Each transaction is issued a timestamp when it enters the system. If an old 
transaction Ti has time-stamp TS(Ti), a new transaction Tj is assigned time-stamp 
TS(Tj) such that TS(Ti) <TS(Tj).  

2. The protocol manages concurrent execution such that the time-stamps determine 
the serializability order. 

3. In order to assure such behavior, the protocol maintains for each data Q two 
timestamp values: 

a. W-timestamp(Q) is the largest time-stamp of any transaction that 
executed write(Q) successfully. 

b. R-timestamp(Q) is the largest time-stamp of any transaction that executed 
read(Q) successfully. 

4. The timestamp ordering protocol ensures that any conflicting  read and write 
operations are executed in timestamp order. 

5. Suppose a transaction Ti issues a read(Q) 
a. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q that was 

already overwritten. Hence, the read operation is rejected, and Ti  is rolled 
back. 

b. If TS(Ti) W-timestamp(Q), then the read operation is executed, and R-
timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti). 

6. Suppose that transaction Ti issues write(Q). 
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a. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was 
needed previously, and the system assumed that that value would never be 
produced. Hence, the write operation is rejected, and Ti is rolled back. 

b. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete 
value of Q. Hence, this write operation is rejected, and Ti is rolled back. 

c. Otherwise, the  write operation is executed, and W-timestamp(Q) is set to 
TS(Ti). 

 
Deadlock Handling 

1. Consider the following two transactions: 
T1:     write (X)               T2:    write(Y) 

write(Y)                         write(X) 
2. Schedule with deadlock 

T1    T2 

lock-X on X 

write (X)  
lock-X on Y 

write (X)   
wait for lock-X on X 

wait for lock-X on Y 

3. System is deadlocked if there is a set of transactions such that every 
transaction in the set is waiting for another transaction in the set. 

4. Deadlock prevention protocols ensure that the system will never enter into a 
deadlock state. Some prevention strategies : 
 Require that each transaction locks all its data items before it begins 

execution (predeclaration). 
 Impose partial ordering of all data items and require that a transaction can 

lock data items only in the order specified by the partial order (graph-
based protocol). 

 
More Deadlock Prevention Strategies 
1. Following schemes use transaction timestamps for the sake of deadlock 

prevention alone. 
 wait-die scheme — non-preemptive 
older transaction may wait for younger one to release data item. Younger 
transactions never wait for older ones; they are rolled back instead. A 
transaction may die several times before acquiring needed data item 
 wound-wait scheme — preemptive 
older transaction wounds (forces rollback) of younger transaction instead of 
waiting for it. Younger transactions may wait for older ones. May be fewer 
rollbacks than wait-die scheme. 

2. Both in wait-die and in wound-wait schemes, a rolled back transactions is 
restarted with its original timestamp. Older transactions thus have precedence 
over newer ones, and starvation is hence avoided. 

3. Timeout-Based Schemes : 
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 a transaction waits for a lock only for a specified amount of time. After 
that, the wait times out and the transaction is rolled back. 

 thus deadlocks are not possible 
 simple to implement; but starvation is possible. Also difficult to determine 

good value of the timeout interval. 
 
Deadlock Detection 

1. Deadlocks can be described as a wait-for graph, which consists of a pair G = 
(V,E),  

a. V is a set of vertices (all the transactions in the system) 

b. E is a set of edges; each element is an ordered pair Ti Tj.   

2. If Ti   Tj is in E, then there is a directed edge from Ti to Tj, implying that Ti is 
waiting for Tj to release a data item. 

3. When Ti requests a data item currently being held by Tj, then the edge Ti  Tj is 
inserted in the wait-for graph. This edge is removed only when Tj is no longer 
holding a data item needed by Ti. 

4. The system is in a deadlock state if and only if the wait-for graph has a cycle.  
Must invoke a deadlock-detection algorithm periodically to look for cycles. 

                                        
Wait-for graph without a cycle                                 Wait-for graph with a cycle 

 

Deadlock Recovery 

1. When deadlock is  detected : 
 Some transaction will have to rolled back (made a victim) to break 

deadlock.  Select that transaction as victim that will incur minimum cost. 
 Rollback -- determine how far to roll back transaction 

 Total rollback: Abort the transaction and then restart it. 
 More effective to roll back transaction only as far as necessary to 

break deadlock. 
 Starvation happens if same transaction is always chosen as victim. Include 

the number of rollbacks in the cost factor to avoid starvation 
 
Recovery System 

Failure Classification 
 

1. Transaction failure : 
 Logical errors: transaction cannot complete due to some internal error 

condition 
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 System errors: the database system must terminate an active transaction 
due to an error condition (e.g., deadlock) 

2. System crash: a power failure or other hardware or software failure causes the 
system to crash. 

 Fail-stop assumption: non-volatile storage contents are assumed to not be 
corrupted by system crash 

 Database systems have numerous integrity checks to prevent 
corruption of disk data  

3. Disk failure: a head crash or similar disk failure destroys all or part of disk 
storage 

 Destruction is assumed to be detectable: disk drives use checksums to 
detect failures 

 

Recovery and Atomicity 

1. Modifying the database without ensuring that the transaction will commit  may 
leave the database in an inconsistent state. 

2. Consider transaction Ti that transfers $50 from account A to account B;  goal is 
either to perform all database modifications made by Ti or none at all.  

3. Several output operations may be required for Ti  (to output A and B). A failure 
may occur after one of these modifications have been made but before all of them 
are made. 

4. To ensure atomicity despite failures, we first output information describing the 
modifications to stable storage without modifying the database itself. 

5. Two approaches are: 
 log-based recovery, and 
 shadow-paging 

 

Log-Based Recovery 
1. A  log is kept on stable storage.  

a. The log is a sequence of log records, and maintains a record of update 
activities on the database. 

2. When transaction Ti starts, it registers itself by writing a  
       <Ti  start>log record 

3. Before Ti executes write(X), a log record <Ti, X,  V1,  V2> is written, where V1 is 
the value of X  before the write, and V2 is the value to be written to X. 

a. Log record notes that Ti has performed a write on data item Xj   Xj had 
value V1 before the write, and will have value V2 after the write.  

4. When Ti finishes it last statement, the log record <Ti  commit> is written.  
5. We assume for now that log records are written directly  to stable storage (that is, 

they are not buffered) 
6. Two approaches using logs 

a. Deferred database modification 
b. Immediate database modification 
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Deferred Database Modification 
1. The deferred database modification scheme records all modifications to the log, 

but defers all the writes to after partial commit. 
2. Assume that transactions execute serially 
3. Transaction starts by writing <Ti  start> record to log.  
4. A  write(X) operation results in a log record  <Ti, X, V> being written, where V is 

the new value for X 
a. Note: old value is not needed for this scheme 

5. The write is not performed on X at this time, but is deferred. 
6. When Ti partially commits, <Ti commit> is written to the log  
7. Finally, the log records are read and used to actually execute the previously 

deferred writes. 
8. During recovery after a crash, a transaction needs to be redone if and only if both 

<Ti  start> and<Ti commit> are there in the log. 
9. Redoing a transaction Ti ( redoTi) sets the value of all data items updated by the 

transaction to the new values. 
10. Crashes can occur while  

a. the transaction is executing the original updates, or  
b. while recovery action is being taken 

11. Example transactions  T0 and T1 (T0 executes before T1): 
[A=1000,B=2000,C=500] 

  T0: read (A)    T1 : read (C) 
  A: - A - 50           C:- C- 100 
  Write (A)            write (C) 
  read (B) 
  B:-  B + 50 

  write (B) 
12. Below show the log as it appears at three instances of time. 

 
13. If log on stable storage at time of crash is as in case: 
 (a)  No redo actions need to be taken 
 (b)  redo(T0) must be performed since <T0 commit> is present  
 (c)  redo(T0) must be performed followed by redo(T1) since 
        <T0 commit> and <T1 commit> are present 
 

Immediate Database Modification 

1. The immediate database modification scheme allows database updates of an 
uncommitted transaction to be made as the writes are issued 
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a. since undoing may be needed, update logs must have both old value and 
new value 

2. Update log record must be written before database item is written 
a. We assume that the log record is output directly to stable storage 
b. Can be extended to postpone log record output, so long as prior to 

execution of an output(B) operation for a data block B, all log records 
corresponding to items B must be flushed to stable storage 

3. Output of updated blocks can take place at any time before or  after transaction 
commit 

4. Order in which blocks are output can be different from the order in which they are 
written. 

Example 

Log  

<T0 start> 
<T0, A, 1000, 950> 
<T0, B, 2000, 2050> 
 
 
<T0 commit> 
<T1 start> 
<T1, C, 700, 600> 
 
 
<T1 commit> 
 
 

Write 

 

 

 

A = 950 
B = 2050 
 
 
 
C = 600 
 

 
5. Recovery procedure has two operations instead of one: 

a.  undo(Ti) restores the value of all data items updated by Ti to their old 
values, going backwards from the last log record for Ti 

b. redo(Ti) sets the value of all data items updated by Ti to the new values, 
going forward from the first log record for Ti 

6. Both operations must be idempotent 

a. That is, even if the operation is executed multiple times the effect is the 
same as if it is executed once 

i. Needed since operations may get re-executed during recovery  
7. When recovering after failure: 

a. Transaction Ti needs to be undone if the log contains the record  
<Ti start>, but does not contain the record <Ti commit>. 

b. Transaction Ti needs to be redone if the log contains both the record <Ti 

start> and the record <Ti commit>. 
8. Undo operations are performed first, then redo operations. 
9. Below we show the log as it appears at three instances of time 
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Recovery actions in each case above are: 

(a)  undo (T0): B is restored to 2000 and A to 1000. 
(b)  undo (T1) and redo (T0): C is restored to 700, and then A and B are   
       set to 950 and 2050 respectively. 
(c)  redo (T0) and redo (T1): A and B are set to 950 and 2050  
       respectively. Then C is set to 600 

 
Checkpoints 
1. Problems in recovery procedure as discussed earlier : 

a. searching the entire log is time-consuming 
b. we might unnecessarily redo transactions which have already output their 

updates to the database. 
2. Streamline recovery procedure by periodically performing checkpointing  

a. Output all log records currently residing in main memory onto stable 
storage. 

b. Output all modified buffer blocks to the disk. 
c. Write a log record < checkpoint> onto stable storage. 

3. During recovery we need to consider only the most recent transaction Ti that 
started before the checkpoint, and transactions that started after Ti.  

a. Scan backwards from end of log to find the most recent <checkpoint> 
record  

b. Continue scanning backwards till a record <Ti start> is found.  
c. Need only consider the part of log following above start record. Earlier 

part of log can be ignored during recovery, and can be erased whenever 
desired. 

d. For all transactions (starting from Ti or later) with no <Ti commit>, 
execute undo(Ti). (Done only in case of immediate modification.) 

e. Scanning forward in the log, for all transactions starting  from Ti or 
later with a <Ti  commit>,  execute redo(Ti). 

 

Example of Checkpoints 

 

1. T1 can be ignored (updates already output to disk 
due to checkpoint) 

2. T2 and T3 redone. 
3. T4 undone 
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Shadow Paging 
1. Shadow paging is an alternative to log-based recovery; this scheme is useful if  

transactions execute serially 
2. Idea: maintain two page tables during the lifetime of a transaction –the current 

page table, and the shadow page table 

3. Store the shadow page table in nonvolatile storage, such that state of the database 
prior to transaction execution may be recovered.  

a. Shadow page table is never modified during execution 
4. To start with, both the page tables are identical. Only current page table is used 

for data item accesses during execution of the transaction. 
5. Whenever any page is about to be written for the first time 

a. A copy of this page is made onto an unused page.  
b. The current page table is then made to point to the copy 
c. The update is performed on the copy 

       
 
1. To commit a transaction : 

a) Flush all modified pages in main memory to disk 
b) Output current page table to disk 
c) Make the current page table the new shadow page table, as follows: 

 keep a pointer to the shadow page table at a fixed (known) location 
on disk. 

 to make the current page table the new shadow page table, simply 
update the pointer to point to current page table on disk 

2. Once pointer to shadow page table has been written, transaction is committed. 
3. No recovery is needed after a crash — new transactions can start right away, 

using the shadow page table. 
4. Pages not pointed to from current/shadow page table should be freed (garbage 

collected). 
5. Advantages of shadow-paging over log-based schemes 
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a) no overhead of writing log records 
b) recovery is trivial 

6. Disadvantages : 
a) Copying the entire page table is very expensive 

 Can be reduced by using a page table structured like a B+-tree 
o No need to copy entire tree, only need to copy paths in 

the tree that lead to updated leaf nodes 
b) Commit overhead is high even with above extension 

 Need to flush every updated page, and page table 
c) Data gets fragmented (related pages get separated on disk) 
d) After every transaction completion, the database pages containing old 

versions of modified data need to be garbage collected  
e) Hard to extend algorithm to allow transactions to run concurrently 

 Easier to extend log based schemes 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 


