Chapter 6: Transactions

Transaction Concept

1. A transaction is a unit of program execution that accesses and possibly updates
various data items.

2. A transaction must see a consistent database.

3. During transaction execution the database may be inconsistent.

4. When the transaction is committed, the database must be consistent.

5. Two main issues to deal with:

* Failures of various kinds, such as hardware failures and system crashes
* Concurrent execution of multiple transactions

ACID Properties

To preserve integrity of data, the database system must ensure:

1. Atomicity. Either all operations of the transaction are properly reflected in the
database or none are.

2. Consistency. Execution of a transaction in isolation preserves the consistency of
the database.

3. Isolation. Although multiple transactions may execute concurrently, each
transaction must be unaware of other concurrently executing transactions.
Intermediate transaction results must be hidden from other concurrently executed
transactions.

a. That is, for every pair of transactions 7i and 7j, it appears to 7i that either
Tj, finished execution before 7i started, or 7] started execution after 7i
finished.

4. Durability. After a transaction completes successfully, the changes it has made

to the database persist, even if there are system failures.

Example of Fund Transfer

1.

Transaction to transfer $50 from account A to account B:

read(A)

A:=A-50

write(A)

read(B)

B:=B+ 50

write(B)
Consistency requirement — the sum of A and B is unchanged by the execution of
the transaction.
Atomicity requirement — if the transaction fails after step 3 and before step 6, the
system should ensure that its updates are not reflected in the database, else an
inconsistency will result.
Durability requirement — once the user has been notified that the transaction has
completed (i.e., the transfer of the $50 has taken place), the updates to the
database by the transaction must persist despite failures.
Isolation requirement — if between steps 3 and 6, another transaction is allowed
to access the partially updated database, it will see an inconsistent database
(the sum A + B will be less than it should be).

Page 1 of 14

Can be ensured trivially by running transactions serially, that is one after the
other. However, executing multiple transactions concurrently has significant
benefits, as we will see.

Transaction State

1. Active, the initial state; the transaction stays in this state while it is executing
2. Partially committed, after the final statement has been executed.

3. Failed, after the discovery that normal execution can no longer proceed.

4. Aborted, after the transaction has been rolled back and the database restored

to its state prior to the start of the transaction. Two options after it has been
aborted:
a. restart the transaction — only if no internal logical error
b. kill the transaction
5. Committed, after successful completion.

partially
committed

failed aborted

Concurrent Executions
1. Multiple transactions are allowed to run concurrently in the system.

Advantages are:

a. increased processor and disk utilization, leading to better transaction
throughput: one transaction can be using the CPU while another is reading
from or writing to the disk

b. reduced average response time for transactions: short transactions need
not wait behind long ones.

2. Concurrency control schemes — mechanisms to achieve isolation, i.e., to
control the interaction among the concurrent transactions in order to prevent
them from destroying the consistency of the database

Page 2 of 14

Schedules
1. Schedules — sequences that indicate the chronological order in which
instructions of concurrent transactions are executed
% a schedule for a set of transactions must consist of all instructions of those
transactions
* must preserve the order in which the instructions appear in each individual
transaction.

Example Schedules
1. Let 71 transfer $50 from A to B, and T2 transfer 10% of the balance from A to
B. The following is a serial schedule (Schedule 1 in the text), in which 71 is

followed by 72.
T1
read(A)
A:=A-50
write (A)
read(B)
B:=B+50
write(B)
read(A)
temp := A*0.1
A=A temp
write(A)
read(B)
B :=B + temp
write(B)
2. Let 71 and 72 be the transactions defined previously. The following schedule
(Schedule 3 in the text) is not a serial schedule, but it is equivalent to Schedule
1.

T
read(A)
A=A-50
write(A)

read(A)
temp :==A*0.1
A=A - temp
write(A)

read(B)
B:=B+50
write(B)

read(B)
B:=B + temp
write(B)

In both Schedule 1 and 3, the sum A + B is preserved.

Page 3 of 14

3. The following concurrent schedule (Schedule 4 in the text) does not preserve
the value of the the sum A + B.

T1 T,
read(A)
A=A-50
read(A)
temp .= A*0.1
A=A —temp
write (A)
read(B)
write (A)
read(B)
B:=B+50
write (B)
B :=B + temp
write (B)
Serializability
1. Basic Assumption — Each transaction preserves database consistency.
2. Thus serial execution of a set of transactions preserves database consistency.
3. A (possibly concurrent) schedule is serializable if it is equivalent to a serial

schedule. Different forms of schedule equivalence give rise to the notions of:
a) conflict serializability

Concurrency Control
Lock-Based Protocols
1. Alock is a mechanism to control concurrent access to a data item
2. Data items can be locked in two modes :
a. exclusive (X) mode. Data item can be both read as well as written. X-
lock is requested using lock-X instruction.
b. shared (S) mode. Data item can only be read. S-lock is requested using
lock-S instruction.
3. Lock requests are made to concurrency-control manager. Transaction can
proceed only after request is granted.
4. Lock-compatibility matrix

S | true | false

X | false | false

5. A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions

Page 4 of 14

6. Any number of transactions can hold shared locks on an item, but if any
transaction holds an exclusive on the item no other transaction may hold any
lock on the item.

7. 1If alock cannot be granted, the requesting transaction is made to wait till all
incompatible locks held by other transactions have been released. The lock is
then granted.

8. Example of a transaction performing locking:

12: lock-S(A);
read (A);
unlock(A);
lock-S(B);
read (B);
unlock(B);
display(A+B)

9. A locking protocol is a set of rules followed by all transactions while
requesting and releasing locks. Locking protocols restrict the set of possible
schedules.

Pitfalls of Lock-Based Protocols
1. Consider the partial schedule

Ts Ty

lock-X (B)

read(B)

B:=B-50

write(B)
lock-S(A)
read(A)
lock-S(B)

2. Neither 73 nor 74 can make progress — executing lock-S(B) causes 74 to wait
for T3 to release its lock on B, while executing lock-X(A) causes 73 to wait for
T4 to release its lock on A.
3. Such a situation is called a deadlock.
a. To handle a deadlock one of 73 or 74 must be rolled back
and its locks released.
4. The potential for deadlock exists in most locking protocols. Deadlocks are a
necessary evil.
5. Starvation is also possible if concurrency control manager is badly designed. For
example:
a. A transaction may be waiting for an X-lock on an item, while a sequence
of other transactions request and are granted an S-lock on the same item.
b. The same transaction is repeatedly rolled back due to deadlocks.
6. Concurrency control manager can be designed to prevent starvation.

Page 5 of 14

The Two-Phase Locking Protocol

1.
2.

5.

This is a protocol which ensures conflict-serializable schedules.
Phase 1: Growing Phase
a. transaction may obtain locks
b. transaction may not release locks
Phase 2: Shrinking Phase
a. transaction may release locks
b. transaction may not obtain locks
The protocol assures serializability. It can be proved that the transactions can be
serialized in the order of their lock points (i.e. the point where a transaction
acquired its final lock
Two-phase locking does not ensure freedom from deadlocks

Implementation of Locking

1.

2.

3.

A Lock manager can be implemented as a separate process to which transactions
send lock and unlock requests

The lock manager replies to a lock request by sending a lock grant messages (or a
message asking the transaction to roll back, in case of a deadlock)

The requesting transaction waits until its request is answered

The lock manager maintains a data structure called a lock table to record granted
locks and pending requests

The lock table is usually implemented as an in-memory hash table indexed on the
name of the data item being locked

Timestamp-Based Protocols

1.

Each transaction is issued a timestamp when it enters the system. If an old
transaction 77 has time-stamp TS(77%), a new transaction 7j is assigned time-stamp
TS(Tj) such that TS(Ti) <TS(T)).

The protocol manages concurrent execution such that the time-stamps determine
the serializability order.

In order to assure such behavior, the protocol maintains for each data Q two
timestamp values:

a. W-timestamp(Q) is the largest time-stamp of any transaction that
executed write(Q) successfully.

b. R-timestamp(Q) is the largest time-stamp of any transaction that executed
read(Q) successfully.

The timestamp ordering protocol ensures that any conflicting read and write
operations are executed in timestamp order.
Suppose a transaction Ti issues a read(Q)

a. If TS(Ti) < W-timestamp(Q), then 7i needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, and 7i is rolled
back.

b. If TS(Ti)> W-timestamp(Q), then the read operation is executed, and R-
timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(T7).

Suppose that transaction 77 issues write(Q).

Page 6 of 14

a. If TS(Ti) < R-timestamp(Q), then the value of Q that 7i is producing was
needed previously, and the system assumed that that value would never be
produced. Hence, the write operation is rejected, and 77 is rolled back.

b. If TS(Ti) < W-timestamp(Q), then 7i is attempting to write an obsolete
value of Q. Hence, this write operation is rejected, and 7i is rolled back.

c. Otherwise, the write operation is executed, and W-timestamp(Q) is set to

TS(Ti).
Deadlock Handling
1. Consider the following two transactions:
T1: write (X) T2: write(Y)
write(Y) write(X)
2. Schedule with deadlock
T1 T2
lock-X on X
write (X)
lock-X on Y
write (X)

wait for lock-X on X
wait for lock-X on Y

3. System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.
4. Deadlock prevention protocols ensure that the system will never enter into a

deadlock state. Some prevention strategies :

* Require that each transaction locks all its data items before it begins
execution (predeclaration).

* Impose partial ordering of all data items and require that a transaction can
lock data items only in the order specified by the partial order (graph-
based protocol).

More Deadlock Prevention Strategies
1. Following schemes use transaction timestamps for the sake of deadlock
prevention alone.

* wait-die scheme — non-preemptive
older transaction may wait for younger one to release data item. Younger
transactions never wait for older ones; they are rolled back instead. A
transaction may die several times before acquiring needed data item
* wound-wait scheme — preemptive
older transaction wounds (forces rollback) of younger transaction instead of
waiting for it. Younger transactions may wait for older ones. May be fewer
rollbacks than wait-die scheme.

2. Both in wait-die and in wound-wait schemes, a rolled back transactions is
restarted with its original timestamp. Older transactions thus have precedence
over newer ones, and starvation is hence avoided.

3. Timeout-Based Schemes :

Page 7 of 14

* atransaction waits for a lock only for a specified amount of time. After
that, the wait times out and the transaction is rolled back.

* thus deadlocks are not possible

* simple to implement; but starvation is possible. Also difficult to determine
good value of the timeout interval.

Deadlock Detection
1. Deadlocks can be described as a wait-for graph, which consists of a pair G =
(V.E),

a. Vis aset of vertices (all the transactions in the system)
b. Eis a set of edges; each element is an ordered pair 7i —7j.

2. If Ti — Tjis in E, then there is a directed edge from T7i to 7j, implying that 77 is
waiting for 7j to release a data item.

3. When Ti requests a data item currently being held by 7j, then the edge Ti Tj is
inserted in the wait-for graph. This edge is removed only when 7j is no longer
holding a data item needed by 7i.

4. The system is in a deadlock state if and only if the wait-for graph has a cycle.
Must invoke a deadlock-detection algorithm periodically to look for cycles.

Wait-for graph without a cycle Wait-for graph with a cycle

Deadlock Recovery
1. When deadlock is detected :
* Some transaction will have to rolled back (made a victim) to break
deadlock. Select that transaction as victim that will incur minimum cost.
* Rollback -- determine how far to roll back transaction
» Total rollback: Abort the transaction and then restart it.
» More effective to roll back transaction only as far as necessary to
break deadlock.
* Starvation happens if same transaction is always chosen as victim. Include
the number of rollbacks in the cost factor to avoid starvation

Recovery System
Failure Classification

1. Transaction failure :

* Logical errors: transaction cannot complete due to some internal error
condition

Page 8 of 14

* System errors: the database system must terminate an active transaction
due to an error condition (e.g., deadlock)
2. System crash: a power failure or other hardware or software failure causes the
system to crash.
* Fail-stop assumption: non-volatile storage contents are assumed to not be
corrupted by system crash
» Database systems have numerous integrity checks to prevent
corruption of disk data
3. Disk failure: a head crash or similar disk failure destroys all or part of disk
storage
* Destruction is assumed to be detectable: disk drives use checksums to
detect failures

Recovery and Atomicity

1. Modifying the database without ensuring that the transaction will commit may
leave the database in an inconsistent state.

2. Consider transaction 7i that transfers $50 from account A to account B; goal is
either to perform all database modifications made by 77 or none at all.

3. Several output operations may be required for 7i (to output A and B). A failure
may occur after one of these modifications have been made but before all of them
are made.

4. To ensure atomicity despite failures, we first output information describing the
modifications to stable storage without modifying the database itself.

5. Two approaches are:

* log-based recovery, and
* shadow-paging

Log-Based Recovery
1. A log is kept on stable storage.
a. The log is a sequence of log records, and maintains a record of update
activities on the database.
2. When transaction 77 starts, it registers itself by writing a
<Ti start>log record
3. Before Ti executes write(X), a log record <Ti, X, VI, V2> is written, where V1 is
the value of X before the write, and V2 is the value to be written to X.
a. Log record notes that 77 has performed a write on data item Xj Xj had
value VI before the write, and will have value V2 after the write.
When T7i finishes it last statement, the log record <7i commit> is written.
We assume for now that log records are written directly to stable storage (that is,
they are not buffered)
6. Two approaches using logs
a. Deferred database modification
b. Immediate database modification

Nl

Page 9 of 14

Deferred Database Modification
1. The deferred database modification scheme records all modifications to the log,
but defers all the writes to after partial commit.
Assume that transactions execute serially
Transaction starts by writing <7i start> record to log.
A write(X) operation results in a log record <77, X, V> being written, where V is
the new value for X
a. Note: old value is not needed for this scheme
The write is not performed on X at this time, but is deferred.
When Ti partially commits, <77 commit> is written to the log
Finally, the log records are read and used to actually execute the previously
deferred writes.
8. During recovery after a crash, a transaction needs to be redone if and only if both
<Ti start> and<7i commit> are there in the log.
9. Redoing a transaction 7i (redo77) sets the value of all data items updated by the
transaction to the new values.
10. Crashes can occur while
a. the transaction is executing the original updates, or
b. while recovery action is being taken
11. Example transactions 70 and T (70 executes before T1):
[A=1000,B=2000,C=500]

Sl el

Nowm

T0: read (A) T1 :read (O)
A:-A-50 C:-C-100
Write (A) write (C)
read (B)

B:- B+ 50

write (B)

12. Below show the log as it appears at three instances of time.

<T, start> <T, start> <T, start>

<T,, A, 950> <Ty, A, 950> <T,, A, 950>

<T,, B, 2050> <T,, B, 2050> <T,, B, 2050>
<T, commit> <T, commit>

<T; start> <T; start>
<T;, C, 600> <T;, C, 600>
<T; commit>

(b) ()

13. If log on stable storage at time of crash is as in case:
(a) No redo actions need to be taken
(b) redo(70) must be performed since <70 commit> is present
(c) redo(70) must be performed followed by redo(71) since
<70 commit> and <7’/ commit> are present

Immediate Database Modification

1. The immediate database modification scheme allows database updates of an
uncommitted transaction to be made as the writes are issued

Page 10 of 14

a. since undoing may be needed, update logs must have both old value and
new value

2. Update log record must be written before database item is written
a. We assume that the log record is output directly to stable storage
b. Can be extended to postpone log record output, so long as prior to
execution of an output(B) operation for a data block B, all log records
corresponding to items B must be flushed to stable storage
3. Output of updated blocks can take place at any time before or after transaction
commit
4. Order in which blocks are output can be different from the order in which they are
written.
Example
Log Write
<70 start>
<70, A, 1000, 950>
<70, B, 2000, 2050>
A =950
B =2050
<70 commit>
<T1 start>
<T1, C, 700, 600>
C =600
<T1 commit>
5. Recovery procedure has two operations instead of one:

*

a. undo(71) restores the value of all data items updated by 77i to their old
values, going backwards from the last log record for 7Ti
b. redo(T1) sets the value of all data items updated by 7i to the new values,
going forward from the first log record for 7i
Both operations must be idempotent
a. That s, even if the operation is executed multiple times the effect is the
same as if it is executed once
i. Needed since operations may get re-executed during recovery
When recovering after failure:
a. Transaction 77 needs to be undone if the log contains the record
<Ti start>, but does not contain the record <77 commit>.
b. Transaction 7i needs to be redone if the log contains both the record <7i
start> and the record <77 commit>.
Undo operations are performed first, then redo operations.
Below we show the log as it appears at three instances of time

Page 11 of 14

<T, start> <T, start> <T, start>
<Ty, A, 1000, 950> <T,, A, 1000, 950> <T,, A, 1000, 950>
<Ty, B, 2000, 2050> <T,, B, 2000, 2050> <T,, B, 2000, 2050>

<T, commit> <T, commit>
<T, start> <T, start>
<Ty, C, 700, 600> <Ty, C, 700, 600>
<T, commit>
(a) (b) (c)

Recovery actions in each case above are:
(a) undo (70): B is restored to 2000 and A to 1000.
(b) undo (7'1) and redo (70): C is restored to 700, and then A and B are
set to 950 and 2050 respectively.
(¢) redo (70) and redo (71): A and B are set to 950 and 2050
respectively. Then C is set to 600

Checkpoints
1. Problems in recovery procedure as discussed earlier :

a. searching the entire log is time-consuming

b. we might unnecessarily redo transactions which have already output their
updates to the database.

2. Streamline recovery procedure by periodically performing checkpointing

a. Output all log records currently residing in main memory onto stable
storage.

b. Output all modified buffer blocks to the disk.

c. Write a log record < checkpoint> onto stable storage.

3. During recovery we need to consider only the most recent transaction Ti that
started before the checkpoint, and transactions that started after 7.

a. Scan backwards from end of log to find the most recent <checkpoint>
record

b. Continue scanning backwards till a record <7i start> is found.

c. Need only consider the part of log following above start record. Earlier
part of log can be ignored during recovery, and can be erased whenever
desired.

d. For all transactions (starting from 77 or later) with no <77 commit>,
execute undo(7i). (Done only in case of immediate modification.)

e. Scanning forward in the log, for all transactions starting from 77 or
later with a <77 commit>, execute redo(7i).

Example of Checkpoints
T.

L LA 1. T1 can be ignored (updates already output to disk
— I due to checkpoint)
ol 2. T2 and T3 redone.
—L 3. T4 undone

checkpoint system failure

Page 12 of 14

Shadow Paging

1.

2.

3.

Shadow paging is an alternative to log-based recovery; this scheme is useful if
transactions execute serially
Idea: maintain two page tables during the lifetime of a transaction —the current
page table, and the shadow page table
Store the shadow page table in nonvolatile storage, such that state of the database
prior to transaction execution may be recovered.

a. Shadow page table is never modified during execution
To start with, both the page tables are identical. Only current page table is used
for data item accesses during execution of the transaction.
Whenever any page is about to be written for the first time

a. A copy of this page is made onto an unused page.

b. The current page table is then made to point to the copy

c. The update is performed on the copy

NG W N e

A

page table

S O ® NN U W N

=
(=]
=

shadow page table current page table

I
| |
O 0 N U W N

pages on disk pages on disk

To commit a transaction :
a) Flush all modified pages in main memory to disk
b) Output current page table to disk
¢) Make the current page table the new shadow page table, as follows:
* keep a pointer to the shadow page table at a fixed (known) location
on disk.
* to make the current page table the new shadow page table, simply
update the pointer to point to current page table on disk
Once pointer to shadow page table has been written, transaction is committed.
No recovery is needed after a crash — new transactions can start right away,
using the shadow page table.
Pages not pointed to from current/shadow page table should be freed (garbage
collected).
Advantages of shadow-paging over log-based schemes

Page 13 of 14

a)

no overhead of writing log records

b) recovery is trivial
6. Disadvantages :

a)

b)

¢)
d)

Copying the entire page table is very expensive
= Can be reduced by using a page table structured like a B+-tree
o No need to copy entire tree, only need to copy paths in
the tree that lead to updated leaf nodes
Commit overhead is high even with above extension
= Need to flush every updated page, and page table
Data gets fragmented (related pages get separated on disk)
After every transaction completion, the database pages containing old
versions of modified data need to be garbage collected
Hard to extend algorithm to allow transactions to run concurrently
= Easier to extend log based schemes

Page 14 of 14

