
Chapter 8 – Software Testing

Chapter 8 Software Testing 1 30/10/2014

Topics covered

 Development testing

 Test-driven development

 Release testing

 User testing

Chapter 8 Software Testing 2 30/10/2014

Program testing

 Testing is intended to show that a program does what it is

intended to do and to discover program defects before it is put

into use.

 When you test software, you execute a program using

artificial data.

 You check the results of the test run for errors, anomalies or

information about the program’s non-functional attributes.

 Can reveal the presence of errors NOT their

absence.

 Testing is part of a more general verification and validation

process, which also includes static validation techniques.

Chapter 8 Software Testing 3 30/10/2014

Program testing goals

 To demonstrate to the developer and the customer that

the software meets its requirements.

 For custom software, this means that there should be at least

one test for every requirement in the requirements document.

For generic software products, it means that there should be

tests for all of the system features, plus combinations of these

features, that will be incorporated in the product release.

 To discover situations in which the behavior of the

software is incorrect, undesirable or does not conform to

its specification.

 Defect testing is concerned with rooting out undesirable system

behavior such as system crashes, unwanted interactions with

other systems, incorrect computations and data corruption.

 Chapter 8 Software Testing 4 30/10/2014

Validation and defect testing

 The first goal leads to validation testing

 You expect the system to perform correctly using a given set of

test cases that reflect the system’s expected use.

 The second goal leads to defect testing

 The test cases are designed to expose defects. The test cases in

defect testing can be deliberately obscure and need not reflect

how the system is normally used.

Chapter 8 Software Testing 5 30/10/2014

Testing process goals

 Validation testing

 To demonstrate to the developer and the system customer that

the software meets its requirements

 A successful test shows that the system operates as intended.

 Defect testing

 To discover faults or defects in the software where its behaviour

is incorrect or not in conformance with its specification

 A successful test is a test that makes the system perform

incorrectly and so exposes a defect in the system.

Chapter 8 Software Testing 6 30/10/2014

An input-output model of program testing

Chapter 8 Software Testing 7 30/10/2014

Verification vs validation

 Verification:

 "Are we building the product right”.
 The software should conform to its specification.

 Validation:

 "Are we building the right product”.
 The software should do what the user really requires.

Chapter 8 Software Testing 8 30/10/2014

V & V confidence

 Aim of V & V is to establish confidence that the system is
‘fit for purpose’.

 Depends on system’s purpose, user expectations and
marketing environment

 Software purpose

• The level of confidence depends on how critical the software is to
an organisation.

 User expectations

• Users may have low expectations of certain kinds of software.

 Marketing environment

• Getting a product to market early may be more important than
finding defects in the program.

Chapter 8 Software Testing 9 30/10/2014

Inspections and testing

 Software inspections Concerned with analysis of

the static system representation to discover problems

(static verification)

 May be supplement by tool-based document and code

analysis.

 Discussed in Chapter 15.

 Software testing Concerned with exercising and

observing product behaviour (dynamic verification)

 The system is executed with test data and its operational

behaviour is observed.

Chapter 8 Software Testing 10 30/10/2014

Inspections and testing

Chapter 8 Software Testing 11 30/10/2014

Software inspections

 These involve people examining the source

representation with the aim of discovering anomalies and

defects.

 Inspections not require execution of a system so may be

used before implementation.

 They may be applied to any representation of the system

(requirements, design,configuration data, test data, etc.).

 They have been shown to be an effective technique for

discovering program errors.

Chapter 8 Software Testing 12 30/10/2014

Advantages of inspections

 During testing, errors can mask (hide) other errors.

Because inspection is a static process, you don’t have to
be concerned with interactions between errors.

 Incomplete versions of a system can be inspected

without additional costs. If a program is incomplete, then

you need to develop specialized test harnesses to test

the parts that are available.

 As well as searching for program defects, an inspection

can also consider broader quality attributes of a

program, such as compliance with standards, portability

and maintainability.

Chapter 8 Software Testing 13 30/10/2014

Inspections and testing

 Inspections and testing are complementary and not

opposing verification techniques.

 Both should be used during the V & V process.

 Inspections can check conformance with a specification

but not conformance with the customer’s real
requirements.

 Inspections cannot check non-functional characteristics

such as performance, usability, etc.

Chapter 8 Software Testing 14 30/10/2014

A model of the software testing process

Chapter 8 Software Testing 15 30/10/2014

Stages of testing

 Development testing, where the system is tested during

development to discover bugs and defects.

 Release testing, where a separate testing team test a

complete version of the system before it is released to

users.

 User testing, where users or potential users of a system

test the system in their own environment.

Chapter 8 Software Testing 16 30/10/2014

Development testing

Chapter 8 Software Testing 17 30/10/2014

Development testing

 Development testing includes all testing activities that

are carried out by the team developing the system.

 Unit testing, where individual program units or object classes are

tested. Unit testing should focus on testing the functionality of

objects or methods.

 Component testing, where several individual units are integrated

to create composite components. Component testing should

focus on testing component interfaces.

 System testing, where some or all of the components in a

system are integrated and the system is tested as a whole.

System testing should focus on testing component interactions.

Chapter 8 Software Testing 18 30/10/2014

Unit testing

 Unit testing is the process of testing individual

components in isolation.

 It is a defect testing process.

 Units may be:

 Individual functions or methods within an object

 Object classes with several attributes and methods

 Composite components with defined interfaces used to access

their functionality.

Chapter 8 Software Testing 19 30/10/2014

Object class testing

 Complete test coverage of a class involves

 Testing all operations associated with an object

 Setting and interrogating all object attributes

 Exercising the object in all possible states.

 Inheritance makes it more difficult to design object class

tests as the information to be tested is not localised.

Chapter 8 Software Testing 20 30/10/2014

The weather station object interface

Chapter 8 Software Testing 21 30/10/2014

Weather station testing

 Need to define test cases for reportWeather, calibrate,

test, startup and shutdown.

 Using a state model, identify sequences of state

transitions to be tested and the event sequences to

cause these transitions

 For example:

 Shutdown -> Running-> Shutdown

 Configuring-> Running-> Testing -> Transmitting -> Running

 Running-> Collecting-> Running-> Summarizing -> Transmitting

-> Running

Chapter 8 Software Testing 22 30/10/2014

Automated testing

 Whenever possible, unit testing should be automated so

that tests are run and checked without manual

intervention.

 In automated unit testing, you make use of a test

automation framework (such as JUnit) to write and run

your program tests.

 Unit testing frameworks provide generic test classes that

you extend to create specific test cases. They can then

run all of the tests that you have implemented and

report, often through some GUI, on the success of

otherwise of the tests.

Chapter 8 Software Testing 23 30/10/2014

Automated test components

 A setup part, where you initialize the system with the test

case, namely the inputs and expected outputs.

 A call part, where you call the object or method to be

tested.

 An assertion part where you compare the result of the

call with the expected result. If the assertion evaluates to

true, the test has been successful if false, then it has

failed.

Chapter 8 Software Testing 24 30/10/2014

Choosing unit test cases

 The test cases should show that, when used as

expected, the component that you are testing does what

it is supposed to do.

 If there are defects in the component, these should be

revealed by test cases.

 This leads to 2 types of unit test case:

 The first of these should reflect normal operation of a program

and should show that the component works as expected.

 The other kind of test case should be based on testing

experience of where common problems arise. It should use

abnormal inputs to check that these are properly processed and

do not crash the component.

Chapter 8 Software Testing 25 30/10/2014

Testing strategies

 Partition testing, where you identify groups of inputs that

have common characteristics and should be processed

in the same way.

 You should choose tests from within each of these groups.

 Guideline-based testing, where you use testing

guidelines to choose test cases.

 These guidelines reflect previous experience of the kinds of

errors that programmers often make when developing

components.

Chapter 8 Software Testing 26 30/10/2014

Partition testing

 Input data and output results often fall into different

classes where all members of a class are related.

 Each of these classes is an equivalence partition or

domain where the program behaves in an equivalent

way for each class member.

 Test cases should be chosen from each partition.

Chapter 8 Software Testing 27 30/10/2014

Equivalence partitioning

Chapter 8 Software Testing 28 30/10/2014

Equivalence partitions

Chapter 8 Software Testing 29 30/10/2014

Testing guidelines (sequences)

 Test software with sequences which have only a single

value.

 Use sequences of different sizes in different tests.

 Derive tests so that the first, middle and last elements of

the sequence are accessed.

 Test with sequences of zero length.

Chapter 8 Software Testing 30 30/10/2014

General testing guidelines

 Choose inputs that force the system to generate all error

messages

 Design inputs that cause input buffers to overflow

 Repeat the same input or series of inputs numerous

times

 Force invalid outputs to be generated

 Force computation results to be too large or too small.

Chapter 8 Software Testing 31 30/10/2014

Component testing

 Software components are often composite components

that are made up of several interacting objects.

 For example, in the weather station system, the reconfiguration

component includes objects that deal with each aspect of the

reconfiguration.

 You access the functionality of these objects through the

defined component interface.

 Testing composite components should therefore focus

on showing that the component interface behaves

according to its specification.

 You can assume that unit tests on the individual objects within

the component have been completed.

Chapter 8 Software Testing 32 30/10/2014

Interface testing

 Objectives are to detect faults due to interface errors or

invalid assumptions about interfaces.

 Interface types

 Parameter interfaces Data passed from one method or

procedure to another.

 Shared memory interfaces Block of memory is shared between

procedures or functions.

 Procedural interfaces Sub-system encapsulates a set of

procedures to be called by other sub-systems.

 Message passing interfaces Sub-systems request services from

other sub-systems

Chapter 8 Software Testing 33 30/10/2014

Interface testing

Chapter 8 Software Testing 34 30/10/2014

Interface errors

 Interface misuse

 A calling component calls another component and makes an

error in its use of its interface e.g. parameters in the wrong order.

 Interface misunderstanding

 A calling component embeds assumptions about the behaviour

of the called component which are incorrect.

 Timing errors

 The called and the calling component operate at different speeds

and out-of-date information is accessed.

Chapter 8 Software Testing 35 30/10/2014

Interface testing guidelines

 Design tests so that parameters to a called procedure

are at the extreme ends of their ranges.

 Always test pointer parameters with null pointers.

 Design tests which cause the component to fail.

 Use stress testing in message passing systems.

 In shared memory systems, vary the order in which

components are activated.

Chapter 8 Software Testing 36 30/10/2014

System testing

 System testing during development involves integrating

components to create a version of the system and then

testing the integrated system.

 The focus in system testing is testing the interactions

between components.

 System testing checks that components are compatible,

interact correctly and transfer the right data at the right

time across their interfaces.

 System testing tests the emergent behaviour of a

system.

Chapter 8 Software Testing 37 30/10/2014

System and component testing

 During system testing, reusable components that have

been separately developed and off-the-shelf systems

may be integrated with newly developed components.

The complete system is then tested.

 Components developed by different team members or

sub-teams may be integrated at this stage. System

testing is a collective rather than an individual process.

 In some companies, system testing may involve a separate

testing team with no involvement from designers and

programmers.

Chapter 8 Software Testing 38 30/10/2014

Use-case testing

 The use-cases developed to identify system interactions

can be used as a basis for system testing.

 Each use case usually involves several system

components so testing the use case forces these

interactions to occur.

 The sequence diagrams associated with the use case

documents the components and interactions that are

being tested.

Chapter 8 Software Testing 39 30/10/2014

Collect weather data sequence chart

Chapter 8 Software Testing 40 30/10/2014

Test cases derived from sequence diagram

 An input of a request for a report should have an

associated acknowledgement. A report should ultimately

be returned from the request.

 You should create summarized data that can be used to check

that the report is correctly organized.

 An input request for a report to WeatherStation results in

a summarized report being generated.

 Can be tested by creating raw data corresponding to the

summary that you have prepared for the test of SatComms and

checking that the WeatherStation object correctly produces this

summary. This raw data is also used to test the WeatherData

object.

Chapter 8 Software Testing 41 30/10/2014

Testing policies

 Exhaustive system testing is impossible so testing

policies which define the required system test coverage

may be developed.

 Examples of testing policies:

 All system functions that are accessed through menus should be

tested.

 Combinations of functions (e.g. text formatting) that are

accessed through the same menu must be tested.

 Where user input is provided, all functions must be tested with

both correct and incorrect input.

Chapter 8 Software Testing 42 30/10/2014

Test-driven development

Chapter 8 Software Testing 43 30/10/2014

Test-driven development

 Test-driven development (TDD) is an approach to

program development in which you inter-leave testing

and code development.

 Tests are written before code and ‘passing’ the tests is
the critical driver of development.

 You develop code incrementally, along with a test for that

increment. You don’t move on to the next increment until
the code that you have developed passes its test.

 TDD was introduced as part of agile methods such as

Extreme Programming. However, it can also be used in

plan-driven development processes.

 Chapter 8 Software Testing 44 30/10/2014

Test-driven development

Chapter 8 Software Testing 45 30/10/2014

TDD process activities

 Start by identifying the increment of functionality that is

required. This should normally be small and

implementable in a few lines of code.

 Write a test for this functionality and implement this as

an automated test.

 Run the test, along with all other tests that have been

implemented. Initially, you have not implemented the

functionality so the new test will fail.

 Implement the functionality and re-run the test.

 Once all tests run successfully, you move on to

implementing the next chunk of functionality.

 Chapter 8 Software Testing 46 30/10/2014

Benefits of test-driven development

 Code coverage

 Every code segment that you write has at least one associated

test so all code written has at least one test.

 Regression testing

 A regression test suite is developed incrementally as a program

is developed.

 Simplified debugging

 When a test fails, it should be obvious where the problem lies.

The newly written code needs to be checked and modified.

 System documentation

 The tests themselves are a form of documentation that describe

what the code should be doing.

Chapter 8 Software Testing 47 30/10/2014

Regression testing

 Regression testing is testing the system to check that

changes have not ‘broken’ previously working code.
 In a manual testing process, regression testing is

expensive but, with automated testing, it is simple and

straightforward. All tests are rerun every time a change is

made to the program.

 Tests must run ‘successfully’ before the change is
committed.

Chapter 8 Software Testing 48 30/10/2014

Release testing

Chapter 8 Software Testing 49 30/10/2014

Release testing

 Release testing is the process of testing a particular release

of a system that is intended for use outside of the

development team.

 The primary goal of the release testing process is to

convince the supplier of the system that it is good enough

for use.

 Release testing, therefore, has to show that the system delivers its

specified functionality, performance and dependability, and that it

does not fail during normal use.

 Release testing is usually a black-box testing process

where tests are only derived from the system specification.

Chapter 8 Software Testing 50 30/10/2014

Release testing and system testing

 Release testing is a form of system testing.

 Important differences:

 A separate team that has not been involved in the system

development, should be responsible for release testing.

 System testing by the development team should focus on

discovering bugs in the system (defect testing). The objective of

release testing is to check that the system meets its

requirements and is good enough for external use (validation

testing).

Chapter 8 Software Testing 51 30/10/2014

Requirements based testing

 Requirements-based testing involves examining each

requirement and developing a test or tests for it.

 Mentcare system requirements:

 If a patient is known to be allergic to any particular medication,

then prescription of that medication shall result in a warning

message being issued to the system user.

 If a prescriber chooses to ignore an allergy warning, they shall

provide a reason why this has been ignored.

Chapter 8 Software Testing 52 30/10/2014

Requirements tests

 Set up a patient record with no known allergies. Prescribe medication for

allergies that are known to exist. Check that a warning message is not

issued by the system.

 Set up a patient record with a known allergy. Prescribe the medication to

that the patient is allergic to, and check that the warning is issued by the

system.

 Set up a patient record in which allergies to two or more drugs are recorded.

Prescribe both of these drugs separately and check that the correct warning

for each drug is issued.

 Prescribe two drugs that the patient is allergic to. Check that two warnings

are correctly issued.

 Prescribe a drug that issues a warning and overrule that warning. Check

that the system requires the user to provide information explaining why the

warning was overruled.

Chapter 8 Software Testing 53 30/10/2014

A usage scenario for the Mentcare system

Chapter 8 Software Testing 54

George is a nurse who specializes in mental healthcare. One of his responsibilities is to visit patients

at home to check that their treatment is effective and that they are not suffering from medication

side effects.

On a day for home visits, George logs into the Mentcare system and uses it to print his schedule of

home visits for that day, along with summary information about the patients to be visited. He

requests that the records for these patients be downloaded to his laptop. He is prompted for his key

phrase to encrypt the records on the laptop.

One of the patients that he visits is Jim, who is being treated with medication for depression. Jim

feels that the medication is helping him but believes that it has the side effect of keeping him awake

at night. George looks up Jim’s record and is prompted for his key phrase to decrypt the record. He
checks the drug prescribed and queries its side effects. Sleeplessness is a known side effect so he

notes the problem in Jim’s record and suggests that he visits the clinic to have his medication
changed. Jim agrees so George enters a prompt to call him when he gets back to the clinic to make

an appointment with a physician. George ends the consultation and the system re-encrypts Jim’s
record.

After, finishing his consultations, George returns to the clinic and uploads the records of patients

visited to the database. The system generates a call list for George of those patients who He has to

contact for follow-up information and make clinic appointments.

30/10/2014

Features tested by scenario

 Authentication by logging on to the system.

 Downloading and uploading of specified patient records

to a laptop.

 Home visit scheduling.

 Encryption and decryption of patient records on a mobile

device.

 Record retrieval and modification.

 Links with the drugs database that maintains side-effect

information.

 The system for call prompting.

 Chapter 8 Software Testing 55 30/10/2014

Performance testing

 Part of release testing may involve testing the emergent

properties of a system, such as performance and

reliability.

 Tests should reflect the profile of use of the system.

 Performance tests usually involve planning a series of

tests where the load is steadily increased until the

system performance becomes unacceptable.

 Stress testing is a form of performance testing where the

system is deliberately overloaded to test its failure

behaviour.

Chapter 8 Software Testing 56 30/10/2014

User testing

Chapter 8 Software Testing 57 30/10/2014

User testing

 User or customer testing is a stage in the testing process

in which users or customers provide input and advice on

system testing.

 User testing is essential, even when comprehensive

system and release testing have been carried out.

 The reason for this is that influences from the user’s working
environment have a major effect on the reliability, performance,

usability and robustness of a system. These cannot be replicated

in a testing environment.

Chapter 8 Software Testing 58 30/10/2014

Types of user testing

 Alpha testing

 Users of the software work with the development team to test the

software at the developer’s site.

 Beta testing

 A release of the software is made available to users to allow

them to experiment and to raise problems that they discover with

the system developers.

 Acceptance testing

 Customers test a system to decide whether or not it is ready to

be accepted from the system developers and deployed in the

customer environment. Primarily for custom systems.

Chapter 8 Software Testing 59 30/10/2014

The acceptance testing process

Chapter 8 Software Testing 60 30/10/2014

Stages in the acceptance testing process

 Define acceptance criteria

 Plan acceptance testing

 Derive acceptance tests

 Run acceptance tests

 Negotiate test results

 Reject/accept system

Chapter 8 Software Testing 61 30/10/2014

Agile methods and acceptance testing

 In agile methods, the user/customer is part of the

development team and is responsible for making

decisions on the acceptability of the system.

 Tests are defined by the user/customer and are

integrated with other tests in that they are run

automatically when changes are made.

 There is no separate acceptance testing process.

 Main problem here is whether or not the embedded user

is ‘typical’ and can represent the interests of all system
stakeholders.

Chapter 8 Software Testing 62 30/10/2014

Key points

 Testing can only show the presence of errors in a

program. It cannot demonstrate that there are no

remaining faults.

 Development testing is the responsibility of the software

development team. A separate team should be

responsible for testing a system before it is released to

customers.

 Development testing includes unit testing, in which you

test individual objects and methods component testing

in which you test related groups of objects and system

testing, in which you test partial or complete systems.

Chapter 8 Software Testing 63 30/10/2014

Key points

 When testing software, you should try to ‘break’ the software by
using experience and guidelines to choose types of test case that

have been effective in discovering defects in other systems.

 Wherever possible, you should write automated tests. The tests are

embedded in a program that can be run every time a change is

made to a system.

 Test-first development is an approach to development where tests

are written before the code to be tested.

 Scenario testing involves inventing a typical usage scenario and

using this to derive test cases.

 Acceptance testing is a user testing process where the aim is to

decide if the software is good enough to be deployed and used in its

operational environment.

Chapter 8 Software Testing 64 30/10/2014

