
COMBINATIONAL CIRCUITS

COMBINATIONAL LOGIC

• The output of this type of logic is dependent solely on its

current inputs.

• When certain input values are set, a combinatorial circuit

generates output values corresponding to those input values.

When the input of the combinatorial logic are changed, the

outputs are changing to reflect the changes in the new input

values.

• Previous values of the inputs do not matter, the current outputs

depend solely on the current inputs.

• It‟s assumed that Circuits are without time delay

:

:

:

:

Combinational

Logic

I1

In

O

1

On

2

Design procedure

1. Design a circuit from a specification.

2. From the specifications of the circuit, determine the required
number of inputs and outputs, and assign a letter symbol to
each.

3. Derive the truth table that defines the required relation ship
between inputs and outputs.

4. Obtain the simplified Boolean functions of each outputs as
function of the input variables

5. Draw logic diagram and verify correctness

3

HALF ADDER

• Logic gate that perform arithmetic addition for 1-bit

• Two inputs A, B to half-adder. Resultants are Sum(S) and
Carry(Cout)

• A wider than 1 bit adder can‟t use this circuit, because there is
no way to input carry information from the previous bits

Half

Adder

A

B Cout

S

ABC

BA

BABAS







CoutA B S

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1
4

full ADDER

• A full adder is a circuit that computes the sum of three bits and
gives a two-bit answer.

• The full adder for a given column adds two bits from the input
numbers together with a one-bit carry from the previous
column to the right. The adder produces a two-bit answer; one
of these bits is used as a carry into the next column.

Full

Adder

A

B

Cin

S

Cout

5

full ADDER

• A full adder has 3 inputs
and 2 outputs

• The truth table of the full-
adder can be drawn with
inputs A,B and Cin with
outputs S and Cout.

A B Cin Sum Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

6

full ADDER

• From the truth table we can write the Boolean equation for the S
and Cout

• Simplify using Boolean Algebra and K-map, we get

ininininout

inininin

ABCCABCBABCAC

ABCCBACBACBAS





ABCBAC

CBAS

inout

in





)(

7

HALF subtractor

• Logic gate that perform arithmetic subtraction for 1-bit

• Two inputs A, B to half-subtractor. Resultants are
Difference(D) and Borrow(B)

Half

Subtractor

A

B Bout

D

BAB

BABAD

out 



A

B
Difference

Borrow

BoutA B D

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

10

-1

1

8

full subtractor

• A full subtractor is a circuit that computes the difference of
three bits and gives a two-bit answer.

• A full subtractor has 3 inputs and 2 outputs

• The truth table of the full- subtractor can be drawn with inputs
A,B and C with outputs D and Bout.

Full

Subtractor

A

B

C

Difference

Borrow- out

A B C D Bout

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1
9

full subtractor

• From the truth table we can write the Boolean equation for the
D and Bout

• Simplify using Boolean Algebra and K-map, we get

BACBAB

CBAD

out 



)(

ABCBCACBACBAB

ABCCBACBACBAD

out 



10

Combined half adder/subtractor

• X = Control signal (not involved in arithematic operation)

– 0-add 1-subtract

• A and B inputs

• S/D and Cout/Bout

outputs

X A B S/D
Cout/Bo

ut

X=0

ADD

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

X=1

SUBTRACT

1 0 0 0 0

1 0 1 1 1

1 1 0 1 0

1 1 1 0 0

11

Combined half adder/subtractor

Simplifying,

BXABCBADS outout)(// 

BAXABXBoutCout

BXABAXBAXBAXDS





/

/

12

PARALLEL ADDER-4 BIT ADDER

F.A3

A3 B3

S3

Carry

Out
F.A2

A2 B2

S2

C3 C2

F.A1

A1 B1

S1

C2

F.A0

A0 B0

S0

C0

0

• This circuit is sometimes referred to as a ripple-through
adder

• C0 ripples through four two-level logic circuits and hence the
sum cannot be completed until eight gate delays

• For this kind of adder, the maximum delay is directly
proportional to the number of stages n.

C 1 1 1 0

A 0 1 0 1

B 0 1 1 1

S 1 1 0 0

13

N-BIT ADDER

• With the carry input, full adders can be cascaded to produce
an n bit adder by connecting output C from one adder to
input Cin of the next adder

• Such an adder is called Ripple adder (because the bits ripple
through the adder).

14

N-BIT ADDER as a parallel subtractor

15

COMBINED N-BIT ADDER/SUBTRACTOR

Full Adder

A B

C

0 0

1

0

Full Adder

A B

C

1 1

2

1

Full Adder

A B

C

2 2

3

2

Full Adder

A B

C SD

3 3

4 3 SD SD SD

E

E = 0: 4-bit Adder

E = 1: 4-bit Subtractor

16

Overflow in two’s complement addition

• When two values of the same signs are added:

– Result won‟t fit in the number of bits provided

– Result has the opposite sign.

Overflow?

CN-1

BN-1

AN-1

Assumes an N-bit adder, with bit N-1

the MSB

17

FULL ADDER USING HALF ADDERS

ABCBAC

CBAS

inout

in





)(

18

FULL SUBTRACTOR USING HALF SUBTRACTORS

Half

Subtractor

Half

Subtractor

A

B

C CBAD 

BACBABout )(

BA

BA

CBA)(

19

Encoders

• It receives 2n inputs and outputs a n bit binary value

corresponding to the one input that has a value of 1.

• Only one input will be active at a time

• Useful for compressing data

• Can be developed using AND/OR gates

• are used in various components such as keyboards

.

.

.

.

.

.

2n

inputs

n

outputs

Binary

Encoder

20

4 X 2 Encoder

From the truth table, we can express the outputs as:

21

8 X 3 Encoder

Inputs Outputs

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

y2 y1 y0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

From the truth table, we can

express the outputs as:

y0 = D1 + D3 + D5 + D7

y1 = D2 + D3 + D6 + D7

y2 = D4 + D5 + D6 + D7

At any one time,
only
one input line has a
value of 1.

22

Priority Encoders

• A priority encoder works just a regular encoder, with one

exception: whenever one or more input is active, the output is

set to correspond to the highest active input

• Assign priorities to the inputs

• When more than one input are asserted, the output generates

the code of the input with the highest priority

• For example, in a 4-to-2 encoder, if inputs 0,1 and 3 are active,

then the y1 y0 = 1 1 output is set, corresponding to the input 3.

23

4 X 2 priority Encoder

This can be minimised using

the K-map as follows:

Inputs Outputs

D3 D2 D1 D0 A1 A0

0 0 0 0 X X

0 0 0 1 0 0

0 0 1 X 0 1

0 1 X X 1 0

1 X X X 1 1

24

8-to-3 Priority Encoder

• What if more than one input line has a value of 1?
• Ignore “lower priority” inputs.
• Idle indicates that no input is a 1.
• Priority encoders rank inputs and encode the highest priority input

Inputs Outputs

I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 y2 y1 y0 Idle

0 0 0 0 0 0 0 0 x x x 1

1 0 0 0 0 0 0 0 0 0 0 0

X 1 0 0 0 0 0 0 0 0 1 0

X X 1 0 0 0 0 0 0 1 0 0

X X X 1 0 0 0 0 0 1 1 0

X X X X 1 0 0 0 1 0 0 0

X X X X X 1 0 0 1 0 1 0

X X X X X X 1 0 1 1 0 0

X X X X X X X 1 1 1 1 0

I1

I2

I3

I4

I5

I6

I0

I7

IDLE

I1

I2

I3

I4

I5

I6

I0

I7

Y1

Y2

Y0

Y1

Y2

Y0

25

8-to-3 Priority Encoder

Priority Encoder :

H7=I7 (Highest Priority)

H6=I6.I7‟

H5=I5.I6‟.I7‟

H4=I4.I5‟.I6‟.I7‟

H3=I3.I4‟.I5‟.I6‟.I7‟

H2=I2.I3‟.I4‟.I5‟.I6‟.I7‟

H1=I1. I2‟.I3‟.I4‟.I5‟.I6‟.I7‟

H0=I0.I1‟. I2‟.I3‟.I4‟.I5‟.I6‟.I7‟

IDLE= I0‟.I1‟. I2‟.I3‟.I4‟.I5‟.I6‟.I7‟

Encoder

Y0 = I1 + I3 + I5 + I7

Y1 = I2 + I3 + I6 + I7

Y2 = I4 + I5 + I6 + I7

Y1

Y2

Y0

IDLE

I1

I2

I3 Y1

Y2I4

I5

I6

I0

Y0

I7

Binary Encoder

I1

I2

I3

I4

I5

I6

I0

I7

Priority Circuit

H1

H2

H3

H4

H5

H6

H0

H7

IDLE

I1

I2

I3

I4

I5

I6

I0

I7

Priority Encoder

26

DECODER

• A decoder accepts a binary value as input and decodes it.

• It has n inputs and 2n outputs, numbered from 0 to 2n -1.

• Each output represents one minterm of the inputs

• The output corresponding to the value of the n inputs is
activated

• Only one output is a 1 for any given input

• For example, a decoder with three inputs and eight outputs will
activate output 6 whenever the input values are 110.

Binary

Decoder

n

inputs
2n outputs

27

2 X 4 DECODER

Decoder

y0

y3

y2

y1

A

B

(This output will be activated

when the inputs are 00)

(This output will be activated

when the inputs are 11)

(This output will be activated

when the inputs are 10)

(This output will be activated

when the inputs are 01)

y0

y3

y2

y1

enable

I0I1

(Discussed

later)

0

0

0

0

0

00

1

1 1

1

1

0

0

1

0

0

1

0

0

1

0

0

0

y0 y3y2y1BAen

1

1

1

1

0 0 0 0 0

28

3 X 8 DECODER

x y z F0 F1 F2 F3 F4 F5 F6 F7

0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 0 1

F1 = x'y'z

x zy

F0 = x'y'z'

F2 = x'yz'

F3 = x'yz

F5 = xy'z

F4 = xy'z'

F6 = xyz'

F7 = xyz3-to-8

Decoder

X

Y

F0

F1

F2

F3

F4

F5

F6

F7

Z

29

Constructing 3 x 8 using 2 x 4 decoder

y0

y3

y2

y1
I0

I1

en

y4

y7

y6

y5
I0

I1

en

a b c

30

3 to 8 decoders to make 4 to 16 decoder

• Enable -----active high

• In this example, only one decoder can be active at a time.

• x, y, z ----input

• w ----strobe or enable

31

Constructing 4 x 16 using 2 x 4 decoder

y0

y3

y2

y1
I0

I1

en

y4

y7

y6

y5
I0

I1

en

a b c

y8

y11

y10

y9
I0

I1

en

y12

y15

y14

y13
I0

I1

en

y0

y3

y2

y1
I0

I1

en

d• Enable -----active low

• In this example, only one

decoder can be active at a

time.

32

Implementing Functions Using Decoders

• Any n-variable logic function can be implemented using a single n-to-2n

decoder to generate the minterms

• OR gate forms the sum.

• The output lines of the decoder corresponding to the minterms of the

function are used as inputs to the or gate.

• Any combinational circuit with n inputs and m outputs can be

implemented with an n-to-2n decoder with m OR gates.

• Suitable when a circuit has many outputs, and each output function is

expressed with few minterms

33

Implementing Functions Using Decoders

Example: Full adder
S(x, y, z) = S (1,2,4,7)

C(x, y, z) = S (3,5,6,7)

3-to-8

Decoder

S2

S1

S0

x

y

z

0

1

2

3

4

5

6

7

S

C

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

34

BCD-to-Seven-Segment Decoder

• Digital readouts on many digital products often use LED seven-segment

displays.

• Each digit is created by lighting the appropriate segments. The segments are

labeled a,b,c,d,e,f,g

• The decoder takes a BCD input and outputs the correct code for the seven-

segment display.

• Input: A 4-bit binary value that is a BCD coded input.

• Outputs: 7 bits, a through g for each of the segments of the display.

• Operation: Decode the input to activate the correct segments

35

Listing the segments

0 a,b,c,d,e,f

1 b,c

2 a,b,d,e,g

3 a,b,c,d,g

4 b,c,f,g

5 a,c,d,f,g

6 a,c,d,e,f,g

7 a,b,c

8 a,b,c,d,e,f,g

9 a,b,c,d,f,g

a

b

c

g

e

d

f

36

TRUTH TABLE FOR BCD-to-Seven-Segment Decoder

BCD Input Seven Segment Decoder

A B C D a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

all other inputs x x x x x x x

• Fill in don‟t cares for
undefined outputs.
• Leads to a reduced

implementation

• For these combinations of
undefined inputs never to
happen, fill „0‟

37

Writing equations and reductions using k=map

Ca1F

1 0

10

1 1 X X

X X X X

1 1

11

CD

AB

10

11

01

00

10110100

Aa2F

1 0

10

1 1 X X

X X X X

1 1

11

CD

AB

10

11

01

00

10110100For segment “a” :

DBFa3 

1 0

10

1 1 X X

X X X X

1 1

11

CD

AB

10

11

01

00

10110100

DBFa4 

1 0

10

1 1 X X

X X X X

1 1

11

CD

AB

10

11

01

00

10110100

BDDBCAFa 

1 0

10

1 1 X X

X X X X

1 1

11

CD

AB

10

11

01

00

10110100

Similarly do for segment b, c, d, e, f and g.

Then draw logical diagram
38

multiplexer

39

• It is a selector, it chooses one of its data inputs and passes it to the output
according to some other selection inputs

• Select an input value with one or more select bits

• Use for transmitting data

• Allows for conditional transfer of data

• Sometimes called a mux

• Consider four binary data inputs as inputs of a multiplexer. Two select signals
will determine which of the four inputs will be passed to the output.

For 2 to 1 MUX
• 2 Inputs I0 AND I1
• Select line S

• Output Y

S Y

0 I0

1 I1

10 SSY II 

4 TO 1 MULTIPLEXER

40

Multiplexer schematic representation with active high enable signal

Multiplexer schematic representation with active low enable signal

4 TO 1 MULTIPLEXER

41

3121111 SSSSY DSDSDSDS OOOO O


Construction of 4 to 1 using 2 to 1 MUX

42

• Multiplexers can be cascaded to select from a large number of inputs

• 4 to 1 multiplexer made of 2 to 1 multiplexers

IMPLEMENTING BOOLEAN FUNCTION WITH MUX

43

• Connect input variables to select inputs of multiplexer (n-1 for n variables)

• Set data inputs to multiplexer equal to values of function for

corresponding assignment of select variables

• Using a variable at data inputs reduces size of the multiplexer

Implementing a Four- Input Function with a Multiplexer

44

De-multiplexer

45

• The de-multiplexer performs the inverse function of a multiplexer

• It receives information on one line and transmits its onto one of 2n possible

output lines.

• The selection is by n input select lines

• Note that a one to four multiplexer is really a two to four decoder with an

additional enable input E which is the input data line.

1 to 4

DEMUX

E D0

D1

D2

D3

S1 S0

S1 S0 D0 D1 D2 D3

0 0 E 0 0 0

0 1 0 E 0 0

1 0 0 0 E 0

1 1 0 0 0 E

ESD OO 1S

ESD O11 S

ESD O12 S

ESD O13 S

Comparators

46

• A comparator compares a two n-bit binary values to determine

which is greater or if they are equal

• Consider the simple 1-bit comparator to illustrate the design

• It is possible to extend the design for multi-bit numbers

• X>Y only if Xi=1, Yi=0

• X<Y only if Xi=0, Yi=1

• X=Y only if Xi=Yi=0 or

Xi=Yi=1

BCD TO EXCESS 3 CODE CONVERTER

47

• BCD is a code for the decimal digits 0-9

• Excess-3 is also a code for the decimal digits

• Inputs: a BCD input, A,B,C,D with A as the most significant bit and D as the

least significant bit.

• Outputs: an Excess-3 output W,X,Y,Z that corresponds to the BCD input.

• Internal operation – circuit to do the conversion in combinational logic.

• Excess-3 code is easily formed by adding a binary 3 to the binary or BCD for

the digit.

• There are 16 possible inputs for both BCD and Excess-3.

• It can be assumed that only valid BCD inputs will appear so the six

combinations not used can be treated as don‟t cares.

BCD TO EXCESS 3 CODE CONVERTER

48

Decimal
BCD input Excess-3 output

A B C D W X Y Z

0 0 0 0 0 0 0 1 1

1 0 0 0 1 0 1 0 0

2 0 0 1 0 0 1 0 1

3 0 0 1 1 0 1 1 0

4 0 1 0 0 0 1 1 1

5 0 1 0 1 1 0 0 0

6 0 1 1 0 1 0 0 1

7 0 1 1 1 1 0 1 0

8 1 0 0 0 1 0 1 1

9 1 0 0 1 1 1 0 0

REDUCTION USING K=MAP

49

Logical diagram

50

DZ

DCDCCDY

DCBDCBDCBDBCBX

DCBABDBCAW









)(

)(

Even & Odd Parity Generator for 3 bits

51

A B C EP (Even Parity) OP (Odd Parity)

0 0 0 0 1

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 0

CBAOP 

CBAEP 

BA

BCD to Gray Converter

52

Decimal
BCD Input GRAY Output

A B C D W X Y Z

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2 0 0 1 0 0 0 1 1

3 0 0 1 1 0 0 1 0

4 0 1 0 0 0 1 1 0

5 0 1 0 1 0 1 1 1

6 0 1 1 0 0 1 0 1

7 0 1 1 1 0 1 0 0

8 1 0 0 0 1 1 0 0

9 1 0 0 1 1 1 0 1

10-15 all other inputs X X X X

Writing equations and reductions using k=map

53

AW

0 0

00

1 1 X X

X X X

0 0

00

CD

AB

10

11

01

00

10110100

X

BAX

0 0

11

1 1 X X

X X X X

1 1

00

CD

AB

10

11

01

00

10110100

CBCBC BY

0 0

11

0 0 X X

X X X X

0 0

11

CD

AB

10

11

01

00

10110100

DCDCD CZ

0 1

10

0 1 X X

X X X X

0 1

10

CD

AB

10

11

01

00

10110100

