

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

83 Computer Graphics (Reference Note) BSc.CSIT

Unit 5

3D Object Representation

3D object representation is divided into two categories:

a) Boundary Representations (B-reps): The boundary representations describe a three-

dimensional object as a set of surface that separates the object interior from the

environment. E.g. Polyhedron, ellipsoid, aircraft, medical images etc.

- B-reps for single polyhedron satisfy Euler’s formula: V-E+F=2

b) Space Partitioning Representation: Space partitioning describes interior properties by

partitioning the spatial region containing an object into a small, non- overlapping,

contiguous solids. E.g. 3D object as Octree representation.

Boundary Representation

1. Polygon Surface

It is most common representation for 3D graphics object. In this representation, a 3D object is

represented by a set of surfaces that enclose the object interior. This method simplifies and

speeds up the surface rendering and display of the object.

The polygon surfaces are common in design and solid-modeling applications, since wire

frame display can be done quickly to give general indication of surface structure. Then

realistic scenes are produced by interpolating shading patterns across polygon surface to

illuminate.

Polygon surface can be represented by:

a) Polygon Table

In this method, a polygon surface is specified with a set of vertex co-ordinates and associated

attributes. Polygon data tables can be organized into two groups: geometrical and attribute

tables.

Geometric tables: It contain vertex coordinates and parameters to identify the spatial

orientation of polygon surfaces

Attribute table: It gives attribute information for an object (Degree of transparency, surface

reflectivity etc.).

Geometric data consists of three tables:

(i) Vertex table: It stores co-ordinate values for each vertex of the object.

(ii) Edge table: It stores the edge information of polygon.

(iii) Surface table: It stores the number of surfaces present in the polygon.

𝑣1(𝑥1, 𝑦1, 𝑧1)

𝑣4(𝑥4, 𝑦4, 𝑧4)

𝑣5(𝑥5, 𝑦5, 𝑧5)

𝐸1

𝐸2

𝐸3

𝐸4

𝐸5

𝐸6

𝑆1

𝑆2

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

84 Computer Graphics (Reference Note) BSc.CSIT

Vertex table Edge table

𝑣1: 𝑥1, 𝑦1, 𝑧1

𝑣2: 𝑥2, 𝑦2 , 𝑧2

𝑣3: 𝑥3, 𝑦3 , 𝑧3

𝑣4: 𝑥4, 𝑦4, 𝑧4

𝑣5: 𝑥5, 𝑦5 , 𝑧5

Surface table

The object can be displayed efficiently by using data from tables and processing them for

surface rendering and visible surface determination.

b) Polygon table using forward pointer in edge table

For above polygon,

Vertex table Edge table

𝑣1: 𝑥1, 𝑦1, 𝑧1

𝑣2: 𝑥2, 𝑦2 , 𝑧2

𝑣3: 𝑥3, 𝑦3 , 𝑧3

𝑣4: 𝑥4, 𝑦4, 𝑧4

𝑣5: 𝑥5, 𝑦5 , 𝑧5

Surface table

c) Polygon Meshes

A polygon mesh is collection of edges, vertices and polygons connected such that each edge

is shared by at most two polygons. An edge connects two vertices and a polygon is a closed

sequence of edges. An edge can be shared by two polygons and a vertex is shared by at least

two edges.

This method can be used to represent a broad class of solids/surfaces in graphics. A polygon

mesh can be rendered using hidden surface removal algorithms. The polygon mesh can be

represented by three ways-

 Explicit representation

 Pointers to a vertex list

 Pointers to an edge list

In Explicit representation, each polygon is represented by a list of vertex co-ordinates.

𝑃 = ((𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2),…… . . , (𝑥𝑛, 𝑦𝑛 , 𝑧𝑛))

In Pointers to a vertex list, each vertex is stored just once, in vertex list

𝑉 = (𝑣1, 𝑣2, ……… . , 𝑣𝑛)
E.g. A polygon made up of vertices 3, 5, 7, 10 in vertex list be represented as 𝑃1 = {3,5,7,10}

𝐸1: 𝑣1, 𝑣2

𝐸2: 𝑣2, 𝑣3

𝐸3: 𝑣3, 𝑣1

𝐸4: 𝑣3, 𝑣4

𝐸5: 𝑣4, 𝑣5

𝐸6: 𝑣5, 𝑣1

𝑆1: 𝐸1, 𝐸2 , 𝐸3

𝑆2: 𝐸3 , 𝐸4, 𝐸5, 𝐸6

𝐸1: 𝑣1, 𝑣2, 𝑆1

𝐸2: 𝑣2, 𝑣3, 𝑆1

𝐸3: 𝑣3, 𝑣1, 𝑆1, 𝑆2

𝐸4: 𝑣3, 𝑣4, 𝑆2

𝐸5: 𝑣4, 𝑣5, 𝑆2

𝐸6: 𝑣5, 𝑣1, 𝑆2

𝑆1: 𝐸1, 𝐸2 , 𝐸3

𝑆2: 𝐸3 , 𝐸4, 𝐸5, 𝐸6

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

85 Computer Graphics (Reference Note) BSc.CSIT

Representing polygon mesh with each polygon as vertex list.

𝑃1 = {𝑣1, 𝑣2, 𝑣5}

𝑃2 = {𝑣2, 𝑣3, 𝑣5} 𝑃3 = {𝑣3, 𝑣4, 𝑣5}

In Pointers to an edge list, we have vertex list V, represent the polygon as a list of pointers

to an edge list. Each edge in edge list points to the two vertices in the vertex list. Also to one

or two polygon, the edge belongs. Hence, we describe polygon as

𝑃 = (𝐸1, 𝐸2, ……… . . , 𝐸𝑛) and an edge as 𝐸 = (𝑣1, 𝑣2, 𝑃1, 𝑃2) Here if edge belongs to only

one polygon, either then 𝑃1 or 𝑃2 is null.

For the mesh given above,

𝑉 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} = {((𝑥1, 𝑦1, 𝑧1), ……… . . , (𝑥5, 𝑦5, 𝑧5)}

𝐸1 = (𝑣1, 𝑣5, 𝑃1, 𝑁) 𝐸6 = (𝑣3, 𝑣4, 𝑃3, 𝑁)

𝐸2 = (𝑣1, 𝑣2, 𝑃1, 𝑁) 𝐸7 = (𝑣4, 𝑣5, 𝑃3, 𝑁)

𝐸3 = (𝑣2, 𝑣5, 𝑃1, 𝑃2) 𝑃1 = (𝐸1, 𝐸2, 𝐸3)

𝐸4 = (𝑣2, 𝑣3, 𝑃2, 𝑁) 𝑃2 = (𝐸3, 𝐸4, 𝐸5)

𝐸5 = (𝑣3, 𝑣5, 𝑃1, 𝑃3) 𝑃3 = (𝐸5, 𝐸6, 𝐸7)

Here, N represents Null.

d) Plane equation

It this method polygon surface is represented by the equation of plane in the coordinate

system. The 3D object is represented through the set of equations. The equation for plane

surface can be expressed as

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

Where 𝑥, 𝑦, 𝑧 is any point on the plane and 𝐴, 𝐵, 𝐶 & 𝐷 are coefficient of plane equation and

represents the spatial orientation of the polygon surface in space coordinate system. Hence,

the value of coefficient must be known to represent the 3D object.

𝑣1

𝑣3

𝑣2

𝑣4
𝑣5

𝑃1

𝑃2

𝑃3

𝐸2

𝐸1

𝐸4

𝐸3

𝐸7

𝐸5

𝐸6

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

86 Computer Graphics (Reference Note) BSc.CSIT

The value of 𝐴, 𝐵, 𝐶 & 𝐷 can be obtained by solving a set of three plane equation using

coordinate of three non-collinear point on plane. Let us assume that three vertices of plane are
(𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3, 𝑧3). Then,

𝐴𝑥1 + 𝐵𝑦1 + 𝐶𝑧1 + 𝐷 = 0

𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑧2 + 𝐷 = 0

𝐴𝑥3 + 𝐵𝑦3 + 𝐶𝑧3 + 𝐷 = 0

By Cramer’s rule

𝐴 = |
1 𝑦1 𝑧1

1 𝑦2 𝑧2

1 𝑦3 𝑧3

| 𝐵 = |
𝑥1 1 𝑧1

𝑥2 1 𝑧2

𝑥3 1 𝑧3

| 𝐶 = |
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

| 𝐷 = |

𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3

|

For any points (x, y, z)

If Ax + By + Cz + D ≠ 0, then (x, y, z) is not on the plane.

If Ax + By + Cz + D < 0, then (x, y, z) is inside the plane i. e. invisible side

If Ax + By + Cz + D > 0, then (x, y, z) is lies outside the surface.

2. Quadratic Surface

Quadric Surface is one of the frequently used 3D objects surface representation. The quadric

surface can be represented by a second degree polynomial. This includes:

a. Sphere:

For a set of surface point (x, y, z) spherical surface is represented by equation,

(𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)

2 + (𝑧 − 𝑧𝑐)
2 = 𝑟2

Where, (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐) is the center of sphere and r is the radius of the sphere.

b. Ellipsoid:

If (x, y, z) be the any point on ellipsoid with the radius a, b & c along x, y & z axis

then represented as;

𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
= 1

3. Wireframe representation

- If an object may be represented through the collection of points and line then it’s called

wireframe object.

- It’s used to define skeleton of 3D objects in terms of points and lines.

- Mostly use in field of engineering drawings to represent the drawing of structure and

missing parts.

- Wireframe represented object requires less memory for storage and fast for display and

surface rendering.

- In this method the scenes represented are not realistic.

4. Blobby objects

Object that don’t maintain a fixed shape but changes their surface characteristics during

motion or closer to another object are called blobby object. E.g. molecular structure, water

droplet, muscle shape in human body etc.

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

87 Computer Graphics (Reference Note) BSc.CSIT

Fig: Blobby muscle in human

Most common function used for blobby object is Gaussian density function. A surface

function is defined as:

𝑓(𝑥, 𝑦, 𝑧) = ∑𝑏𝑘𝑒−𝑎𝑘𝑟𝑘
2

𝑘

− 𝑇 = 0

Where, 𝑟𝑘
2 = √𝑥𝑘

2 + 𝑦𝑘
2 + 𝑧𝑘

2

 T= some specified threshold

 a, b= parameters used to adjust the amount of blobbiness for individual object.

Advantages

 Can represent organic, blobby or liquid line structures.

 Suitable for modeling natural phenomena like water, human body.

 Surface properties can be easily derived from mathematical equations.

Disadvantages

 Requires expensive computation

 Requires special rendering engine

 Not supported by most graphics hardware

5. Spline representation

- A Spline is a flexible strips used to produce smooth curve through a designated set of

points. A curve drawn with these set of points is spline curve. Spline curves are used to

model 3D object surface shape smoothly.

- A spline curve is a mathematical representation that allow the user to design and control

shape of complex curve and surface.

- Here, user enters a sequence of points called control points & a curve is constructed

whose shape closely follows these control points.

- Two types of spline curve:

a. Interpolating curve: A curve that actually passes through each control point.

- Interpolation curves are commonly used to digitize drawing or to specify

animation paths.

b. Approximating curve: A curve that passes near to control point but not necessary

through them.

- Approximation curves are uses as design tools to structure object

surfaces.

 Interpolating curve Approximating curve

Control point

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

88 Computer Graphics (Reference Note) BSc.CSIT

- Spline curve also used for design of automobile bodies, spacecraft, specification of

animation path, home appliance etc.

- The three degree polynomial known as cubic polynomial is typically used for

constructing smooth curve in computer graphics because of following reasons:

a. It is lowest degree polynomial that can support an inflection (a point at which

curve crosses its tangent i.e. curve changes from concave to convex).

b. The curves are smooth like this and not jumpy like this

.

Spline Specifications:

There are three equivalent methods for specifying a particular spline representation:

a) Boundary condition: We can state the set of boundary conditions that are imposed on

the spline.

𝑥(𝑢) = 𝑎𝑥𝑢
3 + 𝑏𝑥𝑢

2 + 𝑐𝑥𝑢 + 𝑑𝑥 0 ≤ 𝑢 ≤ 1
Boundary condition for this curve can be set for x(0), x(1), x’(0) & x’(1). These four

conditions are sufficient to determine the values of four coefficient 𝑎𝑥, 𝑏𝑥, 𝑐𝑥 & 𝑑𝑥.

b) Characterizing matrix: We can state the matrix that characterizes the spline.

From the boundary condition, the characterizing matrix for spline is:

𝑥(𝑢) = [𝑢3 𝑢2 𝑢 1] [

𝑎𝑥

𝑏𝑥
𝑐𝑥

𝑑𝑥

]

= 𝑈. 𝐶

c) Blending Function: We can state the set of blending functions (or basis functions) that

determine how specified geometric constraints on the curve are combined to calculate

positions along the curve path.

𝑥(𝑢) = ∑ 𝑔𝑘 ∙ 𝐵𝐹𝑘(𝑢)

3

𝑘=0

𝑔𝑘 = Geometric constrain parameter

𝐵𝐹𝑘(𝑢)=Polynomial blending function

6. Cubic spline

- It is used to set up path for object motions or to provide a representation for an existing

object or drawings.

- Compared to higher-order polynomials, cubic splines requires less calculation and

memory and they are more stable. Compared to lower-order polynomials, cubic splines

are more flexible for modeling arbitrary curve shapes.

- Cubic interpolation spline is obtained by fitting the input points with a piecewise cubic

polynomial curve that passes through every control points.

Suppose we have n+1 control points having co-ordinates

𝑃𝑘 = (𝑥𝑘, 𝑦𝑘 , 𝑧𝑘) 𝐾 = 0, 1, 2, 3,……… . , 𝑛

𝑃0

𝑃1

𝑃2 ……

𝑃𝑛

 𝑃𝑛−1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

89 Computer Graphics (Reference Note) BSc.CSIT

A parametric cubic polynomial that is to be fitted between each pair of control points have

following equations:

𝑥(𝑢) = 𝑎𝑥𝑢
3 + 𝑏𝑥𝑢

2 + 𝑐𝑥𝑢 + 𝑑𝑥

𝑦(𝑢) = 𝑎𝑦𝑢3 + 𝑏𝑦𝑢2 + 𝑐𝑦𝑢 + 𝑑𝑦

𝑧(𝑢) = 𝑎𝑧𝑢
3 + 𝑏𝑧𝑢

2 + 𝑐𝑧𝑢 + 𝑑𝑧
We need to determine the values of the four coefficients a, b, c, and d in the polynomial

representation for each of the n curve section. We do this by setting enough boundary

conditions at the “joints” between curve sections we can obtain numerical values for all the

coefficients.

- Cubic splines are more flexible for modeling arbitrary curve shapes.

Q. Construct a natural cubic spline that passes through (1, 2), (2, 3) & (3, 5) having two

segments 𝒇𝟎(𝒙) & 𝒇𝟏(𝒙).

Solution:

For segment 𝑠0

𝑓0(𝑥) = 𝑎0 + 𝑏0𝑥 + 𝑐0𝑥
2 + 𝑑0𝑥

3

a) Since it passes through (1, 2)

 𝑎0 + 𝑏0 + 𝑐0 + 𝑑0 = 2 ………. (i)

b) Since it passes through (2, 3)

 𝑎0 + 2𝑏0 + 4𝑐0 + 8𝑑0 = 3 ……...... (ii)

c) Slope of 𝑓0(𝑥) & 𝑓1(𝑥) must be same at (2, 3)

𝑑 𝑓0(𝑥)

𝑑𝑥
=

𝑑𝑓1(𝑥)

𝑑𝑥

or, 𝑏0 + 2𝑐0𝑥 + 3𝑑0𝑥
2 = 𝑏1 + 2𝑐1𝑥 + 3𝑑1𝑥

2

or, 𝑏0 + 4𝑐0 + 12𝑑0 − 𝑏1 − 4𝑐1 − 12𝑑1 = 0 ………….. (iii)

d) Curvature must be same for 𝑓0(𝑥) & 𝑓1(𝑥) at (2, 3)

𝑑 𝑓0′(𝑥)

𝑑𝑥
=

𝑑𝑓1′(𝑥)

𝑑𝑥

or, 2𝑐0 + 6𝑑0𝑥 = 2𝑐1 + 6𝑑1𝑥

or, 2𝑐0 − 2𝑐1 + 6𝑑0𝑥 − 6𝑑1𝑥 = 0

or, 2𝑐0 − 2𝑐1 + 12𝑑0 − 12𝑑1 = 0 …………. (iv)

e) 𝑓"(𝑥) = 0 at (1, 2)

or, 2𝑐0 + 6𝑑0𝑥 = 0

or, 2𝑐0 + 6𝑑0 = 0

or, 𝑐0 + 3𝑑0 = 0……….. (v)

For segment 𝑠1

𝑓1(𝑥) = 𝑎1 + 𝑏1𝑥 + 𝑐1𝑥
2 + 𝑑1𝑥

3

(0 ≤ 𝑢 ≤ 1)

(1, 2)

𝑠0

𝑓0(𝑥)

𝑓1(𝑥)

(3, 5)

𝑠1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

90 Computer Graphics (Reference Note) BSc.CSIT

a) Since it passes through (2, 3)

 𝑎1 + 2𝑏1 + 4𝑐1 + 8𝑑1 = 3 ……...... (vi)

b) Since it passes through (3, 5)

 𝑎1 + 3𝑏1 + 9𝑐1 + 27𝑑1 = 5 ……...... (vii)

c) 𝑓"(𝑥) = 0 at (3, 5)

or, 2𝑐1 + 6𝑑1𝑥 = 0

or, 2𝑐1 + 18𝑑1 = 0

or, , 𝑐1 + 9𝑑1 = 0 ……….. (viii)

Solve these equation and plot the graph.

Hermite Interpolation (Hermite curve)

It is an interpolating piecewise cubic polynomial with a specified tangent at each control

point.

If we change the control point at 𝑃0, then the curve will also change, so that angle 𝜃 between

𝑃0 and tangent at 𝑃0 will remain constant.

- It has local control over the curve i.e. each curve section depend on its end point only.

- The vector equivalence of Hermite curve is
𝑃(𝑢) = 𝑎𝑢3 + 𝑏𝑢2 + 𝑐𝑢 + 𝑑 (i)

Where, 𝑥 component of 𝑃(𝑢) is

𝑥(𝑢) = 𝑎𝑥𝑢
3 + 𝑏𝑥𝑢

2 + 𝑐𝑥𝑢 + 𝑑𝑥
Similarly, y and z component

𝑦(𝑢) = 𝑎𝑦𝑢3 + 𝑏𝑦𝑢2 + 𝑐𝑦𝑢 + 𝑑𝑦

𝑧(𝑢) = 𝑎𝑧𝑢
3 + 𝑏𝑧𝑢

2 + 𝑐𝑧𝑢 + 𝑑𝑧

Let 𝑃(𝑢) denotes the parametric cubic point function for the curve section between control

point 𝑝𝑘 & 𝑝𝑘+1.

At 𝑝𝑘 , u=0

∴ 𝑃(0) = 𝑝𝑘

At 𝑝𝑘+1, u=1

𝜃

𝑃0

𝑃1

𝑃2

𝜃

 𝑃0

𝑃1

𝑃2

𝑝𝑘

 𝑝𝑘+1

𝑃(𝑢) = (𝑥(𝑢), 𝑦(𝑢), 𝑧(𝑢))

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

91 Computer Graphics (Reference Note) BSc.CSIT

∴ 𝑃(1) = 𝑝𝑘+1

Also let 𝐷𝑝𝑘 & 𝐷𝑝𝑘+1 denote the slope at 𝑝𝑘 & 𝑝𝑘+1.

∴ 𝑃′(0) = 𝐷𝑝𝑘

 𝑃′(1) = 𝐷𝑝𝑘+1

Hence boundary condition for Hermite curve

𝑃(0) = 𝑝𝑘

𝑃(1) = 𝑝𝑘+1

 𝑃′(0) = 𝐷𝑝𝑘

 𝑃′(1) = 𝐷𝑝𝑘+1

Matrix equivalent of eq. (i) is

𝑃(𝑢) = [𝑢3 𝑢2 𝑢 1] [

𝑎
𝑏
𝑐
𝑑

] ……………. (iii)

Similarly derivative of point function can be represented as,

𝑃′(𝑢) = [3𝑢2 2𝑢 1 0] [

𝑎
𝑏
𝑐
𝑑

]

In matrix form, the Hermite boundary condition from eq. (ii) can be represented as

[

𝑝𝑘

𝑝𝑘+1

𝐷𝑝𝑘

𝐷𝑝𝑘+1

] = [

0
1
0
3

0
1
0
2

0
1
1
1

1
1
0
0

] [

𝑎
𝑏
𝑐
𝑑

] …………… (iv)

Solving eq. (iv) for polynomial coefficient, we have

[

𝑎
𝑏
𝑐
𝑑

] = [

0
1
0
3

0
1
0
2

0
1
1
1

1
1
0
0

]

−1

. [

𝑝𝑘

𝑝𝑘+1

𝐷𝑝𝑘

𝐷𝑝𝑘+1

]

 = [

−2
−3
0
1

−2
3
0
0

1
−2
1
0

1
−1
0
0

] . [

𝑝𝑘

𝑝𝑘+1

𝐷𝑝𝑘

𝐷𝑝𝑘+1

]

 = 𝑀𝐻. [

𝑝𝑘

𝑝𝑘+1

𝐷𝑝𝑘

𝐷𝑝𝑘+1

]

Where, 𝑀𝐻 is the Hermite matrix.

Hence eq. (iii) can be represented as

................. (ii)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

92 Computer Graphics (Reference Note) BSc.CSIT

𝑃(𝑢) = [𝑢3 𝑢2 𝑢 1].𝑀𝐻. [

𝑝𝑘

𝑝𝑘+1

𝐷𝑝𝑘

𝐷𝑝𝑘+1

] …………… (v)

Expanding (v)

𝑃(𝑢) = 𝑝𝑘(2𝑢3 − 3𝑢2 + 1) + 𝑝𝑘+1(−2𝑢3 + 3𝑢2) + 𝐷𝑝𝑘(𝑢3 − 2𝑢2 + 𝑢) + 𝐷𝑝𝑘+1(𝑢
3

− 𝑢2)

In terms of Hermite blending function, ‘H’, the Hermite curve can be represented as:

𝑃(𝑢) = 𝑝𝑘𝐻0(𝑢) + 𝑝𝑘+1𝐻1(𝑢) + 𝐷𝑝𝑘𝐻2(𝑢) + 𝐷𝑝𝑘+1𝐻3(𝑢)

7. Bezier Curve

Bezier curve is developed by the French engineer Pierre Bezier for the design of Renault

automobile bodies.

- It is an approximating spline widely used in various CAD system.

- Bezier curve is generated under the control of points known as control points.

General Bezier curve for (n+1) control point, denoted as 𝑝𝑘 = (𝑥𝑘, 𝑦𝑘 , 𝑧𝑘) with ‘k’ varying

from 0 to n is given by

𝑃(𝑢) = ∑ 𝑝𝑘𝐵𝐸𝑍𝑘,𝑛(𝑢), 0 ≤ 𝑢 ≤ 1 …………(𝑖)

𝑛

𝑘=0

Where, 𝑃(𝑢) is a point on Bezier Curve.

 𝑝𝑘 is a control point.

 𝐵𝐸𝑍𝑘,𝑛(𝑢) is a Bezier blending function also known as Bernstein Polynomial.

Bezier blending function is defined as

𝐵𝐸𝑍𝑘,𝑛(𝑢) = 𝐶(𝑛, 𝑘)𝑢𝑘(1 − 𝑢)𝑛−𝑘

Where, 𝐶(𝑛, 𝑘) =
𝑛!

𝐾!(𝑛−𝑘)!

Individual x, y, z coordinates an a Bezier curve is given by,

𝑥(𝑢) = ∑ 𝑥𝑘𝐵𝐸𝑍𝑘,𝑛(𝑢)

𝑛

𝑘=0

𝑦(𝑢) = ∑ 𝑦𝑘𝐵𝐸𝑍𝑘,𝑛(𝑢)

𝑛

𝑘=0

𝑧(𝑢) = ∑ 𝑧𝑘𝐵𝐸𝑍𝑘,𝑛(𝑢)

𝑛

𝑘=0

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

93 Computer Graphics (Reference Note) BSc.CSIT

Fig: Bezier curve generated by three and four control point.

Properties of Bezier curve:

a) The basis functions are real.

b) The Bezier curve always passes through first and last control point i.e. 𝑝(0) =

𝑝0 & 𝑝(1) = 𝑝𝑛.

c) The degree of polynomial representing Bezier curve is one less than the number of

control points.

d) The Bezier curve always follows convex hull formed by control points.

e) The Bezier curve always lies inside the polygon formed by control points.

f) Bezier blending functions are positive and sum is equal to 1.

 ∑ 𝐵𝐸𝑍𝑘,𝑛(𝑢) = 1𝑛
𝑘=0

g) The direction of the tangent vector at the end points is same like vector determined by

first and last segment.

Cubic Bezier Curve

- It is a Bezier curve generated by four control points.

- General equation for cubic Bezier curve is

𝑃(𝑢) = ∑ 𝑝𝑘𝐵𝐸𝑍𝑘,𝑛(𝑢), 0 ≤ 𝑢 ≤ 1 …………(𝑖)

3

𝑘=0

𝑃(𝑢) = 𝑝0𝐵𝐸𝑍0,3(𝑢) + 𝑝1𝐵𝐸𝑍1,3(𝑢) + 𝑝2𝐵𝐸𝑍2,3(𝑢) + 𝑝3𝐵𝐸𝑍3,3(𝑢)

Where,

𝐵𝐸𝑍0,3(𝑢) = 𝐶(3,0)𝑢0(1 − 𝑢)3−0 =
3!

0! (3 − 0)!
× (1 − 𝑢)3 = (1 − 𝑢)3

Similarly,

𝐵𝐸𝑍1,3(𝑢) = 3𝑢(1 − 𝑢)2

𝐵𝐸𝑍2,3(𝑢) = 3𝑢2(1 − 𝑢)

𝐵𝐸𝑍3,3(𝑢) = 𝑢3

∴ 𝑃(𝑢) = 𝑝0(1 − 𝑢)3 + 𝑝13𝑢(1 − 𝑢)2 + 𝑝23𝑢2(1 − 𝑢) + 𝑝3𝑢
3

In matrix form,

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

94 Computer Graphics (Reference Note) BSc.CSIT

𝑃(𝑢) = [𝑢3 𝑢2 𝑢 1].𝑀𝐵𝐸𝑍 . [

𝑝0

𝑝1
𝑝2

𝑝3

]

Where,

𝑀𝐵𝐸𝑍 = 𝐵𝑒𝑧𝑖𝑒𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 = [

−1
 3
−3
 1

 3
−6
 3
 0

−3
 3
 0
 0

1
0
0
0

]

Bezier surfaces

- Generalizations of Bezier curves to higher dimensions are called Bezier surfaces.

- The parametric vector function for the Bezier surface is formed as the Cartesian product

of Bezier blending function:

𝑃(𝑢, 𝑣) = ∑ ∑ 𝑝𝑗,𝑘𝐵𝐸𝑍𝑗,𝑚(𝑣)𝐵𝐸𝑍𝑘,𝑛(𝑢)

𝑛

𝑘=0

𝑚

𝑗=0

With 𝑝𝑗,𝑘 specifying the location of the (m+1) by (n+1) control points.

- Bezier surfaces have the same properties as Bezier curves, and they provide a convenient

method for interactive design applications.

Q. Construct Bezier curve for control points (4, 2), (8, 8) and (16, 4).

Solution:

Given control points

𝑝0 = (𝑥0, 𝑦0) = (4,2)

𝑝1 = (𝑥1, 𝑦1) = (8,8)

𝑝2 = (𝑥2, 𝑦2) = (16,4)

Here, degree (or order) n= 2

We have basis function as

𝑃(𝑢) = ∑ 𝑝𝑘𝐵𝐸𝑍𝑘,𝑛(𝑢), 0 ≤ 𝑢 ≤ 1

𝑛

𝑘=0

 = ∑ 𝑝𝑘𝐵𝐸𝑍𝑘,2(𝑢), 0 ≤ 𝑢 ≤ 1

2

𝑘=0

∴ 𝑃(𝑢) = 𝑝0𝐵𝐸𝑍0,2(𝑢) + 𝑝1𝐵𝐸𝑍1,2(𝑢) + 𝑝2𝐵𝐸𝑍2,2(𝑢)

Parametric equations are;

 𝑥(𝑢) = 𝑥0𝐵𝐸𝑍0,2(𝑢) + 𝑥1𝐵𝐸𝑍1,2(𝑢) + 𝑥2𝐵𝐸𝑍2,2(𝑢) ………… (i)

𝑦(𝑢) = 𝑦0𝐵𝐸𝑍0,2(𝑢) + 𝑦1𝐵𝐸𝑍1,2(𝑢) + 𝑦2𝐵𝐸𝑍2,2(𝑢) ………… (ii)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

95 Computer Graphics (Reference Note) BSc.CSIT

Now,

𝐵𝐸𝑍0,2(𝑢) = 𝐶(2,0)𝑢0(1 − 𝑢)2−0 =
2!

0!(2−0)!
× (1 − 𝑢)2 = (1 − 𝑢)2

𝐵𝐸𝑍1,2(𝑢) = 𝐶(2,1)𝑢1(1 − 𝑢)2−1 =
2!

1!(2−1)!
× 𝑢(1 − 𝑢)1 = 2𝑢(1 − 𝑢)

𝐵𝐸𝑍2,2(𝑢) = 𝐶(2,2)𝑢2(1 − 𝑢)2−2 =
2!

2!(2−2)!
× 𝑢2(1 − 𝑢)0 = 𝑢2

Putting these values in eq. (i) & (ii) we get;

𝑥(𝑢) = 𝑥0(1 − 𝑢)2 + 𝑥12𝑢(1 − 𝑢) + 𝑥2𝑢
2 = 4𝑢2 + 8𝑢 + 4

𝑦(𝑢) = 𝑦0(1 − 𝑢)2 + 𝑦12𝑢(1 − 𝑢) + 𝑦2𝑢
2 = −10𝑢2 + 12𝑢 + 2

Now,

 𝑥(𝑢) 𝑦(𝑢)
𝑢 =0 4 2

𝑢 =0.2 5.76 4.0

𝑢 =0.4 7.84 5.20

𝑢 =0.6 10.24 5.6

𝑢 =0.8 12.96 5.2

𝑢 =1 16 4

Drawing these points we get:

Q. Construct the Bezier curve of order 3 with 4 vertices of the control polygon 𝒑𝟎(𝟎, 𝟎),

𝒑𝟏(𝟏, 𝟐), 𝒑𝟐(𝟑, 𝟐)& 𝒑𝟑(𝟐, 𝟎). Generate at least 5 points on the curve.

Solution:

Given control points

𝑝0 = (𝑥0, 𝑦0) = (0,0)

𝑝1 = (𝑥1, 𝑦1) = (1,2)

𝑝2 = (𝑥2, 𝑦2) = (3,2)

𝑝3 = (𝑥3, 𝑦3) = (2,0)

Here, degree n= 3

We have basis function as

𝑃(𝑢) = ∑ 𝑝𝑘𝐵𝐸𝑍𝑘,𝑛(𝑢), 0 ≤ 𝑢 ≤ 1

𝑛

𝑘=0

 = ∑ 𝑝𝑘𝐵𝐸𝑍𝑘,3(𝑢), 0 ≤ 𝑢 ≤ 1

3

𝑘=0

𝑝1(8,8)

𝑝0(4,2)

𝑝2(16,4)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

96 Computer Graphics (Reference Note) BSc.CSIT

∴ 𝑃(𝑢) = 𝑝0𝐵𝐸𝑍0,3(𝑢) + 𝑝1𝐵𝐸𝑍1,3(𝑢) + 𝑝2𝐵𝐸𝑍2,3(𝑢) + 𝑝3𝐵𝐸𝑍3,3(𝑢)

Parametric equations are;

 𝑥(𝑢) = 𝑥0𝐵𝐸𝑍0,3(𝑢) + 𝑥1𝐵𝐸𝑍1,3(𝑢) + 𝑥2𝐵𝐸𝑍2,3(𝑢) + 𝑥3𝐵𝐸𝑍3,3(𝑢) ………… (i)

𝑦(𝑢) = 𝑦0𝐵𝐸𝑍0,3(𝑢) + 𝑦1𝐵𝐸𝑍1,3(𝑢) + 𝑦2𝐵𝐸𝑍2,3(𝑢) + 𝑦3𝐵𝐸𝑍3,3(𝑢) ………… (ii)

Now,

𝐵𝐸𝑍0,3(𝑢) = 𝐶(3,0)𝑢0(1 − 𝑢)3−0 =
3!

0!(3−0)!
× (1 − 𝑢)3 = (1 − 𝑢)3

𝐵𝐸𝑍1,3(𝑢) = 𝐶(3,1)𝑢1(1 − 𝑢)3−1 =
3!

1!(3−1)!
× 𝑢(1 − 𝑢)2 = 3𝑢(1 − 𝑢)2

𝐵𝐸𝑍2,3(𝑢) = 𝐶(3,2)𝑢2(1 − 𝑢)3−2 =
3!

2!(3−2)!
× 𝑢2(1 − 𝑢)1 = 3𝑢2(1 − 𝑢)

𝐵𝐸𝑍3,3(𝑢) = 𝐶(3,3)𝑢3(1 − 𝑢)3−3 =
3!

3!(3−3)!
× 𝑢3(1 − 𝑢)0 = 𝑢3

Putting these values in eq. (i) & (ii) we get;

𝑥(𝑢) = 𝑥0(1 − 𝑢)3 + 𝑥13𝑢(1 − 𝑢)2 + 𝑥23𝑢2(1 − 𝑢) + 𝑥3𝑢
3 = −4𝑢3 + 3𝑢2 + 3𝑢

𝑦(𝑢) = 𝑦0(1 − 𝑢)3 + 𝑦13𝑢(1 − 𝑢)2 + 𝑦23𝑢2(1 − 𝑢) + 𝑦3𝑢
3 = −6𝑢2 + 6𝑢

Now,

 𝑥(𝑢) 𝑦(𝑢)

𝑢 =0 0 0

𝑢 =0.15 0.50 0.76

𝑢 =0.35 1.24 1.36

𝑢 =0.5 1.75 1.50

𝑢 =0.65 2.12 1.36

𝑢 =0.85 2.14 0.76

𝑢 =1 2 0

Plotting the graph;

8. B-spline Curve

B-spline curve is a set of piecewise polynomial segments that passes close to a set of control

points.

It has two advantage over Bezier curve:

a) The degree of B-spline polynomial can be set independently of the number of control

points.

b) It allows local control over the shape of a spline curve.

General equation of B-spline curve is given by

𝑃(𝑢) = ∑ 𝑝𝑘𝐵𝑘,𝑑(𝑢), 0 ≤ 𝑢 ≤ 𝑛 + 𝑑, 2 ≤ 𝑑 ≤ 𝑛 + 1

𝑛

𝑘=0

𝑝0 𝑝3

𝑝1 𝑝2

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

97 Computer Graphics (Reference Note) BSc.CSIT

Where, 𝑝𝑘 is a set of (n+1) control points.

𝐵𝑘,𝑑(𝑢) is the B-spline blending function.

Blending function for B-spline curves are defined by

𝐵𝑘,1(𝑢) = {
1, 𝑖𝑓 𝑢𝑘 ≤ 𝑢 < 𝑢𝑘+1

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐵𝑘,𝑑(𝑢) =
𝑢−𝑢𝑘

𝑢𝑘+𝑑−1−𝑢𝑘
𝐵𝑘,𝑑−1(𝑢) +

𝑢𝑘+𝑑−𝑢

𝑢𝑘+𝑑−𝑢𝑘+1
𝐵𝑘+1,𝑑−1(𝑢)

𝑝0, 𝑝1, 𝑝2, 𝑝3 Control point

𝑥0, 𝑥1, 𝑥2, 𝑥3 Knot values

𝑄0, 𝑄1, 𝑄2 Curve segment

- The knots produce a vector that defines the domain of the curve.

Properties of B-Spline curve

a) The polynomial curve has 𝑑 − 1 degree.

b) For (n+1) control points, the curve is described with (n+1) blending function.

c) Each blending function 𝐵𝑘,𝑑 is defined over ‘d’ sub-interval of the total range of ‘u’,

starting at knot value 𝑢𝑘.

d) The sum of B-spline basis functions for any parameter value is 1

∑ 𝐵𝑘,𝑑(𝑢) = 1

𝑛

𝑘=0

e) Each basis function is positive or zero for all parameter value.

f) The range of parameter ‘u’ is divided into (n+d) sub interval by (n+d+1) values

specified in knot vector.

g) Each section of spline curve is influenced by ‘d’ control point.

h) Any one control point can affect the shape of at most ‘d’ curve sections.

i) The maximum order of curve is equal to the number of vertices of defining polygon.

j) The curve generally follows the shape of defining polygon.

k) The degree of B-spline polynomial is independent on the number of vertices of

defining polygon.

𝑥0

𝑝1

 𝑥1

𝑝2

𝑥2

𝑝3

𝑥3

𝑝0

𝑄0

𝑄1

𝑄2

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

98 Computer Graphics (Reference Note) BSc.CSIT

On the basis of the knot points and interval length of segment there are two types of spline;

 Periodic B-spline: Knot points are equi-space to each other and splines are generated

through the set of the equi-interval segments then such splines are called periodic B-

splines.

 Aperiodic B-spline: If knot points are not equi-space to each other and splines are not

generated through the set of the equi interval segments then such splines are called

aperiodic B-splines.

Knot vector

There are three general classifications for knot vectors: uniform, open uniform and non-

uniform.

 Uniform, periodic B-splines:

 When the spacing between knot values is constant, the resulting curve is a

uniform B-spline. For e.g. {0, 1, 2, 3, 4, 5}

- Uniform B-splines have periodic blending function. That is, for given value of ‘n’ and

‘d’, all blending functions have the same shape

- Periodic splines are particularly useful for generating certain closed curves.

 Open uniform B-splines:

 For open B-splines, the knot spacing is uniform expect at the ends where knot

values are repeated ‘d’ times. For e.g.

 {0, 0, 1, 2, 3, 3} for d=2, and n=3

 Non-uniform B-splines:

 For non-uniform B-splines, we can choose multiple internal knot values and

unequal spacing between the knot values. For e.g.

 {0, 1, 2, 3, 3, 4}

 {0, 0.2, 0.6, 0.9, 1.0}

- Non-uniform B-splines provide increased flexibility in controlling a curve shape.

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

99 Computer Graphics (Reference Note) BSc.CSIT

References

- Donald Hearne and M.Pauline Baker, “Computer Graphics, C Versions.” Prentice

Hall

