

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

19 Computer Graphics (Reference Note) BSc.CSIT

Unit 2

Scan Conversion Algorithm

Scan Conversion

- A procedure used to digitize or rasterize pixel data available on frame buffer.

- The process of representing continuous graphics object as a collection of discrete pixels is

called scan conversion. For e.g. a line is defined by its two end points and the line

equation.

 Scan conversion of a point

- Scan conversion of a point requires the two data that are pixel position and color for

display.

- In C, a point be scan converted using function putpixel() defined in library.

Header file is

 <graphics.h>

putpixel(x, y, color)

Here, x & y represent pixel position on 2D display.

 Scan Conversion of line

Say 𝑦 = 𝑚𝑥 + 𝑏 be the equation of line with end point (𝑥1, 𝑦1) and (𝑥2, 𝑦2) then,

𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1

∴ 𝑚 =
∆𝑦

∆𝑥
 ………………. (i)

Here, 𝑚 represents the slope of line path where by ∆𝑥 & ∆𝑦 gives the deflection needed

towards horizontal and vertical direction to get new pixel from current pixel position.

- Slope of line also describes the nature and characteristics of line that is going to display.

Line Drawing algorithm

a) Digital Differential Analyzer (DDA) algorithm (Incremental algorithm)

b) Bresenham’s line drawing algorithm

a) Digital Differential Analyzer (DDA) algorithm

It is a scan conversion line algorithm based on calculating either ∆𝑥 or ∆𝑦 using equation

𝑚 =
∆𝑦

∆𝑥

The equation of the line is given as;

𝑦 = 𝑚𝑥 + 𝑏 …………..(i)

𝑚 = (𝑦2 − 𝑦1)/(𝑥2 − 𝑥1) ……………. (ii)

For any interval ∆𝑥 , corresponding interval is given by ∆𝑦 = 𝑚∆𝑥.

If 𝑚 <= 1, and start point is left endpoint then ∆𝑥 = 1 and
𝑥1 𝑥2

𝑦1

𝑦2

𝑚 <= 1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

20 Computer Graphics (Reference Note) BSc.CSIT

𝑦𝑘+1 = 𝑦𝑘 + 𝑚

If 𝑚 <= 1, and start point is right endpoint, then ∆𝑥 = −1 and

𝑦𝑘+1 = 𝑦𝑘 − 𝑚

If 𝑚 > 1, and start point is left endpoint, then ∆𝑦 = 1 and

𝑥𝑘+1 = 𝑥𝑘 +
1

𝑚

If 𝑚 > 1, and start point is right endpoint, then ∆𝑦 = −1 and

𝑥𝑘+1 = 𝑥𝑘 −
1

𝑚

Advantages of DDA:

- It is simple to understand.

- It requires no special skills for implementation.

- It is faster method than direct use of the line equation y=mx+c.

Disadvantages of DDA:

- m is stored in floating point number.

- Accumulation of round-off error in successive additions can cause calculated pixel

positions to drift away from the actual line path for long line segments.

- Rounding operations and floating-point-arithmetic are time consuming.

Examples

Q. Digitized the line with end points (0, 0) and (4, 5) using DDA.

Solution:

Given,

(𝑥1, 𝑦1) = (0, 0)

(𝑥2, 𝑦2) = (4, 5)

𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
=

5−0

4−0
= 1.25

Since, 𝑚 > 1, from DDA algorithm we have;

𝑦𝑘+1 = 𝑦𝑘 + 1

𝑥𝑘+1 = 𝑥𝑘 +
1

𝑚

x y x-plot y-plot (x, y)

0 0 0 0 (0, 0)

0.8 1 1 1 (1, 1)

1.6 2 2 2 (2, 2)

2.4 3 2 3 (2, 3)

3.2 4 3 4 (3, 4)

4 5 4 5 (4, 5)

𝑥1 𝑥2

𝑦1

𝑦2

𝑚 > 1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

21 Computer Graphics (Reference Note) BSc.CSIT

Q. Digitized the line with end points (3, 7) and (8, 3) using DDA.

Solution:

Given,

(𝑥1, 𝑦1) = (3, 7)

(𝑥2, 𝑦2) = (8, 3)

𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
=

3−7

8−3
= −0.8

Since, m<1, from DDA algorithm we have;

𝑥𝑘+1 = 𝑥𝑘 + 1

𝑦𝑘+1 = 𝑦𝑘 + 𝑚

x y x-plot y-plot (x, y)

3 7 3 7 (3, 7)

4 6.2 4 6 (4, 6)

5 5.4 5 5 (5, 5)

6 4.6 6 5 (6, 5)

7 3.8 7 4 (7, 4)

8 3 8 3 (8, 3)

b) Bresenham’s line drawing algorithm

Case I: 0 < 𝑚 < 1

Let (𝑥𝑘, 𝑦𝑘) is pixel at 𝑘𝑡ℎ step then next point to plot may be

either (𝑥𝑘 + 1, 𝑦𝑘) or (𝑥𝑘 + 1, 𝑦𝑘 + 1).

Let 𝑑1 & 𝑑2 be the separation of pixel position (𝑥𝑘 + 1, 𝑦𝑘)

and (𝑥𝑘 + 1, 𝑦𝑘 + 1) from the actual line path.

𝑦 = 𝑚𝑥 + 𝑏

Then at sampling point (𝑥𝑘 + 1)

𝑥𝑘 𝑥𝑘 + 1

𝑦𝑘

𝑦𝑘 + 1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

22 Computer Graphics (Reference Note) BSc.CSIT

𝑦 = 𝑚(𝑥𝑘 + 1) + 𝑏

From figure,

𝑑1 = 𝑦 − 𝑦𝑘 = 𝑚(𝑥𝑘 + 1) + 𝑏 − 𝑦𝑘

𝑑2 = (𝑦𝑘 + 1) − 𝑦 = (𝑦𝑘 + 1) − 𝑚(𝑥𝑘 + 1) − 𝑏

Now, 𝑑1 − 𝑑2 = 2𝑚(𝑥𝑘 + 1) − (𝑦𝑘 + 1) − 𝑦𝑘 + 2𝑏 = 2𝑚(𝑥𝑘 + 1) − 2𝑦𝑘 + 2𝑏 − 1

Let us define a decision parameter 𝑃𝑘 for the 𝑘𝑡ℎ step by

𝑃𝑘 = ∆𝑥(𝑑1 − 𝑑2)

∆𝑥 > 0 Therefore, 𝑃𝑘 < 0 if 𝑑1 < 𝑑2

 𝑃𝑘 ≥ 0 if 𝑑1 > 𝑑2

∴ 𝑃𝑘 = ∆𝑥(𝑑1 − 𝑑2) = ∆𝑥{2
∆𝑦

∆𝑥
(𝑥𝑘 + 1) − 2𝑦𝑘 + 2𝑏 − 1} = 2∆𝑦. 𝑥𝑘 − 2∆𝑥. 𝑦𝑘 + 𝑐 ……(i)

Where the constant 𝑐 =2∆𝑦 + ∆𝑥(2𝑏 − 1).

Now, for next step;

 𝑃𝑘+1 = 2∆𝑦. 𝑥𝑘+1 − 2∆𝑥. 𝑦𝑘+1 + 𝑐 ……..(ii)

From (i) & (ii)

∴ 𝑃𝑘+1 − 𝑃𝑘 = 2∆𝑦(𝑥𝑘+1 − 𝑥𝑘) − 2∆𝑥(𝑦𝑘+1 − 𝑦𝑘)

∴ 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑦 − 2∆𝑥(𝑦𝑘+1 − 𝑦𝑘) [Since, 𝑥𝑘+1 = 𝑥𝑘 + 1]

Where, 𝑦𝑘+1 − 𝑦𝑘= 0 or 1

If 𝑃𝑘 < 0,

𝑦𝑘+1 = 𝑦𝑘 so 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑦

If 𝑃𝑘 ≥ 0,

𝑦𝑘+1 = 𝑦𝑘 + 1 so 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑦 − 2∆𝑥

Therefore, initial decision parameter,

 𝑃0 = 2∆𝑦. 𝑥0 − 2∆𝑥. 𝑦0 + 𝑐 [from (i)]

 =2∆𝑦𝑥0 − 2∆𝑥𝑦0 +2∆𝑦 + ∆𝑥(2𝑏 − 1)

 =2∆𝑦𝑥0 − 2∆𝑥𝑦0 +2∆𝑦 + 2𝑏∆𝑥 − ∆𝑥

 =2∆𝑦𝑥0 − 2∆𝑥𝑦0 +2∆𝑦 + 2(𝑦0 −
∆𝑦

∆𝑥
𝑥0)∆𝑥 − ∆𝑥

 =2∆𝑦𝑥0 − 2∆𝑥𝑦0 +2∆𝑦 + 2∆𝑥𝑦0 − 2∆𝑦𝑥0 − ∆𝑥

 =2∆𝑦 − ∆𝑥

 𝑃0 = 2∆𝑦 − ∆𝑥

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

23 Computer Graphics (Reference Note) BSc.CSIT

Algorithm

1. Input the two line endpoints and store the left endpoint in (𝑥0, 𝑦0).

2. Load (𝑥0, 𝑦0) into the frame buffer i.e. plot the first point.

3. Calculate constants ∆𝑥, ∆𝑦, 2∆𝑦 and 2∆𝑦-2∆𝑥 and obtain the starting value for the

decision parameter as

 𝑃0 = 2∆𝑦 − ∆𝑥

4. At each 𝑥𝑘, along the line, starting at k=0, perform the following tests:

If 𝑃𝑘 < 0, then next point to plot is (𝑥𝑘 + 1, 𝑦𝑘) and

 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑦

Otherwise, the next point to plot is (𝑥𝑘 + 1, 𝑦𝑘 + 1) and

 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑦 − 2∆𝑥

5. Repeat step 4 ∆𝑥 times.

[Note: For m>1, just interchange the role of x & y]

Case II: 𝑚 > 1

Let (𝑥𝑘, 𝑦𝑘) is pixel at 𝑘𝑡ℎ step then next point to plot may be either (𝑥𝑘, 𝑦𝑘 + 1) or (𝑥𝑘 +

1, 𝑦𝑘 + 1).

Let 𝑑1 & 𝑑2 be the separation of pixel position (𝑥𝑘, 𝑦𝑘 + 1) and (𝑥𝑘 + 1, 𝑦𝑘 + 1) from the

actual line path.

𝑦 = 𝑚𝑥 + 𝑏

The actual value of x is given by;

𝑥 = (𝑦 − 𝑏)/𝑚

Then at sampling point (𝑦𝑘 + 1)

𝑥 = (𝑦𝑘 + 1 − 𝑏)/𝑚

From figure,

𝑑1 = 𝑥 − 𝑥𝑘 =
𝑦𝑘+1−𝑏

𝑚
− 𝑥𝑘 =

𝑦𝑘+1−𝑏−𝑚𝑥𝑘

𝑚

𝑑2 = (𝑥𝑘 + 1) − 𝑥 = (𝑥𝑘 + 1) −
𝑦𝑘+1−𝑏

𝑚
=

𝑚𝑥𝑘+𝑚−𝑦𝑘−1+𝑏

𝑚

Now, 𝑑1 − 𝑑2 =
2𝑦𝑘−2𝑚𝑥𝑘−2𝑏−𝑚+2

𝑚

Let us define a decision parameter 𝑃𝑘 for the 𝑘𝑡ℎ step by

𝑃𝑘 = ∆𝑦(𝑑1 − 𝑑2)

∆𝑦 > 0 Therefore, 𝑃𝑘 < 0 if 𝑑1 < 𝑑2

 𝑃𝑘 ≥ 0 if 𝑑1 ≥ 𝑑2

𝑦𝑘 + 1

𝑥𝑘 𝑥 𝑥𝑘 + 1

𝑑1 𝑑2

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

24 Computer Graphics (Reference Note) BSc.CSIT

∴ 𝑃𝑘 = ∆𝑦(𝑑1 − 𝑑2) = ∆𝑦 {
2𝑦𝑘−2

∆𝑦

∆𝑥
𝑥𝑘−2𝑏−

∆𝑦

∆𝑥
+2

∆𝑦

∆𝑥

} = 2∆𝑥𝑦𝑘 − 2∆𝑦𝑥𝑘 + 2(1 − 𝑏)∆𝑥 − ∆𝑦

 ∴ 𝑃𝑘 = 2∆𝑥𝑦𝑘 − 2∆𝑦𝑥𝑘 + 𝑐 …….. (i)

Where, 𝑐 = 2(1 − 𝑏)∆𝑥 − ∆𝑦

Now, for next step;

 𝑃𝑘+1 = 2∆𝑥. 𝑦𝑘+1 − 2∆𝑦. 𝑥𝑘+1 + 𝑐 ……..(ii)

From (i) & (ii)

∴ 𝑃𝑘+1 − 𝑃𝑘 = 2∆𝑥(𝑦𝑘+1 − 𝑦𝑘) − 2∆𝑦(𝑥𝑘+1 − 𝑥𝑘)

∴ 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑥 − 2∆𝑦(𝑥𝑘+1 − 𝑥𝑘) [Since, 𝑦𝑘+1 = 𝑦𝑘 + 1]

Where, 𝑥𝑘+1 − 𝑥𝑘= 0 or 1

If 𝑃𝑘 < 0,

𝑥𝑘+1 = 𝑥𝑘 so 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑥

If 𝑃𝑘 ≥ 0,

𝑥𝑘+1 = 𝑥𝑘 + 1 so 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑥 − 2∆𝑦

Therefore, initial decision parameter,

 𝑃0 = 2∆𝑥𝑦0 − 2∆𝑦𝑥0 + 𝑐

 = 2∆𝑥𝑦0 − 2∆𝑦𝑥0 + 2(1 − 𝑏)∆𝑥 − ∆𝑦

 = 2∆𝑥𝑦0 − 2∆𝑦𝑥0 + 2∆𝑥 − 2𝑏∆𝑥 − ∆𝑦

 = 2∆𝑥𝑦0 − 2∆𝑦𝑥0 + 2∆𝑥 − 2(𝑦0 − 𝑚𝑥0)∆𝑥 − ∆𝑦

 = 2∆𝑥𝑦0 − 2∆𝑦𝑥0 + 2∆𝑥 − 2(𝑦0 −
∆𝑦

∆𝑥
𝑥0)∆𝑥 − ∆𝑦

 𝑃0 = 2∆𝑥 − ∆𝑦

Examples

Q. Digitize the line with endpoints (20, 10), (30, 18) using Bresenham’s line algorithm.

Solution:

Here,

(𝑥1, 𝑦1) = (20,10)

(𝑥2, 𝑦2) = (30, 18)

𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
=

18−10

30−20
= 0.8 < 1

Here, ∆𝑥 = 10, ∆𝑦 = 8, 2∆𝑦 = 16, 2∆𝑦 − 2∆𝑥 = −4

The initial decision parameter (𝑃0) = 2∆𝑦 − ∆𝑥 = 16 − 10 = 6 > 0

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

25 Computer Graphics (Reference Note) BSc.CSIT

Since, for the Bresenham’s line drawing algorithm of slope 𝑚 < 1, we have

If 𝑃𝑘 ≥ 0,

𝑦𝑘+1 = 𝑦𝑘 + 1 & 𝑥𝑘+1 = 𝑥𝑘 + 1 and 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑦 − 2∆𝑥

If 𝑃𝑘 < 0,

 𝑦𝑘+1 = 𝑦𝑘 & 𝑥𝑘+1 = 𝑥𝑘 + 1 and 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑦

k 𝑃𝑘 (𝑥𝑘+1, 𝑦𝑘+1)

0 6 (21, 11)

1 2 (22, 12)

2 -2 (23, 12)

3 14 (24, 13)

4 10 (25, 14)

5 6 (26, 15)

6 2 (27, 16)

7 -2 (28, 16)

8 14 (29, 17)

9 10 (30, 18)

Q. Digitize the line with endpoints (20, 15) & (30, 30) using Bresenham’s line algorithm.

Solution:

Here,

(𝑥1, 𝑦1) = (20,15)

(𝑥2, 𝑦2) = (30, 30)

𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
=

30−15

30−20
= 1.5 > 1

Here, ∆𝑥 = 10, ∆𝑦 = 15, 2∆𝑥 = 20, 2∆𝑥 − 2∆𝑦 = −10

The initial decision parameter (𝑃0) = 2∆𝑥 − ∆𝑦 =20-15=5>0

Since, for the Bresenham’s line drawing algorithm of slope 𝑚 > 1, we have

If 𝑃𝑘 ≥ 0,

𝑥𝑘+1 = 𝑥𝑘 + 1 & 𝑦𝑘+1 = 𝑦𝑘 + 1 and 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑥 − 2∆𝑦

If 𝑃𝑘 < 0,

 𝑥𝑘+1 = 𝑥𝑘 & 𝑦𝑘+1 = 𝑦𝑘 + 1 and 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑥

k 𝑃𝑘 (𝑥𝑘+1, 𝑦𝑘+1)
0 5 (21, 16)

1 -5 (21, 17)

2 15 (22, 18)

3 5 (23, 19)

4 -5 (23, 20)

5 15 (24, 21)

6 5 (25, 22)

7 -5 (25, 23)

8 15 (26, 24)

9 5 (27, 25)

10 -5 (27, 26)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

26 Computer Graphics (Reference Note) BSc.CSIT

11 15 (28, 27)

12 5 (29, 28)

13 -5 (29, 29)

14 15 (30, 30)

Q. How would you digitize a line with end points A(6, 12) and B(10, 5) using Bresenham’s

line drawing algorithm?

Solution:

Here,

(𝑥1, 𝑦1) = (6, 12)
(𝑥2, 𝑦2) = (10, 5)

𝑚 =
𝑦2−𝑦1

𝑥2−𝑥1
=

5−12

10−6
= −1.75

∴ |𝑚| = 1.75 > 1

Here, ∆𝑥 = |𝑥2 − 𝑥1| = 4, ∆𝑦 = |𝑦2 − 𝑦1| = 7, 2∆𝑥 = 20, 2∆𝑥 − 2∆𝑦 = −10

The initial decision parameter (𝑃0) = 2∆𝑥 − ∆𝑦 = 8 − 7 = 1 > 0

Since, for the Bresenham’s line drawing algorithm of slope 𝑚 > 1, we have

(Here, 𝑦1 > 𝑦2 so 𝑦 is decremented in successive step)

If 𝑃𝑘 ≥ 0,

𝑥𝑘+1 = 𝑥𝑘 + 1 & 𝑦𝑘+1 = 𝑦𝑘 − 1 and 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑥 − 2∆𝑦

If 𝑃𝑘 < 0,

 𝑥𝑘+1 = 𝑥𝑘 & 𝑦𝑘+1 = 𝑦𝑘 − 1 and 𝑃𝑘+1 = 𝑃𝑘 + 2∆𝑥

k 𝑃𝑘 (𝑥𝑘+1, 𝑦𝑘+1)
0 1 (7, 11)

1 -5 (7, 10)

2 3 (8, 9)

3 -3 (8, 8)

4 5 (9, 7)

5 -1 (9, 6)

6 7 (10, 5)

Advantages of Bresenham’s line algorithm (BLA) over DDA:

- In DDA algorithm each successive point is computed in floating point, so it required

more time and memory space. While in BLA each successive point is calculated in

integer value or whole number. So it requires less time and less memory

- In DDA, since the calculated point value is floating point number, it should be rounded at

the end of calculation but in BLA it does not need to round, so there is no accumulation

of rounding error.

- Due to rounding error, the line drawn by DDA algorithm is not accurate, while in BLA

line is accurate.

- DDA algorithm cannot be used in other application except line drawing, but BLA can be

implemented in other application such as circle, ellipse, and other curves.

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

27 Computer Graphics (Reference Note) BSc.CSIT

 Circle

Circle is defined as a set of points that are all at a given distance ‘r’ from the center position

(𝑥𝑐 , 𝑦𝑐). Equation of circle centered at (𝑥𝑐 , 𝑦𝑐) with radius ‘r’ is

(𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)

2 = 𝑟2

Symmetry of Circle

Calculation of circle point (𝑥, 𝑦) in one octant

yields the circle points shown for the other seven

octants.

 Midpoint Circle Algorithm

Assume that we have just plotted point (xk, yk).

The next point is a choice between (xk+1, yk) and

(xk+1, yk-1). We would like to choose the point that is

nearest to the actual circle.

Let us define a circle function as;

𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 − 𝑟2 = {

0 𝑖𝑓 (𝑥, 𝑦) 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

 > 0 𝑖𝑓 (𝑥, 𝑦) 𝑖𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

< 0 𝑖𝑓 (𝑥, 𝑦) 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑙𝑒

By evaluating this function at the midpoint between the candidate pixels we can make our

decision.

Our decision variable can be defined as:

𝑝𝑘 = 𝑓 (𝑥𝑘 + 1, 𝑦𝑘 −
1

2
) = (𝑥𝑘 + 1)2 + (𝑦𝑘 −

1

2
)

2

− 𝑟2

If 𝑝𝑘< 0 the midpoint is inside the circle and and the pixel at 𝑦𝑘 is closer to the circle

Otherwise, 𝑦𝑘 − 1 is closer.

The decision parameter for next position is at 𝑥𝑘+1 + 1 i.e 𝑥𝑘 + 2.

𝑝𝑘+1 = 𝑓 (𝑥𝑘+1 + 1, 𝑦𝑘+1 −
1

2
) = (𝑥𝑘 + 2)2 + (𝑦𝑘+1 −

1

2
)

2

− 𝑟2

Now,

𝑝𝑘+1 − 𝑝𝑘 = (𝑥𝑘 + 2)2 + (𝑦𝑘+1 −
1

2
)

2

− 𝑟2 − (𝑥𝑘 + 1)2 − (𝑦𝑘 −
1

2
)

2

+ 𝑟2

𝑝𝑘+1 = 𝑝𝑘 + 𝑥𝑘
2 + 4𝑥𝑘 + 4 + 𝑦𝑘+1

2 − 𝑦𝑘+1 +
1

4
− 𝑥𝑘

2 − 2𝑥𝑘 − 1 − 𝑦𝑘
2 + 𝑦𝑘 −

1

4

(𝑦, 𝑥)

(−𝑦, 𝑥)

(−𝑥, 𝑦)

(−𝑥,−𝑦)

(−𝑦,−𝑥)

(𝑦, − 𝑥)

(𝑥, − 𝑦)

(𝑥, 𝑦)
450

𝑥𝑘

𝑦𝑘

 𝑦𝑘 − 1

𝑥𝑘 + 1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

28 Computer Graphics (Reference Note) BSc.CSIT

𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘 + 3 + (𝑦𝑘+1
2 − 𝑦𝑘

2) − (𝑦𝑘+1 − 𝑦𝑘)

 =𝑝𝑘 + 2𝑥𝑘+1 + (𝑦𝑘+1
2 − 𝑦𝑘

2) − (𝑦𝑘+1 − 𝑦𝑘) + 1

Where, 𝑦𝑘+1 is either 𝑦𝑘 or 𝑦𝑘−1 depending on the sign of 𝑝𝑘 .

If 𝑝𝑘 < 0;

 𝑦𝑘+1 = 𝑦𝑘 ⟹ 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1

If 𝑝𝑘 ≥ 0;

 𝑦𝑘+1 = 𝑦𝑘 − 1 ⟹ 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1 − 2𝑦𝑘+1

For initial decision parameter;
(𝑥0, 𝑦0) = (0, 𝑟)

𝑝0 = 𝑓 (1, 𝑟 −
1

2
) = 1 + (𝑟 −

1

2
)2 − 𝑟2 =

5

4
− 𝑟

All increments are integer, rounding
5

4
 will give 1 so,

𝑝0 = 1 − 𝑟

Algorithm

1. Input radius ‘r’ and circle center (𝑥𝑐 , 𝑦𝑐) and obtain the first point on the circumference of

a circle centered on origin as

(𝑥0, 𝑦0) = (0, 𝑟)

2. Calculate the initial value of the decision parameter as

𝑝0 =
5

4
− 𝑟

3. At each 𝑥𝑘 position, starting at k=0, perform the following test:

If 𝑝𝑘 < 0, the next point on circle is (𝑥𝑘 + 1, 𝑦𝑘) and

𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1

Otherwise, the next point on circle is (𝑥𝑘 + 1, 𝑦𝑘 − 1) and

𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1 − 2𝑦𝑘+1

4. Determine the symmetry point in other seven octants.

5. Move each calculated pixel position (x, y) onto the circular path centered on (𝑥𝑐 , 𝑦𝑐) and

plot the co-ordinate values,

𝑥 = 𝑥 + 𝑥𝑐 , 𝑦 = 𝑦 + 𝑦𝑐

6. Repeat step 3 through 5 until 𝑥 ≥ 𝑦.

Examples

Q. Digitize the circle 𝒙𝟐 + 𝒚𝟐 = 𝟏𝟎𝟎 in first octant.

Solution:

Here,

Center = (0, 0)

Radius (r) =10

Initial point = (0, r) = (0, 10)

Initial decision parameter 𝑝0 = 1 − 𝑟 = 1 − 10 = −9

From mid-point circle algorithm we have;

If 𝑝𝑘 < 0;

 Plot (𝑥𝑘 + 1, 𝑦𝑘) and 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1

𝑝𝑘 ≥ 0;

 Plot (𝑥𝑘 + 1, 𝑦𝑘 − 1) and 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1 − 2𝑦𝑘+1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

29 Computer Graphics (Reference Note) BSc.CSIT

k 𝑝𝑘 (𝑥𝑘+1, 𝑦𝑘+1) 2𝑥𝑘+1 2𝑦𝑘+1

0 -9 (1, 10) 2 20

1 -6 (2, 10) 4 20

2 -1 (3, 10) 6 20

3 6 (4, 9) 8 18

4 -3 (5, 9) 10 18

5 8 (6, 8) 12 16

6 5 (7, 7) 14 14

Q. Digitize the circle with radius r =10 centered (3, 4) in first octant.

Solution:

Note: When center is not origin, we first calculate the octants points of the circle in the

same way as the center at origin then add the given circle center on each calculated pixel.

Here,

Center = (3, 4)

Radius (r) =10

Initial point = (0, r) = (0, 10)

Initial decision parameter 𝑝0 = 1 − 𝑟 = 1 − 10 = −9

From mid-point circle algorithm we have;

If 𝑝𝑘 < 0;

 Plot (𝑥𝑘 + 1, 𝑦𝑘) and 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1

𝑝𝑘 ≥ 0;

 Plot (𝑥𝑘 + 1, 𝑦𝑘 − 1) and 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1 − 2𝑦𝑘+1

k 𝑝𝑘 (𝑥𝑘+1, 𝑦𝑘+1)

at (0, 0)
2𝑥𝑘+1 2𝑦𝑘+1 (𝑥𝑘+1, 𝑦𝑘+1)

at (3, 4)

0 -9 (1, 10) 2 20 (4, 14)

1 -6 (2, 10) 4 20 (5, 14)

2 -1 (3, 10) 6 20 (6, 14)

3 6 (4, 9) 8 18 (7, 13)

4 -3 (5, 9) 10 18 (8, 13)

5 8 (6, 8) 12 16 (9, 12)

6 5 (7, 7) 14 14 (10, 11)

Q. Digitize the circle with radius r =5 centered (2, 3).

Solution:

Here,

Center = (2, 3)

Radius (r) =5

Initial point = (0, r) = (0, 5)

Initial decision parameter 𝑝0 = 1 − 𝑟 = 1 − 5 = −4

From mid-point circle algorithm we have;

If 𝑝𝑘 < 0;

 Plot (𝑥𝑘 + 1, 𝑦𝑘) and 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1

𝑝𝑘 ≥ 0;

 Plot (𝑥𝑘 + 1, 𝑦𝑘 − 1) and 𝑝𝑘+1 = 𝑝𝑘 + 2𝑥𝑘+1 + 1 − 2𝑦𝑘+1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

30 Computer Graphics (Reference Note) BSc.CSIT

 1st Other pixels (in …octant)

k 𝑝𝑘 (𝑥𝑘+1, 𝑦𝑘+1) 2𝑥𝑘+1 2𝑦𝑘+1 2nd 3rd 4th 5th 6th 7th 8th

0 -4 (1, 5) 2 10 (5,1) (-5,1) (-1, 5) (-1, -5) (-5,-1) (5,-

1)

(1, -

5)

1 -1 (2, 5) 4 10 (5,2) (-5,2) (-2, 5) (-2, -5) (-5,-2) (5,-

2)

(2, -

5)

2 4 (3, 4) 6 8 (4,3) (-4,3) (-3, 4) (-3, -4) (-4,-3) (4,-

3)

(3, -

4)

3 3 (4, 3) 8 6 (3,4) (-3,4) (-4, 3) (-4, -3) (-3,-4) (3,-

4)

(4, -

3)

Actual pixels

1st octant 2nd octant 3rd octant 4th octant 5th octant 6th octant 7th octant 8th octant

(3, 8) (7, 4) (-3, 4) (1, 8) (1, -2) (-3, 2) (7, 1) (3, -2)

(4, 8) (7, 5) (-3, 5) (0, 8) (0, -2) (-3, 1) (7, 1) (4, -2)

(5, 7) (6, 6) (-2, 6) (-1,7) (-1, -1) (-2, 0) (6, 0) (5, -1)

(6, 6) (5, 7) (-1, 7) (-2, 6) (-2, 0) (-1, -1) (5, -1) (6, 0)

 Ellipse

The general equation of ellipse with semi-major axis 𝑟𝑥 &

semi-minor axis 𝑟𝑦 centered at (𝑥𝑐 , 𝑦𝑐) is

(
𝑥 − 𝑥𝑐

𝑟𝑥
)

2

+ (
𝑦 − 𝑦𝑐

𝑟𝑦
)

2

In polar form, the eqn. can be represented as

𝑥 = 𝑥𝑐 + 𝑟𝑥𝑐𝑜𝑠𝜃

𝑦 = 𝑦𝑐 + 𝑟𝑦𝑠𝑖𝑛𝜃

Symmetry of ellipse

 Calculation of a point (x, y) in one quadrant yields the ellipse point in other three

quadrant.

x

y

𝑟𝑥

𝑟𝑦

𝑟𝑥

𝑟𝑦 (𝑥, 𝑦) (−𝑥, 𝑦)

(−𝑥, −𝑦)

(𝑥, −𝑦)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

31 Computer Graphics (Reference Note) BSc.CSIT

Ellipse processing regions

In region 1, 𝑚 < 1

In region 2, 𝑚 > 1

Mid-point Ellipse Algorithm:

1. Input 𝑟𝑥, 𝑟𝑦 and center (𝑥𝑐 , 𝑦𝑐) and obtain the first point on ellipse centered at origin as

(𝑥0, 𝑦0) = (0, 𝑟𝑦)

2. Calculate the initial value of decision parameter in region 1 as

𝑝10 = 𝑟𝑦
2 − 𝑟𝑥

2𝑟𝑦 +
1

4
𝑟𝑥

2

3. At each step 𝑥𝑘 position in region 1, starting at k=0, perform the following test:

If 𝑝1𝑘 < 0, the next point on ellipse centered at (0, 0) is (𝑥𝑘 + 1, 𝑦𝑘) and

𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2𝑥𝑘+1 + 𝑟𝑦

2

Otherwise, the next point along the ellipse is (𝑥𝑘 + 1, 𝑦𝑘 − 1) and

𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2𝑥𝑘+1 − 2𝑟𝑥

2𝑦𝑘+1 + 𝑟𝑦
2

With,

2𝑟𝑦
2𝑥𝑘+1 = 2𝑟𝑦

2𝑥𝑘 + 2𝑟𝑦
2, 2𝑟𝑥

2𝑦𝑘+1 = 2𝑟𝑥
2𝑦𝑘 − 2𝑟𝑥

2

And continue until 2𝑟𝑦
2𝑥 ≥ 2𝑟𝑥

2𝑦

4. Calculate the initial value of the decision parameter in region 2 using the last point

(𝑥0, 𝑦0) calculated in region 1 as

𝑝20 = 𝑟𝑦
2 (𝑥0 +

1

2
)

2

+ 𝑟𝑥
2(𝑦0 − 1)2 − 𝑟𝑥

2𝑟𝑦
2

5. At each step 𝑦𝑘 in region 2, starting at k=0, perform the following test:

If 𝑝2𝑘 > 0, the next point along the ellipse centered on (0, 0) is (𝑥𝑘, 𝑦𝑘 − 1) and

𝑝2𝑘+1 = 𝑝2𝑘 − 2𝑟𝑥
2𝑦𝑘+1 + 𝑟𝑥

2

Otherwise, the next point is (𝑥𝑘 + 1, 𝑦𝑘 − 1) and

𝑝2𝑘+1 = 𝑝2𝑘 + 2𝑟𝑦
2𝑥𝑘+1 − 2𝑟𝑥

2𝑦𝑘+1 + 𝑟𝑥
2

6. Determine symmetry points in the other three quadrants.

𝑟𝑥

𝑟𝑦

𝑚 < 1

𝑚 > 1

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

32 Computer Graphics (Reference Note) BSc.CSIT

7. Move each calculated pixel position (x, y) onto the elliptical path centered on (𝑥𝑐 , 𝑦𝑐) and

plot the coordinate values:

𝑥 = 𝑥 + 𝑥𝑐 , 𝑦 = 𝑦 + 𝑦𝑐

8. Repeat the steps for region 1 until 2𝑟𝑦
2𝑥 ≥ 2𝑟𝑥

2𝑦 and region 2 until (𝑟𝑥 , 0).

Example

Q. Digitize the ellipse with 𝒓𝒙 = 𝟖, 𝒓𝒚 = 𝟔 and center at (3, 5).

Solution:

For region 1

The initial point for the ellipse at origin

(𝑥0, 𝑦0) = (0, 𝑟𝑦) = (0, 6)

The initial decision parameter

𝑝10 = 𝑟𝑦
2 − 𝑟𝑥

2𝑟𝑦 +
1

4
𝑟𝑥

2 = 62 − 82 × 6 +
1

4
× 82 = −332

From midpoint algorithm, for region 1 we know,

If 𝑝1𝑘 < 0 then

𝑥𝑘+1 = 𝑥𝑘 + 1, 𝑦𝑘+1 = 𝑦𝑘 and 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2𝑥𝑘+1 + 𝑟𝑦

2

If 𝑝1𝑘 ≥ 0 then

𝑥𝑘+1 = 𝑥𝑘 + 1, 𝑦𝑘+1 = 𝑦𝑘 − 1 and 𝑝1𝑘+1 = 𝑝1𝑘 + 2𝑟𝑦
2𝑥𝑘+1 − 2𝑟𝑥

2𝑦𝑘+1 + 𝑟𝑦
2.

k 𝑝1𝑘 (𝑥𝑘+1, 𝑦𝑘+1) 2𝑟𝑦
2𝑥𝑘+1 2𝑟𝑥

2𝑦𝑘+1

0 -332 (1, 6) 72 768

1 -224 (2, 6) 144 768

2 -44 (3, 6) 216 768

3 208 (4, 5) 288 640

4 -108 (5, 5) 360 640

5 288 (6, 4) 432 512

6 244 (7, 3) 504 384

Now, we move out of region 1 since 2𝑟𝑦
2𝑥𝑘+1 > 2𝑟𝑥

2𝑦𝑘+1.

1st quadrant 2nd quadrant 3rd quadrant 4th quadrant

(4, 11) (-4, 11) (-4, -11) (4, -11)

(5, 11) (-5, 11) (-5, -11) (5, -11)

(6, 11) (-6, 11) (-6, -11) (6, -11)

(7, 10) (-7, 10) (-7, -10) (7, -10)

(8, 10) (-8, 10) (-8, -10) (8, -10)

(9, 9) (-9, 9) (-9, -9) (9, -9)

(10, 8) (-10, 8) (-10,- 8) (10, -8)

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

33 Computer Graphics (Reference Note) BSc.CSIT

For region 2

Initial point for region 2 (𝑥0, 𝑦0) = (7, 3)

The initial decision parameter is

𝑝20 = 𝑟𝑦
2 (𝑥0 +

1

2
)

2

+ 𝑟𝑥
2(𝑦0 − 1)2 − 𝑟𝑥

2𝑟𝑦
2

= 36 + (7 + 0.5)2 + 64 × 22 − 64 × 36 = −23

From midpoint algorithm, for region 2 we know,

If 𝑝2𝑘 > 0 then

𝑥𝑘+1 = 𝑥𝑘, 𝑦𝑘+1 = 𝑦𝑘 − 1 and 𝑝2𝑘+1 = 𝑝2𝑘 + 2𝑟𝑥
2𝑦𝑘+1 + 𝑟𝑥

2

If 𝑝1𝑘 ≤ 0 then

𝑥𝑘+1 = 𝑥𝑘 + 1, 𝑦𝑘+1 = 𝑦𝑘 − 1 and 𝑝2𝑘+1 = 𝑝2𝑘 + 2𝑟𝑦
2𝑥𝑘+1 − 2𝑟𝑥

2𝑦𝑘+1 + 𝑟𝑥
2.

k 𝑝2𝑘 (𝑥𝑘+1, 𝑦𝑘+1) 2𝑟𝑦
2𝑥𝑘+1 2𝑟𝑥

2𝑦𝑘+1

0 -23 (8, 2) 576 256

1 361 (8, 1) 576 72

2 497 (8, 0) - -

1st quadrant 2nd quadrant 3rd quadrant 4th quadrant

(11, 7) (-11, 7) (-11, -7) (11, -7)

(11, 6) (-11, 6) (-11,- 6) (11, -6)

(11, 5) (-11, 5) (-11, -5) (11, -5)

Filled Area Primitives

- Filling of polygon with solid color.

- Suppose we want to color a polygon.

- Coloring must be done only inside its boundary.

- There are two basic approaches to area filling in raster systems:

 One way to fill an area is to determine the overlap intervals for scan lines that crosses

the area.

 Another method for area filling is to start from a given interior position and point

outward from this until a specified boundary is met.

Algorithms for filled area primitives

a) Scan line polygon fill algorithm

b) Boundary fill algorithm

c) Flood fill algorithm

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

34 Computer Graphics (Reference Note) BSc.CSIT

a) Scan line polygon fill algorithm

The basic scan-line algorithm is as follows:

- Find the intersections of the scan line with all edges of the polygon

- Sort the intersections points from left to right. i.e. (a, b, c, d)

- Fill in all pixels between pairs of intersections that lie interior to the polygon. i.e. (a, b) &

(c, d).

Problem:

- For scan line L1 a, b & c are interior point, therefore we take pairwise points (a, b) & (b,

c) and fill all the pixel between these points.

- For scan line L2, we should only take pairwise points (P, Q) & (R, S) because (Q, R) is

not part of polygon.

- For scan line L1, we took the vertex ‘b’ twice i.e.(a, b) & (b, c) but for scan line ‘L2’ we

did not take ‘Q’ twice.

How to determine this?

Solution:

- Make a clockwise or anticlockwise traverse on the edge.

- If ‘y’ is monotonically increasing or decreasing and direction of ‘y’ changes, then we

have take the vertex twice, otherwise take vertex only once.

Inside outside Test

- This test is used to identify whether a given point is inside the polygon or outside the

polygon.

a

b

c

d

a b
c

P

Q

R S

L1

L2

Interior

Exterior

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

35 Computer Graphics (Reference Note) BSc.CSIT

- Rule: To identify a point whether it is exterior or interior, draw a line from that point to

outside a polygon, if this line crosses even number of edges the point is exterior otherwise

it is interior.

Scan-Line Fill of Curved Boundary area

It requires more work than polygon filling, since intersection calculation involves nonlinear

boundary. For simple curves such as circle or ellipses, performing a scan line fill is straight

forward process. We only need to calculate the two scan-line intersection on opposite sides of

the curve. Then simply fill the horizontal spans of pixel between the boundary points on

opposite side of curve. Symmetries between quadrants are used to reduce the boundary

calculation. We can fill generating pixel position along curve boundary using mid-point

method

Fig: Interior fill of an elliptical arc

b) Boundary fill Algorithm

- It accepts an input, the co-ordinate of interior point 𝑝(𝑥, 𝑦), a fill color and a boundary

color.

- Starting from point 𝑝(𝑥, 𝑦), test is performed to determine whether the neighboring pixel

is already filled or boundary is reached. If not the neighboring pixels are filled with fill

color and their neighbors are tested. This process is repeated till boundary is reached.

- Two mechanism is used for finding the neighboring pixel:

 4-connected if they are adjacent horizontally and vertically.

 8-connected if they are adjacent horizontally, vertically and diagonally.

- This algorithm is used when boundary is of single color.

4-connected 8-connected

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

36 Computer Graphics (Reference Note) BSc.CSIT

Boundary fill 4-connected Algorithm

void Boundary_fill4(int x, int y, int b_color, int

fill_color)

{

 int value = getpixel (x, y);

 if (value! =b_color && value!=fill_color)

 {

 putpixel (x, y, fill_color);
 Boundary_fill 4 (x-1, y, b_color, fill_color);

 Boundary_fill 4 (x+1, y, b_color, fill_color);

 Boundary_fill 4 (x, y-1, b_color, fill_color);

 Boundary_fill 4 (x, y+1, b_color, fill_color);

 }

}

Boundary fill 8-connected Algorithm

void Boundary-fill8(int x,int y,int b_color, int

fill_color)

{

 int current = getpixel (x, y);

 if (current !=b_color && current!=fill_color)

 {

 putpixel (x,y,fill_color);
 Boundary_fill8(x-1, y, b_color,fill_color);

 Boundary_fill8(x+1, y, b_color, fill_color);

 Boundary_fill8(x, y-1, b_color, fill_color);

 Boundary_fill8(x, y+1, b_color, fill_color);

 Boundary_fill8(x-1, y-1, b_color,fill_color);

 Boundary_fill8(x-1, y+1, b_color,fill_color);

 Boundary_fill8(x+1, y-1, b_color,fill_color);

 Boundary_fill8(x+1, y+1, b_color,fill_color);

 }

}

Note: Recursive boundary fill algorithm doesn’t fill regions correctly if some interior pixels

are already displayed in fill color. To avoid this problem, initially set all the color of interior

pixel to a specified color.

c) Flood Fill Algorithm

- This algorithm is used when boundary is of different color.

- We start from a specified interior pixel (x, y) and reassign all pixel values that are

currently set to a given interior color with desired fill-color.

Algorithm (for 4-connected)

void flood_fill4(int x, int y, int fill_color, int old_color)

{

 int current = getpixel (x,y);

 if (current==old_color)
 {

 putpixel (x,y,fill_color);

 flood_fill4(x-1, y, fill_color, old_color);

 flood_fill4(x+1, y, fill_color, old_color);

 flood_fill4(x, y-1, fill_color, old_color);

 flood_fill4(x, y+1, fill_color, old_color);

 }

}

- Similarly flood fill for 8 connected can be also defined.

https://collegenote.pythonanywhere.com Prepared By: Jayanta Poudel

37 Computer Graphics (Reference Note) BSc.CSIT

Difference between Boundary and Flood fill Algorithm

Boundary fill Algorithm Flood fill Algorithm

Area filling is started inside a point within a

boundary region and fill the region with in

the specified color until it reaches the

boundary.

Area filling is started from a point and it

replaces the old color with the new color.

It is used in interactive packages where we

can specify the region boundary.

It is used when we cannot specify the region

boundary.

It is less time consuming. It consumes more time.

It searches for boundary. It searches for old color.

References

- Donald Hearne and M.Pauline Baker, “Computer Graphics, C Versions.” Prentice

Hall

