

Introduction to Transaction Processing

Concepts and Theory

2

Introduction to Transaction Processing

 Single-User System: At most one user at a time can

use the system.

 Multiuser System: Many users can access the system

concurrently.

 Concurrency

– Interleaved processing: concurrent execution of

processes is interleaved in a single CPU

– Parallel processing: processes are concurrently

executed in multiple CPUs.

17-3

Introduction to Transaction Processing

 A Transaction: logical unit of database processing that
includes one or more access operations (read -retrieval,
write - insert or update, delete).

 A transaction (set of operations) may be stand-
alone specified in a high level language like SQL
submitted interactively, or may be embedded within a
program.

 Transaction boundaries: Begin and End transaction.

 An application program may contain several
transactions separated by the Begin and End
transaction boundaries.

4

Introduction to Transaction Processing

SIMPLE MODEL OF A DATABASE (for
purposes of discussing transactions):

 A database - collection of named data items

 Granularity of data – size of data item like a field, a
record , or a whole disk block

 Basic operations are read and write

– read_item(X): Reads a database item named X into a
program variable. To simplify our notation, we assume
that the program variable is also named X.

– write_item(X): Writes the value of program variable X
into the database item named X.

5

Introduction to Transaction Processing

READ AND WRITE OPERATIONS:

 Basic unit of data transfer from the d isk to the
computer main memory is one block. In general, a
data item (what is read or written) will be the field
of some record in the database, although it may be a
larger unit such as a record or even a whole block.

 read_item(X) command includes the following
steps:

1. Find the address of the d isk block that contains item X.

2. Copy that d isk block into a buffer in main memory (if that
d isk block is not already in some main memory buffer).

3. Copy item X from the buffer to the program variable named X.

6

READ AND WRITE OPERATIONS (cont.):

 write_item(X) command includes the following
steps:

1. Find the address of the d isk block that contains
item X.

2. Copy that d isk block into a buffer in main memory
(if that d isk block is not already in some main
memory buffer).

3. Copy item X from the program variable named X
into its correct location in the buffer.

4. Store the updated block from the buffer back to
disk (either immediately or at some later point in
time).

Introduction to Transaction Processing

7

FIGURE

Two sample transactions. (a) Transaction T1.

(b) Transaction T2.

8

Why Concurrency Control is needed:

 The Lost Update Problem.

 This occurs when two transactions that access the

same database items have their operations

interleaved in a way that makes the value of some

database item incorrect.

 The Temporary Update (or Dirty Read) Problem.

 This occurs when one transaction updates a database

item and then the transaction fails for some reason.

The updated item is accessed by another transaction

before it is changed back to its original value.

Introduction to Transaction Processing

9

Why Concurrency Control is needed (cont.):

 The Incorrect Summary Problem .

 If one transaction is calculating an aggregate

summary function on a number of records while

other transactions are updating some of these

records, the aggregate function may calculate some

values before they are updated and others after they

are updated .

Introduction to Transaction Processing

10

Some problems that occur when concurrent

execution is uncontrolled. (a) The lost update

problem.

11

Some problems that occur when concurrent

execution is uncontrolled. (b) The temporary update

problem.

12

 Some problems that occur when concurrent execution is

uncontrolled. (c) The incorrect summary problem.

13

Why recovery is needed:

(What causes a Transaction to fail)

1. A computer failure (system crash): A hardware or
software error occurs in the computer system during
transaction execution. If the hardware crashes, the
contents of the computer’s internal memory may be
lost.

2. A transaction or system error : Some operation in the
transaction may cause it to fail, such as integer overflow
or d ivision by zero. Transaction failure may also occur
because of erroneous parameter values or because of a
logical programming error. In addition, the user may
interrupt the transaction during its execution.

Introduction to Transaction Processing

14

Why recovery is needed (cont.):

 3. Local errors or exception conditions detected by the
transaction:

 - certain conditions necessitate cancellation of the
transaction. For example, data for the transaction may
not be found. A condition, such as insufficient account
balance in a banking database, may cause a transaction,
such as a fund withdrawal from that account, to be
canceled .

 - should be programmed in the transaction itself.

4. Concurrency control enforcement: The concurrency
control method may decide to abort the transaction, to
be restarted later, because it violates serializability or
because several transactions are in a state of deadlock .

Introduction to Transaction Processing

15

Why recovery is needed (cont.):
5. Disk failure: Some d isk blocks may lose their data

because of a read or write malfunction or because of a

d isk read/ write head crash. This may happen during

a read or a write operation of the transaction.

6. Physical problems and catastrophes: This refers to an

endless list of problems that includes power or air-

conditioning failure, fire, theft, sabotage, overwriting

disks or tapes by mistake, and mounting of a wrong

tape by the operator.

Introduction to Transaction Processing

16

Transaction and System Concepts

A transaction is an atomic unit of work that is either
completed in its entirety or not done at all. For
recovery purposes, the system needs to keep track of
when the transaction starts, terminates, and commits
or aborts.

Transaction states:

 Active state

 Partially committed state

 Committed state

 Failed state

 Terminated State

17

Transaction and System Concepts

Recovery manager keeps track of the following
operations:

 begin_transaction: This marks the beginning of
transaction execution.

 read or write: These specify read or write operations
on the database items that are executed as part of a
transaction.

 end_transaction: This specifies that read and write
transaction operations have ended and marks the end
point of transaction execution. At this point it may be
necessary to check whether the changes introduced
by the transaction can be permanently applied to the
database or whether the transaction has to be aborted
because it violates concurrency control or for some
other reason.

18

Transaction and System Concepts

Recovery manager keeps track of the following operations

(cont):

 commit_transaction: This signals a successful end of the

transaction so that any changes (updates) executed by

the transaction can be safely committed to the database

and will not be undone.

 rollback (or abort): This signals that the transaction has

ended unsuccessfully, so that any changes or effects that

the transaction may have applied to the database must

be undone.

19

Transaction and System Concepts

Recovery techniques use the following operators:

 undo: Similar to rollback except that it applies

to a single operation rather than to a whole

transaction.

 redo: This specifies that certain transaction

operations must be redone to ensure that all the

operations of a committed transaction have been

applied successfu lly to the database.

20

State transition diagram illustrating the states for

transaction execution.

21

Transaction and System Concepts

The System Log

 Log or Journal : The log keeps track of all transaction
operations that affect the values of database items. This
information may be needed to permit recovery from
transaction failures. The log is kept on d isk, so it is not
affected by any type of failure except for d isk or
catastrophic failure. In addition, the log is periodically
backed up to archival storage (tape) to guard against
such catastrophic failures.

 T in the following d iscussion refers to a unique
transaction-id that is generated automatically by the
system and is used to identify each transaction:

22

Transaction and System Concepts

The System Log (cont):

Types of log record:

1. [start_transaction,T]: Records that transaction T has
started execution.

2. [write_item,T,X,old_value,new_value]: Records that
transaction T has changed the value of database item X
from old_value to new_value.

3. [read_item,T,X]: Records that transaction T has read
the value of database item X.

4. [commit,T]: Records that transaction T has completed
successfully, and affirms that its effect can be
committed (recorded permanently) to the database.

5. [abort,T]: Records that transaction T has been aborted .

23

Transaction and System Concepts

The System Log (cont):

 protocols for recovery that avoid cascading

rollbacks do not require that read operations

be written to the system log, whereas other

protocols require these entries for recovery.

 strict protocols require simpler write entries

that do not include new_value.

24

Transaction and System Concepts

Recovery using log records:

If the system crashes, we can recover to a consistent
database state by examining the log and using one of
the techniques described in later sections.

1. Because the log contains a record of every write
operation that changes the value of some database
item, it is possible to undo the effect of these write
operations of a transaction T by tracing backward
through the log and resetting all items changed by a
write operation of T to their old_values.

2. We can also redo the effect of the write operations of a
transaction T by tracing forward through the log and
setting all items changed by a write operation of T
(that d id not get done permanently) to their
new_values.

25

Transaction and System Concepts

Commit Point of a Transaction:

 Definition: A transaction T reaches its commit point
when all its operations that access the database have
been executed successfu lly and the effect of all the
transaction operations on the database has been
recorded in the log. Beyond the commit point, the
transaction is said to be committed, and its effect is
assumed to be permanently recorded in the database.
The transaction then writes an entry [commit,T] into

the log.

 Roll Back of transactions: Needed for transactions
that have a [start_transaction,T] entry into the log but
no commit entry [commit,T] into the log.

26

Transaction and System Concepts
Commit Point of a Transaction (cont):

 Redoing transactions: Transactions that have written
their commit entry in the log must also have recorded
all their write operations in the log; otherwise they
would not be committed , so their effect on the
database can be redone from the log entries. (Notice
that the log file must be kept on d isk. At the time of a
system crash, only the log entries that have been
written back to disk are considered in the recovery
process because the contents of main memory may be
lost.)

 Force writing a log: before a transaction reaches its
commit point, any portion of the log that has not been
written to the d isk yet must now be written to the d isk.
This process is called force-writing the log file before
committing a transaction.

27

Desirable Properties of Transactions

ACID properties:

 Atomicity: A transaction is an atomic unit of

processing; it is either performed in its entirety

or not performed at all.

 Consistency preservation: A correct execution

of the transaction must take the database from

one consistent state to another.

28

Desirable Properties of Transactions

ACID properties (cont.):

 Isolation: A transaction should not make its updates

visible to other transactions until it is committed ; this

property, when enforced strictly, solves the temporary

update problem and makes cascading rollbacks of

transactions unnecessary.

 Durability or permanency: Once a transaction changes

the database and the changes are committed , these

changes must never be lost because of subsequent

failure.

29

Characterizing Schedules based on

Recoverability

 Transaction schedule or history: When transactions are
executing concurrently in an interleaved fashion, the order of
execution of operations from the various transactions forms
what is known as a transaction schedule (or history).

 A schedule (or history) S of n transactions T1, T2, ..., Tn:

 It is an ordering of the operations of the transactions subject to
the constraint that, for each transaction Ti that participates in
S, the operations of Ti in S must appear in the same order in
which they occur in Ti. Note, however, that operations from
other transactions Tj can be interleaved with the operations of
Ti in S.

30

Characterizing Schedules based on

Recoverability

Schedules classified on recoverability:

 Recoverable schedule: One where no committed
transaction needs to be rolled back.

 A schedule S is recoverable if no transaction T in S commits
until all transactions T’ that have written an item that T reads
have committed.

 Cascadeless schedule: One where every transaction reads
only the items that are written by committed transactions.

 Schedules requiring cascaded rollback: A schedule in
which uncommitted transactions that read an item from a
failed transaction must be rolled back.

31

Characterizing Schedules based on

Recoverability

Schedules classified on recoverability (cont.):

 Strict Schedules: A schedule in which a transaction

can neither read or write an item X until the last

transaction that wrote X has committed.

32

Characterizing Schedules based on

Serializability
 Serial schedule: A schedule S is serial if, for every

transaction T participating in the schedule, all the

operations of T are executed consecutively in the

schedule. Otherwise, the schedule is called nonserial

schedule. Hence, in a serial schedule, only one

transaction at a time is active-the commit (or abort)

of the active transaction initiates execution of the

next transaction.

 Serializable schedule: A schedule S (possibly

concurrent) is serializable if it is equivalent to some

serial schedule of the same n transactions.

33

Characterizing Schedules based on

Serializability
 Result equivalent: Two schedules are called result

equivalent if they produce the same final state of the

database.

 Conflict equivalent: Two schedules are said to be

conflict equivalent if the order of any two conflicting

operations (read and write, write and read, and

write and write on the same data item) is the same in

both schedules.

 Conflict serializable: A schedule S is said to be

conflict serializable if it is conflict equivalent to

some serial schedule S’.

34

Characterizing Schedules based on

Serializability

 Being serializable is not the same as being serial

 Being serializable implies that the schedule is a

correct schedule.

– It will leave the database in a consistent state.

– The interleaving is appropriate and will result in a

state as if the transactions were serially executed , yet

will achieve efficiency due to concurrent execution.

35

Characterizing Schedules based on

Serializability

Serializability is hard to check.

– Interleaving of operations occurs in an operating

system through some scheduler

– Difficult to determine beforehand how the

operations in a schedule will be interleaved.

36

Characterizing Schedules based on

Serializability

Practical approach:

 Come up with methods (protocols) to ensure
serializability.

 It’s not possible to determine when a schedule begins
and when it ends. Hence, we reduce the problem of
checking the whole schedule to checking only a
committed project of the schedule (i.e. operations
from only the committed transactions.)

 Current approach used in most DBMSs:

– Use of locks with two phase locking

37

Characterizing Schedules based on

Serializability

 View equivalence: A less restrictive definition of

equivalence of schedules

 View serializability: definition of serializability

based on view equivalence. A schedule is view

serializable if it is view equivalent to a serial

schedule.

38

Characterizing Schedules based on

Serializability

Two schedules are said to be view equivalent if the following
three conditions hold:

1. The same set of transactions participates in S and S’, and S
and S’ include the same operations of those transactions.

2. For any operation Ri(X) of Ti in S, if the value of X read by
the operation has been written by an operation Wj(X) of Tj
(or if it is the original value of X before the schedule started),
the same condition must hold for the value of X read by
operation Ri(X) of Ti in S’.

3. If the operation Wk(Y) of Tk is the last operation to write
item Y in S, then Wk(Y) of Tk must also be the last operation
to write item Y in S’.

39

Characterizing Schedules based on

Serializability

The premise behind view equivalence:

 As long as each read operation of a transaction reads

the result of the same write operation in both

schedules, the write operations of each transaction

must produce the same results.

 “The view”: the read operations are said to see the

the same view in both schedules.

40

Characterizing Schedules based on

Serializability

Relationship between view and conflict equivalence:

 The two are same under constrained write
assumption which assumes that if T writes X, it is
constrained by the value of X it read; i.e., new X =
f(old X)

 Conflict serializability is stricter than view
serializability. With unconstrained write (or blind
write), a schedule that is view serializable is not
necessarily conflict serialiable.

 Any conflict serializable schedule is also view
serializable, but not vice versa.

41

Characterizing Schedules based on

Serializability

Relationship between view and conflict equivalence
(cont):

Consider the following schedule of three transactions

T1: r1(X), w1(X); T2: w2(X); and T3: w3(X):

Schedule Sa: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sa, the operations w2(X) and w3(X) are blind writes, since T1
and T3 do not read the value of X.

Sa is view serializable, since it is view equivalent to the serial
schedule T1, T2, T3. However, Sa is not conflict serializable,
since it is not conflict equivalent to any serial schedule.

42

Characterizing Schedules based on

Serializability

Testing for conflict serializability

Algorithm:

1. Looks at only read_Item (X) and write_Item (X) operations

2. Constructs a precedence graph (serialization graph) - a graph

with directed edges

3. An edge is created from Ti to Tj if one of the operations in Ti

appears before a conflicting operation in Tj

4. The schedule is serializable if and only if the precedence graph

has no cycles.

43

FIGURE

Example of serializability testing. (a) The READ

and WRITE operations of three transactions T1, T2,

and T3.

44

FIGURE (continued)

Example of serializability testing. (b) Schedule E.

45

FIGURE (continued)

Another example of serializability testing. Precedence graph

for Schedule E.

46

FIGURE (continued)

Example of serializability testing. (c) Schedule F.

47

FIGURE (continued)

Another example of serializability testing. Precedence graph

for Schedule F.

48

Characterizing Schedules based on

Serializability

Other Types of Equivalence of Schedules

 Under special semantic constraints, schedules that

are otherwise not conflict serializable may work

correctly. Using commutative operations of addition

and subtraction (which can be done in any order)

certain non-serializable transactions may work

correctly

49

Characterizing Schedules based on

Serializability
Other Types of Equivalence of Schedules(cont.)

Example: bank credit / debit transactions on a given item are
separable and commutative.

Consider the following schedule S for the two transactions:

Sh : r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);

Using conflict serializability, it is not serializable.

However, if it came from a (read ,update, write) sequence as
follows:

r1(X); X := X – 10; w1(X); r2(Y); Y := Y – 20;r1(Y);

Y := Y + 10; w1(Y); r2(X); X := X + 20; (X);

Sequence explanation: debit, debit, cred it, cred it.

It is a correct schedule for the given semantics

50

Transaction Support in SQL2

 A single SQL statement is always considered to
be atomic. Either the statement completes
execution without error or it fails and leaves the
database unchanged.

 With SQL, there is no explicit Begin Transaction
statement. Transaction initiation is done
implicitly when particular SQL statements are
encountered.

 Every transaction must have an explicit end
statement, which is either a COMMIT or
ROLLBACK.

51

Transaction Support in SQL2

Characteristics specified by a SET

TRANSACTION statement in SQL2:

 Access mode: READ ONLY or READ WRITE. The

default is READ WRITE unless the isolation level of

READ UNCOMITTED is specified, in which case

READ ONLY is assumed.

 Diagnostic size n, specifies an integer value n,

indicating the number of conditions that can be held

simultaneously in the diagnostic area. (Supply user

feedback information)

52

Transaction Support in SQL2

Characteristics specified by a SET

TRANSACTION statement in SQL2 (cont.):

 Isolation level <isolation>, where <isolation> can be

READ UNCOMMITTED, READ COMMITTED,

REPEATABLE READ or SERIALIZABLE. The

default is SERIALIZABLE.

 With SERIALIZABLE: the interleaved execution of

transactions will adhere to our notion of

serializability. However, if any transaction executes

at a lower level, then serializability may be violated .

53

Transaction Support in SQL2

Potential problem with lower isolation levels:

 Dirty Read: Reading a value that was written by a
transaction which failed.

 Nonrepeatable Read: Allowing another transaction to
write a new value between multiple reads of one
transaction.

 A transaction T1 may read a given value from a table.
If another transaction T2 later updates that value and
T1 reads that value again, T1 will see a different value.
Consider that T1 reads the employee salary for Smith.
Next, T2 updates the salary for Smith. If T1 reads
Smith's salary again, then it will see a different value for
Smith's salary.

54

Transaction Support in SQL2

Potential problem with lower isolation levels

(cont.):

 Phantoms: New rows being read using the same read

with a condition.

 A transaction T1 may read a set of rows from a

table, perhaps based on some condition specified

in the SQL WHERE clause. Now suppose that a

transaction T2 inserts a new row that also satisfies

the WHERE clause condition of T1, into the table

used by T1. If T1 is repeated , then T1 will see a row

that previously d id not exist, called a phantom.

55

Transaction Support in SQL2

Sample SQL transaction:
 EXEC SQL whenever sqlerror go to UNDO;

 EXEC SQL SET TRANSACTION

 READ WRITE

 DIAGNOSTICS SIZE 5

 ISOLATION LEVEL SERIALIZABLE;

 EXEC SQL INSERT

 INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)

 VALUES ('Robert','Smith','991004321',2,35000);

EXEC SQL UPDATE EMPLOYEE

 SET SALARY = SALARY * 1.1

 WHERE DNO = 2;

EXEC SQL COMMIT;

 GOTO THE_END;

 UNDO: EXEC SQL ROLLBACK;

 THE_END: ...

