Introduction to Transaction Processing
Concepts and Theory

.....

&

Introduction to Transaction Processing

® Single-User System: At most one user at a time can
use the system.

® Multiuser System: Many users can access the system
concurrently.

® Concurrency

— Interleaved processing: concurrent execution of
processes 1s interleaved in a single CPU

— Parallel processing: processes are concurrently
executed in multiple CPUs.

JaRr

Introduction to Transaction Processing

® A Transaction: logical unit of database processing that
includes one or more access operations (read -retrieval,
write - insert or update, delete).

® A transaction (set of operations) may be stand-
alone specified in a high level language like SQL
submitted interactively, or may be embedded within a
program.

® Transaction boundaries: Begin and End transaction.

® An application program may contain several
transactions separated by the Begin and End
transaction boundaries.

17-3

N
AN

Introduction to Transaction Processing

SIMPLE MODEL OF A DATABASE (for
purposes of discussing transactions):

® A database - collection of named data items

® Granularity of data — size of data item like a field, a
record , or a whole disk block

® Basic operations are read and write

— read_item(X): Reads a database item named X into a
program variable. To simplify our notation, we assume
that the program variable is also named X.

— write_item(X): Writes the value of program variable X
into the database item named X.

Introduction to Transaction Processing

READ AND WRITE OPERATIONS:

" ® Basicunit of data transfer from the disk to the

- computer main memory i1s one block. In general, a

— data item (what 1s read or written) will be the field
of some record in the database, although 1t may be a
larger unit such as a record or even a whole block.

® read_item(X) command includes the following
¥ steps:
Y I. Find the address of the disk block that contains item X.

.....

7, 2. Copy that disk block into a buffer in main memory (if that
% disk block is not already in some main memory buffer).
% 3. Copy item X from the buffer to the program variable named X.

.....

Introduction to Transaction Processing
READ AND WRITE OPERATIONS (cont.):

® write_item(X) command includes the following
steps:

1. Find the address of the disk block that contains
item X.

2. Copy that disk block into a buffer in main memory
(if that disk block i1s not already in some main
memory buffer).

3. Copy item X from the program variable named X
into 1ts correct location in the buffer.

4. Store the updated block from the buffer back to
disk (either immediately or at some later point in
time).

FIGURE
Two sample transactions. (a) Transaction T,.
(b) Transaction T,.

o @ T4 (b) T

.‘ read_item (X); read_item (X);
X=X-N; X=X+M:
write_item (X); write_item (X);
read_item (Y);
Yi=Y+N,

write_item (Y');

Introduction to Transaction Processing

Why Concurrency Control is needed:
® The Lost Update Problem.

, This occurs when two transactions that access the

& same database items have their operations
interleaved in a way that makes the value of some
database item incorrect.

| ® The Temporary Update (or Dirty Read) Problem.

’ This occurs when one transaction updates a database

(item and then the transaction fails for some reason.

& The updated item 1s accessed by another transaction

% before i1t 1s changed back to its original value.

.

2

é‘o"

"

-~
S e e

e I A
~
b A S T

Y

ETAARS Y

PN e
N

":ﬁ‘ e

Introduction to Transaction Processing

Why Concurrency Control is needed (cont.):
® The Incorrect Summary Problem .

If one transaction 1s calculating an aggregate
summary function on a number of records while
other transactions are updating some of these
records, the aggregate function may calculate some
values before they are updated and others after they
are updated.

NN

Time

Some problems that occur when concurrent
execution is uncontrolled. (a) The lost update

problem.
T4 T
read_item(X);
X:=X-N;
read_item(X);
X=X+M,

write_item(X);
read_item(Y');

Y:=Y+N;

write_item(Y');

ltem X has an incorrect value because

write_item(X);, —~€&—— its update by T; is "lost" (overwritten)

10

Some problems that occur when concurrent
execution is uncontrolled. (b) The temporary update

problem.
(b) Ts o
read_item(X);
X:=X-N;
write_item(X);
Time
read_item(X);
X=X+M,
' write_item(X);
read_item(Y);
Transaction 7, fails and must change the value »

of X back to its old value; meanwhile 75
has read the "temporary" incorrect value of X.

11

T3

read_item(X);

X:=X-N;

write_item(X);

read_item(Y);

Y:=Y+N;

write_item(Y);

sum:=0;
read_item(A);
SUM:=SUm+A;

read_item(X);
sum:=sum+X;
read_item(Y);
sum:=sum+Y;

Some problems that occur when concurrent execution is
uncontrolled. (c¢) The incorrect summary problem.

T sreads Xafter Nis subtracted and reads
Y before Nis added; a wrong summary
is the result (off by).

12

g

AN
\
AN

Introduction to Transaction Processing

Why recovery is needed:
(What causes a Transaction to fail)

1. A computer failure (system crash): A hardware or
software error occurs in the computer system during
transaction execution. If the hardware crashes, the
contents of the computer’s internal memory may be
lost.

2. A transaction or system error : Some operation in the
transaction may cause it to fail, such as integer overflow
or division by zero. Transaction failure may also occur
because of erroneous parameter values or because of a
logical programming error. In addition, the user may
interrupt the transaction during its execution.

NN e

13

Introduction to Transaction Processing

Why recovery is needed (cont.):

3. Local errors or exception conditions detected by the
transaction:

- certain conditions necessitate cancellation of the
- transaction. For example, data for the transaction may
p not be found. A condition, such as insufficient account
— balance in a banking database, may cause a transaction,
such as a fund withdrawal from that account, to be
canceled.

..... - should be programmed in the transaction itself.

4. Concurrency control enforcement: The concurrency
control method may decide to abort the transaction, to

7 be restarted later, because it violates serializability or
? because several transactions are in a state of deadlock .
Z

/’.

.....

Introduction to Transaction Processing

Why recovery is needed (cont.):

5.

Disk failure: Some disk blocks may lose their data
because of a read or write malfunction or because of a
disk read/ write head crash. This may happen during
a read or a write operation of the transaction.

Physical problems and catastrophes: This refers to an
endless list of problems that includes power or air-
conditioning failure, fire, theft, sabotage, overwriting
disks or tapes by mistake, and mounting of a wrong
tape by the operator.

15

Transaction and System Concepts

A transaction is an atomic unit of work that is either
completed in its entirety or not done at all. For
recovery purposes, the system needs to keep track of
when the transaction starts, terminates, and commits
or aborts.

Transaction states:

® Active state

® Partially commaitted state
® Committed state

® Failed state

® Terminated State

16

g

AN
\
AN

ransaction and System Concepts

Recovery manager keeps track of the following
operations:

® begin_transaction: This marks the beginning of
transaction execution.

® read or write: These specify read or write operations
on the database items that are executed as part of a
transaction.

® end_transaction: This specifies that read and write
transaction operations have ended and marks the end
point of transaction execution. At this point it may be
necessary to check whether the changes introduced
by the transaction can be permanently applied to the
database or whether the transaction has to be aborted
because it violates concurrency control or for some
other reason.

NN e

17

é‘o"

"

-~
S e e

e I A
~
b A S T

Y

ETAARS Y

PN e
N

6“%\5 N

Transaction and System Concepts

Recovery manager keeps track of the following operations
(cont):

® commit_transaction: This signals a successful end of the
transaction so that any changes (updates) executed by
the transaction can be safely committed to the database
and will not be undone.

® rollback (or abort): This signals that the transaction has
ended unsuccessfully, so that any changes or effects that
the transaction may have applied to the database must
be undone.

NN

18

é‘o"

"

N R
,\(.‘.\\"‘ e
SOONDOCOUNES Py 3L ¥

\ A
&

Transaction and System Concepts

Recovery techniques use the following operators:

® undo: Similar to rollback except that it applies
to a single operation rather than to a whole
transaction.

® redo: This specifies that certain transaction
operations must be redone to ensure that all the
operations of a committed transaction have been
applied successfully to the database.

19

State transition diagram illustrating the states for
transaction execution.

READ,
WRITE

END
TRANSACTION

BEGIN
TRANSACTION

COMMIT

PARTIALLY
COMMITTED

20

JaRr

Transaction and System Concepts

The System Log

® Log or Journal : The log keeps track of all transaction
operations that affect the values of database items. This
information may be needed to permit recovery from
transaction failures. The log 1s kept on disk, so it is not
affected by any type of failure except for disk or
catastrophic failure. In addition, the log 1s periodically
backed up to archival storage (tape) to guard against
such catastrophic failures.

® T in the following discussion refers to a unique
transaction-id that is generated automatically by the
system and 1s used to identify each transaction:

21

.....

Transaction and System Concepts

The System Log (cont):
Types of log record:

1.

2.

[start_transaction,T]: Records that transaction T has
started execution.

[write_item,T,X,0ld _value,new_value]: Records that
transaction T has changed the value of database item X
from old value to new _value.

[read item,T,X]: Records that transaction T has read
the value of database item X.

[commit,T]: Records that transaction T has completed
successfully, and affirms that its effect can be
committed (recorded permanently) to the database.

[abort, T]: Records that transaction T has been aborted.

22

P/ B

P

~

\ 3 v '.
AR R e
':“.\-.’\'x et At
DO CANLOULR N _

\v’."f. :.'; -

Transaction and System Concepts

The System Log (cont):

® protocols for recovery that avoid cascading
rollbacks do not require that read operations
be written to the system log, whereas other
protocols require these entries for recovery.

® strict protocols require simpler write entries
that do not include new _value.

NN

23

AN
N

Transaction and System Concepts

Recovery using log records:

If the system crashes, we can recover to a consistent
database state by examining the log and using one of
the techniques described 1n later sections.

1. Because the log contains a record of every write
operation that changes the value of some database
item, it 1s possible to undo the effect of these write
operations of a transaction T by tracing backward
through the log and resetting all items changed by a
write operation of T to their old_values.

2. We can also redo the effect of the write operations of a
transaction T by tracing forward through the log and
setting all items changed by a write operation of T
(that did not get done permanently) to their

NN\

new_ values.

Transaction and System Concepts

Commit Point of a Transaction:
® Definition: A transaction T reaches its commit point

N
AN

when all its operations that access the database have
been executed successfully and the effect of all the
transaction operations on the database has been
recorded in the log. Beyond the commit point, the
transaction 1s said to be committed, and its effect is
assumed to be permanently recorded in the database.
The transaction then writes an entry [commit,T] into

the log.
Roll Back of transactions: Needed for transactions

that have a [start_transaction,T] entry into the log but
no commit entry [commit,T] into the log.

25

?‘.'

Transaction and System Concepts

Commit Point of a Transaction (cont):

® Redoing transactions: Transactions that have written
their commait entry in the log must also have recorded
all their write operations in the log; otherwise they
would not be committed, so their effect on the
database can be redone from the log entries. (Notice
that the log file must be kept on disk. At the time of a
system crash, only the log entries that have been
written back to disk are considered in the recovery
process because the contents of main memory may be
lost.)

® Force writing alog: before a transaction reaches its
commit point, any portion of the log that has not been
written to the disk yet must now be written to the disk.
This process is called force-writing the log file before
committing a transaction.

26

1
.....

&

Desirable Properties of Transactions

ACID properties:

® Atomicity: A transaction is an atomic unit of
processing; it 1s either performed 1n its entirety
or not performed at all.

® Consistency preservation: A correct execution
of the transaction must take the database from
one consistent state to another.

27

P/ B

~

S 3 W
QA R S
':“.\-.’-\x e
AU L S

Desirable Properties of Transactions

ACID properties (cont.):

® Isolation: A transaction should not make its updates
visible to other transactions until it 1s committed; this
property, when enforced strictly, solves the temporary
update problem and makes cascading rollbacks of
transactions unnecessary.

® Durability or permanency: Once a transaction changes
the database and the changes are committed, these
changes must never be lost because of subsequent
failure.

NN

28

P/ B

-~

M TN
AR R e
':“.\-.’-\x REee
DO CANLOULR N _

»

\v."f. :.'; -

Characterizing Schedules based on
Recoverability

® Transaction schedule or history: When transactions are
executing concurrently in an interleaved fashion, the order of
execution of operations from the various transactions forms
what 1s known as a transaction schedule (or history).

® A schedule (or history) S of n transactions T1, T2, ..., Tn:

It 1s an ordering of the operations of the transactions subject to
the constraint that, for each transaction Ti that participates in
S, the operations of T1 in S must appear in the same order in
which they occur in Ti. Note, however, that operations from

other transactions Tj can be interleaved with the operations of
Tiin S.

NN

29

.....

Characterizing Schedules based on
Recoverability

Schedules classified on recoverability:

® Recoverable schedule: One where no committed
transaction needs to be rolled back.

A schedule S 1s recoverable if no transaction T in S commits
until all transactions T’ that have written an item that T reads
have committed.

® Cascadeless schedule: One where every transaction reads
only the items that are written by committed transactions.
Schedules requiring cascaded rollback: A schedule in

which uncommitted transactions that read an item from a
failed transaction must be rolled back.

30

Po /B

B

A\t

Characterizing Schedules based on
Recoverability

Schedules classified on recoverability (cont.):

® Strict Schedules: A schedule in which a transaction
can neither read or write an item X until the last
transaction that wrote X has committed.

N

31

Characterizing Schedules based on
Serializability

® Serial schedule: A schedule S is serial if, for every
transaction T participating in the schedule, all the
operations of T are executed consecutively 1n the
schedule. Otherwise, the schedule is called nonserial
schedule. Hence, 1n a serial schedule, only one
transaction at a time 1s active-the commit (or abort)

';:.f:f of the active transaction initiates execution of the

s next transaction.

- ® Serializable schedule: A schedule S (possibly
concurrent) 1s serializable if it is equivalent to some

z serial schedule of the same n transactions.
)

32

.....

Characterizing Schedules based on
Serializability

® Result equivalent: Two schedules are called result

equivalent if they produce the same final state of the
database.

® Conflict equivalent: Two schedules are said to be
conflict equivalent if the order of any two conflicting
operations (read and write, write and read, and

write and write on the same data item) is the same 1n
both schedules.

® Conflict serializable: A schedule S is said to be
contlict serializable 1f it 1s contlict equivalent to
some serial schedule S°.

33

Characterizing Schedules based on
Serializability

® Being serializable 1s not the same as being serial

= o Being serializable implies that the schedule is a
correct schedule.

— It will leave the database in a consistent state.

— The interleaving i1s appropriate and will result in a
state as 1f the transactions were serially executed, yet
will achieve efficiency due to concurrent execution.

é 34

Characterizing Schedules based on
Serializability

® Serializability 1s hard to check.

-
- — Interleaving of operations occurs in an operating
s system through some scheduler

— Dafficult to determine beforehand how the
operations 1n a schedule will be interleaved.

35

P/ B

- -
-

AR Y et
A N Y .
A A B ST e
SRR

Characterizing Schedules based on
Serializability

Practical approach:

® Come up with methods (protocols) to ensure
serializability.

® [t’s not possible to determine when a schedule begins
and when 1t ends. Hence, we reduce the problem of
checking the whole schedule to checking only a

committed project of the schedule (i.e. operations
from only the committed transactions.)

® Current approach used in most DBMSs:
— Use of locks with two phase locking

NN

36

Characterizing Schedules based on
Serializability

® View equivalence: A less restrictive definition of
equivalence of schedules

® View serializability: definition of serializability
based on view equivalence. A schedule is view
serializable 1if 1t 1s view equivalent to a serial
schedule.

37

P/ B

P

~

S 3 W
QA R S
':“.\-.’-\x e
AU L S

\v’."f. :.'; -

Characterizing Schedules based on

Serializability

Two schedules are said to be view equivalent if the following

l.

2.

three conditions hold:

The same set of transactions participates in S and S’, and S
and S’ include the same operations of those transactions.

For any operation Ri(X) of Ti in S, if the value of X read by
the operation has been written by an operation Wj(X) of Tj
(or 1f 1t 1s the original value of X before the schedule started),
the same condition must hold for the value of X read by
operation Ri(X) of Ti1n S’.

If the operation Wk(Y) of Tk 1s the last operation to write
item Y 1n S, then Wk(Y) of Tk must also be the last operation
to write item Y 1n S’.

NN

38

Characterizing Schedules based on
Serializability

The premise behind view equivalence:

W ©® Aslong as each read operation of a transaction reads

Y. the result of the same write operation 1n both
schedules, the write operations of each transaction
must produce the same results.

® “The view”: the read operations are said to see the
the same view 1n both schedules.

39

'Q

.....

Characterizing Schedules based on
Serializability

Relationship between view and conflict equivalence:

® The two are same under constrained write
assumption which assumes that if T writes X, it 1s

constrained by the value of X it read; 1.e., new X =
f(old X)

® Conflict serializability 1s stricter than view
serializability. With unconstrained write (or blind
write), a schedule that 1s view serializable 1s not
necessarily conflict serialiable.

® Any conflict serializable schedule 1s also view
serializable, but not vice versa.

40

.....

Characterizing Schedules based on
Serializability

Relationship between view and conflict equivalence
(cont):

Consider the following schedule of three transactions

T1: r1(X), wl(X); T2: w2(X); and T3: w3(X):

Schedule Sa: r1(X); w2(X); wl(X); w3(X); cl; c2; c3;

In Sa, the operations w2(X) and w3(X) are blind writes, since T1
and T3 do not read the value of X.

Sa is view serializable, since it is view equivalent to the serial
schedule T1, T2, T3. However, Sa is not conflict serializable,
since it 1s not conflict equivalent to any serial schedule.

41

Characterizing Schedules based on
Serializability

Testing for conflict serializability

W Algorithm:
£ 1. Looks at only read_Item (X) and write_Item (X) operations

2. Constructs a precedence graph (serialization graph) - a graph
with directed edges

| 3. Anedgeiscreated from T; to T, if one of the operations in T,

S appears before a conflicting operation in T,

4. The schedule is serializable if and only if the precedence graph
has no cycles.

NASSAN

42

FIGURE
Example of serializability testing. (a) The READ
and WRITE operations of three transactions T,, T,,

and T;.
(@) . . .
transaction 74 transaction 7, transaction 75
'. read_item (X); read_item (Z); read_item (Y);
write_item (X); read_item (Y); read_item (Z);
read_item (Y); write_item (Y); write_item (Y);
write_item (Y); read_item (X); write_item (2);
write_item (X);

FIGURE (continued)
Example of serializability testing. (b) Schedule E.

(b) transaction T, transaction T transaction T3
read_item (2);
. read_item (Y);
! write_item (Y);
read_item (Y);
‘ read_item (Z);
read_item (X);
Time write_item (X); write_item (Y);
write_item (Z);
Y read_item (X);
read_item (Y);
write_item (Y); write_item (X);

Schedule E

FIGURE (continued)
Another example of serializability testing. Precedence graph
for Schedule E.

Equivalence serial schedules
None
Cycle X(T1->T2), Y(T2->T1)

Y7 Cycle X(T1->T2), YZ(T2->T3), Y(T3->T1)

45

(©)

Time

FIGURE (continued)
Example of serializability testing. (c) Schedule F.

transaction 7, transaction T transaction 75
read_item (Y);
read_item (£);

read_item (X);

write_itemn (X); write_item (Y);
write_item (Z);

read_item (Y);
write_item (Y);

read_item (Z2);

read_item (Y);
write_item (Y);
read_item (X);
write_item (X);

Schedule F

46

FIGURE (continued)
Another example of serializability testing. Precedence graph
for Schedule F.

Equivalence serial schedules
T3->T1->T2

47

Characterizing Schedules based on
Serializability

Other Types of Equivalence of Schedules

W @ Under special semantic constraints, schedules that

Y. are otherwise not conflict serializable may work
correctly. Using commutative operations of addition
and subtraction (which can be done in any order)

certain non-serializable transactions may work

&

N correctly

/ 48

.....

Characterizing Schedules based on

Serializability
Other Types of Equivalence of Schedules(cont.)

Example: bank credit/ debit transactions on a given item are
separable and commutative.

Consider the following schedule S for the two transactions:
Sh : r1(X); w 1(X); r2(Y); w2(Y); r1(Y); w 1(Y); r2(X); w 2(X);
Using conflict serializability, it is not serializable.

However, if it came from a (read,update, write) sequence as
follows:

rl(X); X:=X—-10; wl(X); r2(Y); Y .= Y — 20;r 1(Y);
Y=Y+ 10; wl(Y); r2(X); X := X + 20; (X);
Sequence explanation: debit, debit, credit, credit.
It is a correct schedule for the given semantics

49

N
AN

Transaction Support in SQL?2

® A single SQL statement 1s always considered to
be atomic. Either the statement completes
execution without error or it fails and leaves the
database unchanged.

® With SQL, there 1s no explicit Begin Transaction
statement. Transaction 1nitiation i1s done
implicitly when particular SQL statements are
encountered.

® Every transaction must have an explicit end
statement, which 1s either a COMMIT or
ROLLBACK.

50

N
AN

Transaction Support in SQL?2

Characteristics specified by a SET

TRANSACTION statement in SQL2:

Access mode: READ ONLY or READ WRITE. The
default 1s READ WRITE unless the 1solation level of
READ UNCOMITTED is specified, in which case
READ ONLY i1s assumed.

Diagnostic size n, specifies an integer value n,
indicating the number of conditions that can be held
simultaneously in the diagnostic area. (Supply user
feedback information)

51

N
AN

Transaction Support in SQL?2

Characteristics specified by a SET

TRANSACTION statement in SQL2 (cont.):

Isolation level <isolation>, where <isolation> can be
READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ or SERIALIZABLE. The
default is SERIALIZABLE.

With SERIALIZABLE: the interleaved execution of
transactions will adhere to our notion of
serializability. However, if any transaction executes

at a lower level, then serializability may be violated.

52

8

?‘.'

Transaction Support in SQL?2

Potential problem with lower isolation levels:

Dirty Read: Reading a value that was written by a
transaction which failed.

Nonrepeatable Read: Allowing another transaction to
write a new value between multiple reads of one
transaction.

A transaction T1 may read a given value from a table.
If another transaction T2 later updates that value and
T1 reads that value again, T1 will see a different value.
Consider that T1 reads the employee salary for Smith.
Next, T2 updates the salary for Smith. If T1 reads
Smith's salary again, then it will see a different value for
Smith's salary.

53

N
AN

Transaction Support in SQL?2

Potential problem with lower isolation levels

(cont.):

Phantoms: New rows being read using the same read
with a condition.

A transaction T1 may read a set of rows from a
table, perhaps based on some condition specified
in the SQL WHERE clause. Now suppose that a
transaction T2 inserts a new row that also satisfies
the WHERE clause condition of T1, into the table
used by T1. If T1 1s repeated, then T1 will see a row
that previously did not exist, called a phantom.

54

:12.).';' ‘
o

Transaction Support in SQL2

Sample SQL transaction:

EXEC SQL whenever sqlerror go to UNDQO;
EXEC SQL SET TRANSACTION
READ WRITE
DIAGNOSTICS SIZE 5
ISOLATION LEVEL SERIALIZABLE;
EXEC SQL INSERT
INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)
VALUES ('Robert’,'Smith','991004321",2,35000);
EXEC SQL UPDATE EMPLOYEE
SET SALARY = SALARY * 1.1
WHERE DNO = 2;
EXEC SQL COMMIT;
GOTO THE_END;
UNDO: EXEC SQL ROLLBACK;
THE_END: ...

SRRV

55

