
5.1

Chapter 6

Integrity and Security

5.2

1. Introduction

 The term integrity refers to the accuracy or correctness of data
in the database.

 Integrity constraint is a condition specified on a database
schema which must hold on all of valid relation instances.

 Integrity constraints ensure that changes made to the
database by authorized users do not result in loss of data
consistency. Thus, integrity constraints guard against accidental

damage to the database.

 In general, an integrity constraint can be an arbitrary predicate
pertaining to the database.

 All integrity constraints should be specified on the relational
database schema if we want to enforce these constraints on the
database states.

 In addition, we use security mechanisms to protect data stored
in the database from unauthorized access and malicious
destruction or alteration.

5.3

2. Domain Constraints

 Declaring an attribute to be a particular domain acts as a
constraint on the values that it can take.

 Domain constraints are the most elementary form of integrity
constraint.

 They are tested easily by the system whenever a new data item
is entered into the database.

 It is possible for several attributes to have the same domain.

 A proper definition of domain constraints not only allows us to
test values inserted in the database, but also permits us to test
queries to ensure that the comparisons made make sense.

 The create domain clause can be used to define new domains.
For example, the statements:

 create domain Dollars numeric(12,2)

 create domain Pounds numeric(12,2)

5.4

Domain Constraints (Cont.)

 An attempt to assign a value of type Dollars to a variable Pounds
would result in a syntax error, although both are of the same
numeric type.

 Values of one domain can be cast to another domain. If the
attribute A on relation r is of type Dollars, we can convert it to

Pounds by writing

cast r.A as Pounds

 In a real application we would of course multiply r.A by a
currency conversion factor before casting it to pounds.

 The check clause in SQL permits domains to be restricted in
powerful ways.

 Specially, the check clause permits the schema designer to

specify a predicate that must be satisfied by any value assigned
to a variable whose type is the domain. For example,

5.5

Domain Constraints (Cont.)

 create domain HourlyWage numeric(5,2)

 constraint wage-value-test check(value >= 4.00)

 The clause constraint wage-value-test is optional, and is used
to give the name wage-value-test to the constraint. The name is

used to indicate to which constraint update violated.

 The check clause can also be used to restrict a domain to not
contain any null values:

 create domain AccountNumber char(10)

 constraint account-number-null-test check(value not null)

 The domain can be restricted to contain only a specified set of
values by using the in clause:

 create domain AccountType char(10)

 constraint account-type-test

 check(value in(‘Checking’, ‘Saving’)

5.6

Domain Constraints (Cont.)

 The check conditions can be more complex. For example,

 check(branch-name in(select branch-name from branch)

 SQL also provides drop domain and alter domain clauses to
drop or modify domains that have been created earlier.

5.7

3. Referential Integrity

 We use referential integrity to ensure that a value that appears
in one relation for a given set of attributes also appears for a
certain set of attributes in another relation.

 For example, if “Perryridge” is a branch name appearing in one
of the tuples in the account relation, then there exists a tuple in
the branch relation for branch name “Perryridge”. That is a
foreign key should either be null or refer to an existing tuple.

 Formal Definition

 Let r1(R1) and r2(R2) be relations with primary keys K1 and K2
respectively.

 The subset  of R2 is a foreign key referencing K1 in relation
r1, if for every t2 in r2 there must be a tuple t1 in r1 such that
t1[K1] = t2[].

 Referential integrity constraint is also called subset

dependency since it can be written as  (r2)  K1 (r1).

5.8

Referential Integrity (Cont.)

 Insert: If a tuple t2 is inserted into r2, the system must ensure
that there is a tuple t1 in r1 such that t1[K] = t2[]. That is

 t2 []  K (r1)

 Delete. If a tuple, t1 is deleted from r1, the system must compute
the set of tuples in r2 that reference t1:

  = t1[K] (r2)

 If this set is not empty

 either the delete command is rejected as an error, or

 the tuples that reference t1 must themselves be deleted

(cascading deletions are possible).

 Update: There are two cases:

 If a tuple t2 is updated in relation r2 and the update modifies

values for foreign key , then a test similar to the insert case

is made.

5.9

Referential Integrity (Cont.)

 Let t2’ denote the new value of tuple t2. The system must

ensure that

 t2’[]  K(r1)

 If a tuple t1 is updated in r1, and the update modifies values

for the primary key (K), then a test similar to the delete case is

made:

 The system must compute

  = t1[K] (r2)

 using the old value of t1 (the value before the update is

applied).

 If this set is not empty

1. the update may be rejected as an error, or

2. the update may be cascaded to the tuples in the set, or

3. the tuples in the set may be deleted.

5.10

Referential Integrity (Cont.)

 Referential Integrity in SQL:

create table customer

(customer-name char(20),
customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch

(branch-name char(15),
branch-city char(30),
assets integer,
primary key (branch-name))

5.11

Referential Integrity (Cont.)

create table account

(account-number char(10),
branch-name char(15),
balance integer,
primary key (account-number),

foreign key (branch-name) references branch

 on delete cascade
 on update cascade)

create table depositor

(customer-name char(20),
account-number char(10),
primary key (customer-name, account-number),

foreign key (account-number) references account

 on delete cascade
 on update cascade,

foreign key (customer-name) references customer

 on delete cascade

 on update cascade)

5.12

Referential Integrity (Cont.)

 Alternatively, we can use on delete set null and on update

set null.

 Also, we can use on delete set default and on update set

default.

5.13

4. Assertions

 An assertion is a predicate expressing a condition that we wish
the database always to satisfy.

 Domain constraints and referential integrity constraints are

special form of assertions.

 However, there are many constraints that we cannot express by
using only these special forms.

 An assertion in SQL takes the form

 create assertion <assertion-name> check <predicate>

 When an assertion is made, the system tests it for validity, and
tests it again on every update that may violate the assertion

 This testing may introduce a significant amount of overhead;
hence assertions should be used with great care.

5.14

Assertions (Cont.)

 For example, to ensure that the sum of all loan amounts for each
branch must be less than the sum of all account balances at the
branch, we write`

 create assertion sum-constraint check
 (not exists (select * from branch

 where (select sum(amount) from loan

 where loan.branch-name =

 branch.branch-name)

 >= (select sum(amount) from account

 where loan.branch-name =

 branch.branch-name)))

5.15

5. Triggers

 A trigger is a statement that the system executes automatically
as a side effect of a modification to the database.

 To design a trigger mechanism, we must meet two requirements:

 Specify when a trigger is to be executed. This is broken up into an

event that causes the trigger to be checked and a condition that

must be satisfied for trigger execution to proceed.

 Specify the actions to be taken when the trigger executes.

 Triggers are useful mechanisms for alerting humans or for
starting certain tasks automatically when certain conditions are
met.

 For example, suppose that instead of allowing negative account
balances, the bank deals with overdrafts by

 setting the account balance to zero

 creating a loan in the amount of the overdraft

 giving this loan a loan number identical to the account number of the
overdrawn account

5.16

Triggers (Cont.)

 The condition for executing the trigger is an update to the account
relation that results in a negative balance value.

 create trigger overdraft-trigger after update on account

referencing new row as nrow

for each row
when nrow.balance < 0
begin atomic
 insert into borrower
 (select customer-name, account-number

 from depositor

 where nrow.account-number =

 depositor.account-number);
 insert into loan values
 (n.row.account-number, nrow.branch-name,

 – nrow.balance);
 update account set balance = 0
 where account.account-number = nrow.account-number

end

5.17

 Here in above syntax,

 Trigger definition specifies that trigger is initiated after any
update on the relation account is executed.

 < referencing new row as nrow > clause creates a variable
nrow which stores the value of an updated row after the

updates.

 < for each row > clause would explicitly iterate over each
updated row .

 <when> statement specifies condition namely nrow.balance < 0.

 <begin atomic >…………….<end > contains trigger body.

5.18

Triggers (Cont.)

 Triggering event can be insert, delete instead of update

 Triggers on update can be restricted to specific attributes

 E.g. create trigger overdraft-trigger after update of balance on

account

 Values of attributes before and after an update can be referenced

 referencing old row as : for deletes and updates

 referencing new row as : for inserts and updates

 Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blanks to null.

 create trigger setnull-trigger before update on r
 referencing new row as nrow
 for each row
 when nrow.phone-number = ‘ ‘
 set nrow.phone-number = null

5.19

Triggers (Cont.)

 Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a
transaction

 Use for each statement instead of for each row

 Use referencing old table or referencing new table to refer

to temporary tables (called transition tables) containing the

affected rows

 Can be more efficient when dealing with SQL statements that update
a large number of rows

5.20

6. Security

 Security - protection from malicious attempts to steal or modify
data.

 Database system level

Authentication and authorization mechanisms to allow
specific users access only to required data

We concentrate on authorization in the rest of this chapter

 Operating system level

Operating system super-users can do anything they want
to the database! Good operating system level security is
required.

 Network level: must use encryption to prevent

Eavesdropping (unauthorized reading of messages)

Masquerading (pretending to be an authorized user or

sending messages supposedly from authorized users)

5.21

Security (Cont.)

 Physical level

Physical access to computers allows destruction of data by

intruders; traditional lock-and-key security is needed

Computers must also be protected from floods, fire, etc.

 Human level

Users must be screened to ensure that an authorized
users do not give access to intruders

Users should be trained on password selection and
secrecy

5.22

7. Authorization

Forms of authorization on parts of the database:

 Read authorization - allows reading, but not modification of

data.

 Insert authorization - allows insertion of new data, but not
modification of existing data.

 Update authorization - allows modification, but not deletion of
data.

 Delete authorization - allows deletion of data

Forms of authorization to modify the database schema:

 Index authorization - allows creation and deletion of indices.

 Resources authorization - allows creation of new relations.

 Alteration authorization - allows addition or deletion of

attributes in a relation.

 Drop authorization - allows deletion of relations.

5.23

8. Authorization and Views

 Users can be given authorization on views, without being given any

authorization on the relations used in the view definition

 Ability of views to hide data serves both to simplify usage of the

system and to enhance security by allowing users access only to

data they need for their job

 A combination or relational-level security and view-level security can

be used to limit a user’s access to precisely the data that user
needs.

 Suppose a bank clerk needs to know the names of the customers of

each branch, but is not authorized to see specific loan information.

 Approach: Deny direct access to the loan relation, but grant access

to the view cust-loan, which consists only of the names of

customers and the branches at which they have a loan.

 The cust-loan view is defined in SQL as follows:

 create view cust-loan as

 select branchname, customer-name

 from borrower, loan

 where borrower.loan-number = loan.loan-number

5.24

Authorization and Views (Cont.)

 The clerk is authorized to see the result of the query:

 select *
from cust-loan

 When the query processor translates the result into a query on
the actual relations in the database, we obtain a query on
borrower and loan.

 Authorization must be checked on the clerk’s query before query
processing replaces a view by the definition of the view.

 Creation of view does not require resources authorization since
no real relation is being created

 The creator of a view gets only those privileges that provide no

additional authorization beyond that he already had.

 E.g. if creator of view cust-loan had only read authorization on

borrower and loan, he gets only read authorization on cust-loan

5.25

9. Granting of Privileges

 The passage of authorization from one user to another may be
represented by an authorization graph.

 The nodes of this graph are the users.

 The root of the graph is the database administrator.

 Consider graph for update authorization on loan.

 An edge Ui Uj indicates that user Ui has granted update
authorization on loan to Uj.

U
1
 U

4

U
2
 U

5

U
3

DBA

5.26

Granting of Privileges

 Requirement: All edges in an authorization graph must be part of
some path originating with the database administrator

 If DBA revokes grant from U1:

 Grant must be revoked from U4 since U1 no longer has
authorization

 Grant must not be revoked from U5 since U5 has another

authorization path from DBA through U2

 Must prevent cycles of grants with no path from the root:

 DBA grants authorization to U7

 U7 grants authorization to U8

 U8 grants authorization to U7

 DBA revokes authorization from U7

 Must revoke grant U7 to U8 and from U8 to U7 since there is no
path from DBA to U7 or to U8 anymore.

5.27

10. Authorization in SQL

 The grant statement is used to confer authorization

 grant <privilege list>

 on <relation name or view name> to <user list>

 <user list> is:

 a user-id

 public, which allows all valid users the privilege granted

 A role (more on this later)

 Granting a privilege on a view does not imply granting any privileges

on the underlying relations.

 The grantor of the privilege must already hold the privilege on the

specified item (or be the database administrator).

 select: allows read access to relation, or the ability to query using

the view

 Example: grant users U1, U2, and U3 select authorization on the

branch relation:

 grant select on branch to U1, U2, U3

5.28

Authorization in SQL (Cont.)

 insert: the ability to insert tuples

 update: the ability to update using the SQL update statement

 delete: the ability to delete tuples.

 references: ability to declare foreign keys when creating
relations.

 usage: In SQL-92; authorizes a user to use a specified domain

 all privileges: used as a short form for all the allowable privileges

 with grant option: allows a user who is granted a privilege to
pass the privilege on to other users.

 Example:

grant select on branch to U1 with grant option

 gives U1 the select privileges on branch and allows U1 to

grant this privilege to others

5.29

11. Roles

 Roles permit common privileges for a class of users can be
specified just once by creating a corresponding “role”

 Privileges can be granted to or revoked from roles, just like user

 Roles can be assigned to users, and even to other roles

 SQL:1999 supports roles

 create role teller
create role manager

 grant select on branch to teller

grant update (balance) on account to teller

grant all privileges on account to manager

grant teller to manager

grant teller to alice, bob

grant manager to avi

5.30

12. Revoking Authorization in SQL

 The revoke statement is used to revoke authorization.

revoke<privilege list>

on <relation name or view name> from <user list>
[restrict|cascade]

 Example:

revoke select on branch from U1, U2, U3 cascade

 Revocation of a privilege from a user may cause other users also
to lose that privilege; referred to as cascading of the revoke.

 We can prevent cascading by specifying restrict:

 revoke select on branch from U1, U2, U3 restrict

 With restrict, the revoke command fails if cascading revokes
are required.

5.31

Revoking Authorization in SQL (Cont.)

 <privilege-list> may be all to revoke all privileges the revokee
may hold.

 If <revokee-list> includes public all users lose the privilege
except those granted it explicitly.

 If the same privilege was granted twice to the same user by
different grantees, the user may retain the privilege after the

revocation.

 All privileges that depend on the privilege being revoked are also
revoked.

