

1. Introduction

The term integrity refers to the accuracy or correctness of data
in the database.

Integrity constraint is a condition specified on a database
schema which must hold on all of valid relation instances.

Integrity constraints ensure that changes made to the
database by authorized users do not result in loss of data
consistency. Thus, integrity constraints guard against accidental
damage to the database.

In general, an integrity constraint can be an arbitrary predicate
pertaining to the database.
All integrity constraints should be specified on the relational

database schema if we want to enforce these constraints on the
database states.

In addition, we use security mechanisms to protect data stored
in the database from unauthorized access and malicious
destruction or alteration.

5.2

2. Domain Constraints

Declaring an attribute to be a particular domain acts as a
constraint on the values that it can take.

Domain constraints are the most elementary form of integrity
constraint.

They are tested easily by the system whenever a new data item
IS entered into the database.

It is possible for several attributes to have the same domain.

A proper definition of domain constraints not only allows us to
test values inserted in the database, but also permits us to test
queries to ensure that the comparisons made make sense.

The create domain clause can be used to define new domains.
For example, the statements:

create domain Dollars numeric(12,2)
create domain Pounds numeric(12,2)

5.3

Domain Constraints (Cont.)

An attempt to assign a value of type Dollars to a variable Pounds
would result in a syntax error, although both are of the same
numeric type.

Values of one domain can be cast to another domain. If the
attribute A on relation r is of type Dollars, we can convert it to
Pounds by writing

cast r.A as Pounds

In a real application we would of course multiply r.A by a
currency conversion factor before casting it to pounds.

The check clause in SQL permits domains to be restricted in
powerful ways.

Specially, the check clause permits the schema designer to
specify a predicate that must be satisfied by any value assigned
to a variable whose type is the domain. For example,

5.4

Domain Constraints (Cont.)

create domain HourlyWage numeric(5,2)
constraint wage-value-test check(value >= 4.00)

The clause constraint wage-value-test is optional, and is used
to give the name wage-value-test to the constraint. The name is
used to indicate to which constraint update violated.

The check clause can also be used to restrict a domain to not
contain any null values:

create domain AccountNumber char(10)
constraint account-number-null-test check(value not null)

The domain can be restricted to contain only a specified set of
values by using the in clause:

create domain AccountType char(10)
constraint account-type-test
check(value in(‘Checking’, ‘Saving’)

5.5

Domain Constraints (Cont.)

® The check conditions can be more complex. For example,
check(branch-name in(select branch-name from branch)

m SQL also provides drop domain and alter domain clauses to
drop or modify domains that have been created earlier.

5.6

3. Referential Integrity

m We use referential integrity to ensure that a value that appears
In one relation for a given set of attributes also appears for a
certain set of attributes in another relation.

m For example, if “Perryridge” is a branch name appearing in one
of the tuples in the account relation, then there exists a tuple in
the branch relation for branch name “Perryridge”. That is a
foreign key should either be null or refer to an existing tuple.

®m Formal Definition

Let r;(R,) and r,(R,) be relations with primary keys K, and K,
respectively.

The subset a of R, is a foreign key referencing K; in relation
ry, if for every t, in r, there must be a tuple ¢, in r; such that
4Ki] = Bfal.

Referential integrity constraint is also called subset
dependency since it can be written as [, (r;) < [14 (7).

5.7

Referential Integrity (Cont.)

®m Insert: If a tuple &, is inserted into r,, the system must ensure
that there is a tuple t; in ry such that t;[K] = t,[a]. Thatis

to[a] € [k (rq)

m Delete. If atuple, t; is deleted from r,, the system must compute
the set of tuples in r, that reference ¢,:

G-k (12)
If this set is not empty
either the delete command is rejected as an error, or

the tuples that reference t, must themselves be deleted
(cascading deletions are possible).

m Update: There are two cases:

If a tuple &, is updated in relation r, and the update modifies
values for foreign key a, then a test similar to the insert case
IS made.

5.8

Referential Integrity (Cont.)

Let £,” denote the new value of tuple £,. The system must
ensure that

t,[a] € [1k(r)

If a tuple t, is updated in r;, and the update modifies values
for the primary key (K), then a test similar to the delete case is
made:

The system must compute

Gy =K (12)
using the old value of ¢, (the value before the update is

applied).
If this set is not empty
1. the update may be rejected as an error, or
2. the update may be cascaded to the tuples in the set, or

3. the tuples in the set may be deleted.

5.9

Referential Integrity (Cont.)

®m Referential Integrity in SQL.:

create table customer
(customer-name char(20),
customer-street char(30),
customer-city ~ char(30),
primary key (customer-name))

create table branch
(branch-name char(15),
branch-city char(30),
assets integer,
primary key (branch-name))

5.10

Referential Integrity (Cont.)

create table account

(account-number char(10),

branch-name char(15),

balance integer,

primary key (account-number),

foreign key (branch-name) references branch
on delete cascade
on update cascade)

create table depositor
(customer-name char(20),
account-number char(10),
primary key (customer-name, account-number),

foreign key (account-number) references account
on delete cascade

on update cascade,

foreign key (customer-name) references customer
on delete cascade

on update cascade)

5.11

Referential Integrity (Cont.)

» Alternatively, we can use on delete set null and on update
set null.

* Also, we can use on delete set default and on update set
default.

5.12

4. Assertions

An assertion is a predicate expressing a condition that we wish
the database always to satisfy.

Domain constraints and referential integrity constraints are
special form of assertions.

However, there are many constraints that we cannot express by
using only these special forms.

An assertion in SQL takes the form
create assertion <assertion-name> check <predicate>

When an assertion is made, the system tests it for validity, and
tests it again on every update that may violate the assertion

This testing may introduce a significant amount of overhead,;
hence assertions should be used with great care.

5.13

Assertions (Cont.)

m For example, to ensure that the sum of all loan amounts for each
branch must be less than the sum of all account balances at the

branch, we write’

create assertion sum-constraint check
(not exists (select * from branch
where (select sum(amount) from loan

where loan.branch-name =

branch.branch-name)
>= (select sum(amount) from account

where loan.branch-name =

branch.branch-name)))

5.14

5. Triggers

A trigger is a statement that the system executes automatically
as a side effect of a modification to the database.

To design a trigger mechanism, we must meet two requirements:

Specify when a trigger is to be executed. This is broken up into an
event that causes the trigger to be checked and a condition that
must be satisfied for trigger execution to proceed.

Specify the actions to be taken when the trigger executes.

Triggers are useful mechanisms for alerting humans or for
starting certain tasks automatically when certain conditions are
met.

For example, suppose that instead of allowing negative account
balances, the bank deals with overdrafts by

setting the account balance to zero
creating a loan in the amount of the overdraft

giving this loan a loan number identical to the account number of the
overdrawn account

5.15

Triggers (Cont.)

® The condition for executing the trigger is an update to the account
relation that results in a negative balance value.

create trigger overdraft-trigger after update on account
referencing hew row as nrow
for each row
when nrow.balance < 0
begin atomic
insert into borrower
(select customer-name, account-number
from depositor
where nrow.account-number =
depositor.account-number);
insert into /oan values
(n.row.account-number, nrow.branch-name,
— nrow.balance);
update account set balance = 0
where account.account-number = nrow.account-number
end

5.16

Here in above syntax,

Trigger definition specifies that trigger is initiated after any
update on the relation account is executed.

< referencing new row as nrow > clause creates a variable
nrow which stores the value of an updated row after the
updates.

< for each row > clause would explicitly iterate over each
updated row .

<when> statement specifies condition namely nrow.balance < 0.
<begin atomic >................ <end > contains trigger body.

5.17

Triggers (Cont.)

Triggering event can be insert, delete instead of update

Triggers on update can be restricted to specific attributes

E.g. create trigger overdraft-trigger after update of balance on
account

Values of attributes before and after an update can be referenced
referencing old row as : for deletes and updates
referencing new row as : for inserts and updates

Triggers can be activated before an event, which can serve as
extra constraints. E.g. convert blanks to null.

create trigger setnull-trigger before update on r
referencing new row as nrow
for each row

when nrow.phone-number = * *

set nrow.phone-number = null

5.18

Triggers (Cont.)

®m Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a
transaction

Use for each statement instead of for each row

Use referencing old table or referencing new table to refer
to temporary tables (called transition tables) containing the
affected rows

Can be more efficient when dealing with SQL statements that update
a large number of rows

5.19

6. Security

®m Security - protection from malicious attempts to steal or modify
data.

Database system level

Authentication and authorization mechanisms to allow
specific users access only to required data

We concentrate on authorization in the rest of this chapter
Operating system level

Operating system super-users can do anything they want
to the database! Good operating system level security is
required.

Network level: must use encryption to prevent
Eavesdropping (unauthorized reading of messages)

Masquerading (pretending to be an authorized user or
sending messages supposedly from authorized users)

5.20

Security (Cont.)

Physical level

Physical access to computers allows destruction of data by
Intruders; traditional lock-and-key security is needed

Computers must also be protected from floods, fire, etc.
Human level

Users must be screened to ensure that an authorized
users do not give access to intruders

Users should be trained on password selection and
secrecy

5.21

7. Authorization

Forms of authorization on parts of the database:

Read authorization - allows reading, but not modification of

data.

Insert authorization - allows insertion of new data, but not
modification of existing data.

Update authorization - allows modification, but not deletion of
data.

Delete authorization - allows deletion of data

Forms of authorization to modify the database schema:

Index authorization - allows creation and deletion of indices.
Resources authorization - allows creation of new relations.

Alteration authorization - allows addition or deletion of
attributes in a relation.

Drop authorization - allows deletion of relations.

5.22

8. Authorization and Views

Users can be given authorization on views, without being given any
authorization on the relations used in the view definition

Ability of views to hide data serves both to simplify usage of the
system and to enhance security by allowing users access only to
data they need for their job

A combination or relational-level security and view-level security can
be used to limit a user’s access to precisely the data that user
needs.

Suppose a bank clerk needs to know the names of the customers of
each branch, but is not authorized to see specific loan information.

Approach: Deny direct access to the /loan relation, but grant access
to the view cust-loan, which consists only of the names of
customers and the branches at which they have a loan.

The cust-loan view is defined in SQL as follows:

create view cust-loan as
select branchname, customer-name
from borrower, loan

where borrower.loan-number = loan.loan-number
5.23

Authorization and Views (Cont.)

The clerk is authorized to see the result of the query:

select *
from cust-loan

When the query processor translates the result into a query on
the actual relations in the database, we obtain a query on
borrower and loan.

Authorization must be checked on the clerk’s query before query
processing replaces a view by the definition of the view.

Creation of view does not require resources authorization since
no real relation is being created

The creator of a view gets only those privileges that provide no
additional authorization beyond that he already had.

E.g. if creator of view cust-loan had only read authorization on
borrower and loan, he gets only read authorization on cust-loan

5.24

9. Granting of Privileges

The passage of authorization from one user to another may be
represented by an authorization graph.

The nodes of this graph are the users.
The root of the graph is the database administrator.
Consider graph for update authorization on loan.

An edge U; —»U; indicates that user U; has granted update
authorization on loan to U;

DBA > U2 = U5

5.25

Granting of Privileges

Requirement. All edges in an authorization graph must be part of
some path originating with the database administrator

If DBA revokes grant from U,:

Grant must be revoked from U, since U, no longer has
authorization

Grant must not be revoked from U; since Ug has another
authorization path from DBA through U,

Must prevent cycles of grants with no path from the root:
DBA grants authorization to U,
U7 grants authorization to Ug
U8 grants authorization to U,
DBA revokes authorization from U-,

Must revoke grant U, to Ug and from Ug to U since there is no
path from DBA to U, or to Ug anymore.

5.26

10. Authorization in SQL

The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>
<user list> is:
a user-id
public, which allows all valid users the privilege granted
A role (more on this later)

Granting a privilege on a view does not imply granting any privileges
on the underlying relations.

The grantor of the privilege must already hold the privilege on the
specified item (or be the database administrator).

select: allows read access to relation, or the ability to query using
the view

Example: grant users U,, U,, and U; select authorization on the
branch relation:

grant select on branch to U,, U,, U,

5.27

Authorization in SQL (Cont.)

insert: the ability to insert tuples
update: the ability to update using the SQL update statement
delete: the ability to delete tuples.

references: ability to declare foreign keys when creating
relations.

usage: In SQL-92; authorizes a user to use a specified domain
all privileges: used as a short form for all the allowable privileges

with grant option: allows a user who is granted a privilege to
pass the privilege on to other users.

Example:
grant select on branch to U, with grant option

gives U, the select privileges on branch and allows U, to
grant this privilege to others

5.28

11. Roles

Roles permit common privileges for a class of users can be
specified just once by creating a corresponding “role”

Privileges can be granted to or revoked from roles, just like user
Roles can be assigned to users, and even to other roles
SQL:1999 supports roles

create role teller
create role manager

grant select on branch to teller
grant update (balance) on accountto teller
grant all privileges on accountto manager

grant teller to manager

grant teller to alice, bob
grant manager to avi

5.29

12. Revoking Authorization in SQL

The revoke statement is used to revoke authorization.
revoke<privilege list>

on <relation name or view name> from <user list>
[restrict|cascade]

Example:
revoke select on branch from U,, U,, U; cascade

Revocation of a privilege from a user may cause other users also
to lose that privilege; referred to as cascading of the revoke.

We can prevent cascading by specifying restrict:
revoke select on branch from U,, U,, U, restrict

With restrict, the revoke command fails if cascading revokes
are required.

5.30

Revoking Authorization in SQL (Cont.)

<privilege-list> may be all to revoke all privileges the revokee
may hold.

If <revokee-list> includes public all users lose the privilege
except those granted it explicitly.

If the same privilege was granted twice to the same user by
different grantees, the user may retain the privilege after the
revocation.

All privileges that depend on the privilege being revoked are also
revoked.

5.31

