

Testing Binary Decomposition for Lossless Join Property

- **Binary Decomposition:** decomposition of a relation R into two relations.
- A decomposition $D = \{R_1, R_2\}$ of R has the lossless join property with respect to a set of functional dependencies F on R *if and only if* either
 - The FD $((R_1 \cap R_2) \rightarrow (R_1 - R_2))$ is in F^+ , or
 - The FD $((R_1 \cap R_2) \rightarrow (R_2 - R_1))$ is in F^+ .

Comparison of 3NF and BCNF

- It is always possible to decompose a relation into relations in 3NF and
 - the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into relations in BCNF and
 - the decomposition is lossless
 - it may not be possible to preserve dependencies.

Multivalued Dependencies and Fourth Normal Form

(a) The EMP relation with two MVDs: ENAME $\rightarrow\!\!\!\rightarrow$ PNAME and ENAME $\rightarrow\!\!\!\rightarrow$ DNAME.

(a) **EMP**

ENAME	PNAME	DNAME
Smith	X	John
Smith	Y	Anna
Smith	X	Anna
Smith	Y	John

Multivalued Dependencies and Fourth Normal Form

Definition:

- A **multivalued dependency (MVD)** $X \multimap\multimap Y$ specified on relation schema R , where X and Y are both subsets of R , specifies the following constraint on any relation state r of R : If two tuples t_1 and t_2 exist in r such that $t_1[X] = t_2[X]$, then two tuples t_3 and t_4 should also exist in r with the following properties, where we use Z to denote $(R - (X \cup Y))$:
 - $t_3[X] = t_4[X] = t_1[X] = t_2[X]$.
 - $t_3[Y] = t_1[Y]$ and $t_4[Y] = t_2[Y]$.
 - $t_3[Z] = t_2[Z]$ and $t_4[Z] = t_1[Z]$.
- An MVD $X \multimap\multimap Y$ in R is called a **trivial MVD** if (a) Y is a subset of X , or (b) $X \cup Y = R$.

Multivalued Dependencies and Fourth Normal Form

Inference Rules for Functional and Multivalued Dependencies:

IR1 (**reflexive rule for FDs**): If $X \supseteq Y$, then $X \rightarrow Y$.

IR2 (**augmentation rule for FDs**): $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$.

IR3 (**transitive rule for FDs**): $\{X \rightarrow Y, Y \rightarrow Z\} \mid = X \rightarrow Z$.

IR4 (**complementation rule for MVDs**): $\{X \rightarrow\!\!> Y\} \mid = X \rightarrow\!\!> (R - (X \cup Y))$.

IR5 (**augmentation rule for MVDs**): If $X \rightarrow\!\!> Y$ and $W \supseteq Z$ then $WX \rightarrow\!\!> YZ$.

IR6 (**transitive rule for MVDs**): $\{X \rightarrow\!\!> Y, Y \rightarrow\!\!> Z\} \mid = X \rightarrow\!\!> (Z - Y)$.

IR7 (**replication rule for FD to MVD**): $\{X \rightarrow Y\} \mid = X \rightarrow\!\!> Y$.

IR8 (**coalescence rule for FDs and MVDs**): If $X \rightarrow\!\!> Y$ and there exists W with the properties that (a) $W \cap Y$ is empty, (b) $W \rightarrow Z$, and (c) $Y \supseteq Z$, then $X \rightarrow Z$.

Multivalued Dependencies and Fourth Normal Form

Definition:

- A relation schema R is in **4NF** with respect to a set of dependencies F (that includes functional dependencies and multivalued dependencies) if, for every *nontrivial* multivalued dependency $X \multimap\multimap Y$ in F^+ , X is a superkey for R .

Note: F^+ is the (complete) set of all dependencies (functional or multivalued) that will hold in every relation state r of R that satisfies F . It is also called the **closure** of F .

Multivalued Dependencies and Fourth Normal Form

Lossless (Non-additive) Join Decomposition into 4NF Relations:

- The relation schemas R_1 and R_2 form a lossless (non-additive) join decomposition of R with respect to a set F of functional *and* multivalued dependencies if and only if

$$(R_1 \cap R_2) \longrightarrow\!\!\!\longrightarrow (R_1 - R_2)$$

or by symmetry, if and only if

$$(R_1 \cap R_2) \longrightarrow\!\!\!\longrightarrow (R_2 - R_1)).$$

Join Dependencies and Fifth Normal Form

Definition:

- A **join dependency (JD)**, denoted by $JD(R_1, R_2, \dots, R_n)$, specified on relation schema R , specifies a constraint on the states r of R . The constraint states that every legal state r of R should have a non-additive join decomposition into R_1, R_2, \dots, R_n ; that is, for every such r we have
 - * $(\pi_{R1}(r), \pi_{R2}(r), \dots, \pi_{Rn}(r)) = r$
- A join dependency $JD(R_1, R_2, \dots, R_n)$, specified on relation schema R , is a **trivial JD** if one of the relation schemas R_i in $JD(R_1, R_2, \dots, R_n)$ is equal to R .

Join Dependencies and Fifth Normal Form

Definition:

- A relation schema R is in **fifth normal form (5NF)** (or **Project-Join Normal Form (PJNF)**) with respect to a set F of functional, multivalued, and join dependencies if, for every nontrivial join dependency $\text{JD}(R_1, R_2, \dots, R_n)$ in F^+ (that is, implied by F), every R_i is a superkey of R .

Domain-Key Normal Form (DKNF)

- **Defintion:** A relation schema is said to be in **DKNF** if all constraints and dependencies that should hold on the valid relation states can be enforced simply by enforcing the domain constraints and key constraints on the relation.
- The **idea** is to specify (theoretically, at least) the “*ultimate normal form*” that takes into account all possible types of dependencies and constraints. .
- For a relation in DKNF, it becomes very straightforward to enforce all database constraints by simply checking that each attribute value in a tuple is of the appropriate domain and that every key constraint is enforced.
- The practical utility of DKNF is limited