
5.1

Chapter 5

Structured Query Language (SQL)

5.2

1. Introduction

 SQL (Structured Query Language) is the most popular and most
user friendly query language. SQL uses a combination of
relational-algebra and relational-calculus constructs.

 Although we refer to the SQL language as a “query language”, it
can be used for defining the structure of the data, modifying the
data in the database, and specifying security constraints.

 The SQL has the following parts:

 Data-definition language(DDL): - The SQL DDL provides
commands for defining relation schemas, deleting relations,
and modifying relation schemas.

 Interactive data-manipulation language(DML): - The SQL
DML includes a query language based on both the relational
algebra and tuple relational calculus. It also includes
commands to insert, delete, and modify tuples.

5.3

Introduction (Cont.)

 View definition: - The SQL DDL includes commands for
defining views.

 Transaction control: - SQL includes commands for
specifying the beginning and ending of transactions.

 Embedded SQL and dynamic SQL: - Embedded SQL and
dynamic SQL defines how SQL statements can be
embedded within general purpose programming languages,
such as C, C++, Java etc.

 Integrity: - The SQL DDL includes commands for specifying
integrity constraints.

 Authorization: - The SQL DDL includes commands for
specifying access rights to relations and views.

5.4

Schema Used in Examples

5.5

2. Basic Structure

 The basic structure of SQL expression consists of three clauses:
select, from and where.

 The select clause corresponds to the projection operation of
the relational-algebra. It is used to list the attributes desired
in the result of a query.

 The from clause corresponds to the Cartesian-product
operation of the relational algebra. It lists the relations to be
scanned in the evaluation of the expression.

 The where clause corresponds to the selection predicate of
the relational algebra. It consists of a predicate involving
attributes of the relations that appear in the from clause.

5.6

Basic Structure (Cont.)

 A typical SQL query has the form:
 select A1, A2, ..., An
 from r1, r2, ..., rm
 where P

 Ais represent attributes

 ris represent relations

 P is a predicate.

 This query is equivalent to the relational algebra expression.

 A1, A2, ..., An(P (r1 x r2 x ... x rm))

 The result of an SQL query is a relation.

 SQL forms the Cartesian-product of the relations named in the
from clause, performs a relational-algebra selection using the
where clause predicate, and then projects the result onto the
attributes of the select clause.

5.7

2.1. The select Clause

 The select clause list the attributes desired in the result of a
query

 corresponds to the projection operation of the relational algebra

 E.g. find the names of all branches in the loan relation
 select branch-name
 from loan

 In the “pure” relational algebra syntax, the query would be:
 branch-name(loan)

 NOTE: SQL does not permit the ‘-’ character in names,
 Use, e.g., branch_name instead of branch-name in a real

implementation.

 NOTE: SQL names are case insensitive, i.e. you can use capital
or small letters.

5.8

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query results.

 To force the elimination of duplicates, insert the keyword distinct
after select.

 Find the names of all branches in the loan relations, and remove
duplicates

 select distinct branch-name
 from loan

 The keyword all specifies that duplicates not be removed.

 select all branch-name
 from loan

5.9

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”
 select *

 from loan

 The select clause can contain arithmetic expressions involving
the operation, +, –, , and /, and operating on constants or
attributes of tuples.

 The query:

 select loan-number, branch-name, amount  100
 from loan

 would return a relation which is the same as the loan relations,
except that the attribute amount is multiplied by 100.

5.10

2.2. The where Clause

 The where clause specifies conditions that the result must
satisfy

 corresponds to the selection predicate of the relational algebra.

 To find all loan number for loans made at the Perryridge branch
with loan amounts greater than $1200.
 select loan-number
 from loan
 where branch-name = ‘Perryridge’ and amount > 1200

 Comparison results can be combined using the logical
connectives and, or, and not.

 Comparisons expressions involve comparison operators (<, <=,
>, >=, = and <>).

5.11

The where Clause (Cont.)

 SQL includes a between comparison operator

 E.g. Find the loan number of those loans with loan amounts
between $90,000 and $100,000 (that is, $90,000 and $100,000),
we write

 select loan-number
 from loan
 where amount between 90000 and 100000

instead of

 select loan-number
 from loan
 where amount >= 90000 and amount <= 100000

5.12

2.3. The from Clause

 The from clause lists the relations involved in the query

 corresponds to the Cartesian product operation of the relational algebra.

 Find the Cartesian product borrower x loan
 select 
 from borrower, loan

 Find the name, loan number and loan amount of all customers
 who have loan from the bank.

select customer-name, borrower.loan-number, amount
 from borrower, loan
 where borrower.loan-number = loan.loan-number

5.13

The from Clause (Cont.)

 Find the name, loan number and loan amount of all customers
 who have loan from the Perryridge branch.

select customer-name, borrower.loan-number, amount
 from borrower, loan
 where borrower.loan-number = loan.loan-number and
 branch-name = ‘Perryridge’

5.14

2.4. The Rename Operation

 The SQL allows renaming relations and attributes using the as
clause:
 old-name as new-name

 The as can appear in both the select and form clauses.

 Find the name, loan number and loan amount of all customers;

rename the column name loan-number as loan-id.

select customer-name, borrower.loan-number as loan-id, amount
from borrower, loan
where borrower.loan-number = loan.loan-number

5.15

2.5. Tuple Variables

 A tuple variable is associated with a particular relation.

 Tuple variables are defined in the from clause via the use of the
as clause.

 Find the customer names and their loan numbers for all
customers having a loan at some branch.

select distinct T.branch-name
 from branch as T, branch as S
 where T.assets > S.assets and S.branch-city = ‘Brooklyn’

 Find the names of all branches that have greater assets than
 some branch located in Brooklyn.

select customer-name, T.loan-number, S.amount
 from borrower as T, loan as S
 where T.loan-number = S.loan-number

5.16

2.6. String Operations

 The most commonly used operation on strings is pattern
matching using the operator like. We describe patterns by using
two special characters:

 percent (%). The % character matches any substring.

 underscore (_). The _ character matches any character.

 Examples:

 ‘Perry%’ matches any string beginning with “Perry”.
 ‘%Perry’ matches any string ending with “Perry”.
 ‘%Perry%’ matches any string containing “Perry” as a

substring.

 ‘---’ matches any string of exactly three characters.
 ‘---%’ matches any string of at least three characters.
 ‘%---’ matches any string of at most three characters.

5.17

String Operations (Cont.)

 Find the names of all customers whose street includes the
substring “Main”.

 select customer-name
 from customer
 where customer-street like ‘%Main%’

 We define the escape character for a like comparison using the
escape keyword as follows:

 like ‘Main\%’ escape ‘\’ matches the string “Main%”
 like ‘ab\%cd%’escape ‘\’ matches all strings beginning with

“ab%cd”.
 Patterns are case sensitive.

 SQL allows us to search for mismatches instead of matches by
using the not like comparison operator.

5.18

String Operations (Cont.)

 SQL also supports a variety of string operations such as

 Concatenation (using “||”)
 Extracting substrings

 Converting from upper to lower case (and vice versa)

 finding string length

 It also provides a similar to operation which provides more
powerful pattern matching than the like operation.

 Note: A single quote character that is part of a string can be
specified by using two single quote characters; for example “It’s
right” can be specified by ‘It’’s right’.

5.19

2.7. Ordering the Display of Tuples

 The order by clause causes the tuples in the result of a query to
appear in sorted order.

 To list in alphabetic order the names of all customers having a
loan in Perryridge branch

 select distinct customer-name

 from borrower, loan
 where borrower.loan-number = loan.loan-number and
 branch-name = ‘Perryridge’
 order by customer-name

 We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.

 E.g. order by customer-name desc

5.20

2.8. Duplicates

 In relations with duplicates, SQL can define how many copies of
tuples appear in the result.

 We can define the duplicate semantics of an SQL query using
multiset versions of the relational algebra.

 Multiset versions of some of the relational algebra operators –
given multiset relations r1 and r2:

1.  (r1): If there are c1 copies of tuple t1 in r1, and t1 satisfies
selections ,, then there are c1 copies of t1 in  (r1).

2. A(r1): For each copy of tuple t1 in r1, there is a copy of tuple
A(t1) in A(r1) where A(t1) denotes the projection of the
single tuple t1.

3. r1 x r2 : If there are c1 copies of tuple t1 in r1 and c2 copies of
tuple t2 in r2, there are c1 x c2 copies of the tuple t1. t2 in r1 x r2

5.21

Duplicates (Cont.)

 Example: Suppose multiset relations r1 (A, B) and r2 (C)
are as follows:

 r1 = {(1, a) (2,a)} r2 = {(2), (3), (3)}

 Then B(r1) would be {(a), (a)}, while B(r1) x r2 would be

 {(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}

 SQL duplicate semantics:

 select A1,, A2, ..., An

 from r1, r2, ..., rm
 where P

 is equivalent to the multiset version of the expression:

  A1,, A2, ..., An(P (r1 x r2 x ... x rm))

5.22

3. Set Operations

 The set operations union, intersect, and except operate on
relations and correspond to the relational algebra operations


 Each of the above operations automatically eliminates
duplicates; to retain all duplicates use the corresponding multiset
versions union all, intersect all and except all.

5.23

Set Operations (Cont.)

 Find all customers who have a loan, an account, or both:

(select customer-name from depositor)
 except
 (select customer-name from borrower)

(select customer-name from depositor)
 intersect
 (select customer-name from borrower)

 Find all customers who have an account but no loan.

(select customer-name from depositor)
 union
 (select customer-name from borrower)

 Find all customers who have both a loan and an account.

5.24

4. Aggregate Functions

 These functions operate on a collection (a set or multiset) of
values of a column of a relation as input and return a single
value. SQL offers the following five built-in aggregate functions:

 avg: average value
 min: minimum value
 max: maximum value
 sum: sum of values
 count: number of values

 The input to sum and avg must be a collection of numbers, but
the other operators can operate on collections of nonnumeric
data types.

5.25

Aggregate Functions (Cont.)

 For example, to find the average account balance at the
Perryridge branch, we write

The result of this query is a relation with a single attribute, containing
a single tuple. We can also give name to the attribute of the result
relation by using the as clause.

 We use group by clause if we want to apply the aggregate
functions to a group of sets of tuples. The attribute or attributes given
in the group by clause are used to form groups. For example, to find
the average account balance at each branch, we write

select avg (balance)
 from account
 where branch-name = ‘Perryridge’

select branch-name, avg (balance)
 from account
 group by branch-name

5.26

Aggregate Functions (Cont.)

 To eliminate duplicates before computing an aggregate function,
we use the keyword distinct in the aggregate expression. For
example, to find the number of depositors for each branch, we
write

select branch-name, count (distinct customer-name)
 from depositor, account
 where depositor.account-number = account.account-number
 group by branch-name

 To state a condition that applies to groups rather than to tuples,
we use the having clause. For example, to find the names of all
branches where the average account balance is more than
$1,200, we write

select branch-name, avg (balance)
 from account
 group by branch-name
 having avg (balance) > 1200

5.27

Aggregate Functions (Cont.)

 If we wish to treat the entire relation as a single group, we do not
use a group by clause. For example, to find the average
balance for all accounts, we write

select avg (balance)
 from account

select count (*)
 from customer

 We use aggregate function count frequently to count the number
of tuples in a relation. Thus to find the number of tuples in the
customer relation, we write

 SQL does not allow the use of distinct with count(*). It is also
illegal to use distinct with max and min, even though the result
does not change. We can use the keyword all in place of
distinct, but all is the default.

5.28

Aggregate Functions (Cont.)

 If a where clause and having clause appear in the same query,
SQL applies the predicate in the where clause first. Tuples
satisfying the where predicate are then placed into groups by the
group by clause. SQL then applies having clause, if it is
present, to each group; it removes the groups that do not satisfy
the having clause predicate. The select clause uses the
remaining groups to generate tuples of the result of the query.
For example, to find the average balance for each customer who
lives in the Harrison and has at least three accounts, we write

select depositor.customer-name, avg (balance)

 from depositor, account, customer
 where depositor.account-number = account.account-number and
 depositor.customer-name = customer.customer-name and
 customer-city = ‘Harrison’
 group by depositor.customer-name
 having count (distinct depositor.account-number) >= 3

5.29

Aggregate Functions (Cont.)

Note: predicates in the having clause are applied after the
 formation of groups whereas predicates in the where
 clause are applied before forming groups

Note: Attributes in select clause outside of aggregate functions must
 appear in group by list

5.30

5. Null Values

 SQL allows the use of null values to indicate the absence
of information about the value of an attribute.

 The keyword is null can be used to check for null
values.

 For example, to find all loan number which appear in
the loan relation with null values for amount, we write

 select loan-number
 from loan
 where amount is null

 The keyword is not null tests the absence of a null value.

 The result of any arithmetic expression involving null is
null

 E.g. 5 + null returns null

5.31

Null Values (Cont.)

 Any comparison with null returns unknown

 E.g. 5 < null or null <> null or null = null

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true, (unknown or false) =
unknown
 (unknown or unknown) = unknown

 AND: (true and unknown) = unknown, (false and

unknown) = false, (unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 We use the clauses is unknown and is not unknown to
test whether the result of a comparison is unknown.

5.32

Null Values (Cont.)

 Aggregate functions ignore null values. For example,
assume that some tuples in the loan relation have null
value for amount. Consider the following query to total all
loan amounts:

 select sum (amount)

 from loan

 Above statement ignores null amounts

 All aggregate operations except count(*) ignore tuples
with null values on the aggregated attributes.

5.33

6. Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries.

 A subquery is a select-from-where expression that is
nested within another query.

 A common use of subqueries is to perform tests for set
membership, make set comparisons, and determining set
cardinality.

5.34

6.1. Set Membership

 The in connective tests for set membership, where set is the
collection of values produced by a select clause. The not in
connective tests for the absence of set membership. For
example, to find all customers who have both a loan and an
account, we write

 Similarly, to find all customers who have a loan at the bank but
do not have an account at the bank, we write

select distinct customer-name
 from borrower
 where customer-name not in (select customer-name
 from depositor)

select distinct customer-name
 from borrower
 where customer-name in (select customer-name
 from depositor)

5.35

Set Membership (Cont.)

 The in and not in operators can also be used in
enumerated sets. For example, to find the names of
customers who have loan at the bank, and whose names
are neither Smith nor Jones, we write

select distinct customer-name

 from borrower
 where customer-name not in (‘Smith’, ‘Jones’)

5.36

Set Membership (Cont.)

 We can also test set membership in an arbitrary relation.
For example, to find all customers who have both an
account and a loan at the Perryridge branch, we write

 Note: Above query can be written in a much simpler manner. The
 formulation above is simply to illustrate SQL features.

select distinct customer-name

 from borrower, loan
 where borrower.loan-number = loan.loan-number and
 branch-name = “Perryridge” and
 (branch-name, customer-name) in
 (select branch-name, customer-name
 from depositor, account
 where depositor.account-number =
 account.account-number)

5.37

6.2. Set Comparison

 We can use nested subquery to compare sets. For example, to
find all branches that have greater assets than those of at least
one branch located in Brooklyn, we write

 We can also write the same query using > some clause. The >
some clause is used to represent “greater than at least one”

select branch-name
 from branch
 where assets > some
 (select assets
 from branch
 where branch-city = ‘Brooklyn’)

select distinct T.branch-name
 from branch as T, branch as S
 where T.assets > S.assets and
 S.branch-city = ‘Brooklyn’

5.38

Set Comparison (Cont.)

 SQL also allows <some, <=some, >=some, =some, and <>some
comparisons. The keyword any is synonymous to some.

0
5

6

(5< some) = true

0
5

0

) = false

5

0
5 (5 <> some) = true (since 0  5)

(read: 5 < some tuple in the relation)

(5< some

) = true (5 = some

(= some)  in

However, (<> some)  not in

5.39

Set Comparison (Cont.)

 SQL also allows >all, >=all, <all, <=all, =all and <>all
comparisons.

0
5

6

(5< all) = false

6
10

4

) = true

5

4
6 (5 <> all) = true (since 5  4 and 5  6)

(5< all

) = false (5 = all

(<> all)  not in

However, (= all)  in

5.40

Set Comparison (Cont.)

 For example, to find the names of all branches that have
greater assets than all branches located in Brooklyn, we
write

select branch-name
 from branch
 where assets > all
 (select assets
 from branch
 where branch-city = ‘Brooklyn’)

5.41

Set Comparison (Cont.)

 We can also use set comparisons with having clause. For
example, to find the branch that has the highest average
balance, we write

select branch-name

 from account

 group by branch-name

 having avg(balance) >= all (select avg(balance)

 from account

 group by branch-name)

5.42

6.3. Test for Empty Relations

 SQL includes features for testing whether a subquery has
any tuples in its result. The exists construct returns the
value true if the argument subquery is nonempty. For
example, to find all customers who have both an account
and loan at the bank, we can write

select customer-name

 from borrower

 where exists (select *
 from depositor

 where depositor.customer-name

 = borrower.customer-name)

 We can test for the nonexistence of tuples in a subquery
by using the not exists construct.

5.43

6.4.Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any
duplicate tuples in its result. It returns true if the subquery
contains no duplicate tuples.

 Find all customers who have at most one account at the
Perryridge branch.

 select T.customer-name
 from depositor as T
 where unique (

 select R.customer-name
 from account, depositor as R
 where T.customer-name = R.customer-name and
 R.account-number = account.account-number and
 account.branch-name = ‘Perryridge’)

5.44

Test for Absence of Duplicate Tuples (Cont.)

 Find all customers who have at least two accounts at the
Perryridge branch.

select distinct T.customer-name

from depositor T

where not unique (
 select R.customer-name

 from account, depositor as R

 where T.customer-name = R.customer-name

and

 R.account-number = account.account-number

and
 account.branch-name = ‘Perryridge’)

5.45

7. Views

 Provide a mechanism to hide certain data from the view of
certain users. To create a view we use the command:

create view v as <query expression>

where:

<query expression> is any legal expression

The view name is represented by v

5.46

Views (Cont.)

 A view consisting of branches and their customers

 view names may appear in any place that a relation name
may appear. For example, to find all customers of the
Perryridge branch, we write

create view all-customer as

 (select branch-name, customer-name

 from depositor, account

 where depositor.account-number = account.account-number)

 union

 (select branch-name, customer-name
 from borrower, loan
 where borrower.loan-number = loan.loan-number)

select customer-name

 from all-customer
 where branch-name = ‘Perryridge’

5.47

Views (Cont.)

 The attribute names of a view can be specified as follows

 To find all customers of the Perryridge branch, we write

create view all-customer (bn, cn) as

 (select branch-name, customer-name

 from depositor, account

 where depositor.account-number = account.account-number)

 union

 (select branch-name, customer-name
 from borrower, loan
 where borrower.loan-number = loan.loan-number)

select cn

 from all-customer
 where bn = ‘Perryridge’

5.48

8. Modification of the Database

5.49

8. 1. Deletion

 We can delete only whole tuples; we can not delete
values on only particular attributes.

 SQL expresses a deletion by

 Delete from r
 where P

 Where P represents a predicate and r a relation. The
delete statement first finds all tuples t in r for which P(t)
is true, then deletes them from r. The where clause can
be omitted, in which case all tuples in r are deleted.

 Note: A delete command operates on only one
relation. If we want to delete tuples from several
relations, we must use one delete command for each
relation.

5.50

Deletion (Cont.)

 To delete all tuples from loan relation, we write

 delete from loan

 To delete all account records at the Perryridge branch, we write

 delete from account
 where branch-name = ‘Perryridge’

 To delete all loans with loan amounts between $1300 and
$1500, we write

 delete from loan
 where amount between 1300 and 1500

 Delete all accounts at every branch located in Needham city.

 delete from account
where branch-name in (select branch-name
 from branch
 where branch-city = ‘Needham’)

5.51

Deletion (Cont.)

 delete from depositor
where account-number not in (select account-number
 from account)

5.52

8.2. Insertion

 To insert data into a relation, we either specify a tuple to be
inserted or write a query whose result is a set of tuples to be
inserted.

 The simple insert statement is a request to insert one tuple.

 Add a new tuple to account

 insert into account
 values (‘A-9732’, ‘Perryridge’,1200)
or equivalently

insert into account (branch-name, balance, account-number)
 values (‘Perryridge’, 1200, ‘A-9732’)

 Add a new tuple to account with balance set to null

 insert into account
 values (‘A-777’,‘Perryridge’, null)

5.53

Insertion (Cont.)

 More generally, we might want to insert tuples on the basis of the
result of a query. For example, to provide as a gift for all loan
customers of the Perryridge branch, a $200 savings account (let
the loan number serve as the account number for the new savings
account), we write

 insert into account
 select loan-number, branch-name, 200
 from loan
 where branch-name = ‘Perryridge’
 insert into depositor
 select customer-name, loan-number
 from loan, borrower
 where branch-name = ‘Perryridge’
 and loan.account-number = borrower.account-number

5.54

8.3. Updates

 To change a value in a tuple without changing all values
in the tuple, we use update statement.

 To increase all balances by 5 percent we write

 update account

set balance = balance  1.05

 If interest is to be paid only to accounts with a balance of
$1000 or more, we write

 update account

set balance = balance  1.05
where balance > 10000

5.55

Updates (Cont.)

 To pay 5% interest on accounts whose balance is
greater than average, we write

 update account
set balance = balance  1.05
where balance > (select avg(balance)

 from account)

5.56

Updates (Cont.)

 Increase all accounts with balances over $10,000 by 6%,
all other accounts receive 5%.

 Write two update statements:

 update account
 set balance = balance  1.06
 where balance > 10000

 update account
 set balance = balance  1.05
 where balance  10000

 The order is important

 Can be done better using the case statement (next
slide)

5.57

Updates (Cont.)

 Same query as before: Increase all accounts with balances over
$10,000 by 6%, all other accounts receive 5%.
 update account
 set balance = case
 when balance <= 10000 then balance *1.05
 else balance * 1.06
 end

 The general form of the case statement is:
case
 when pred1 then result1

 when pred2 then result2

 …….
 when predn then resultn

 else result0

end

5.58

8.4. Update of a View

 Create a view of all loan data in loan relation, hiding the
amount attribute

 create view branch-loan as
 select branch-name, loan-number
 from loan

 Add a new tuple to branch-loan

 insert into branch-loan
 values (‘Perryridge’, ‘L-307’)

 This insertion must be represented by the insertion of the tuple

 (‘L-307’, ‘Perryridge’, null)

 into the loan relation

 Updates on more complex views are difficult or impossible to
translate, and hence are disallowed.

5.59

9. Joined Relations

 Join operations take two relations and return as a result
another relation.

 These additional operations are typically used as subquery
expressions in the from clause

 Each of the variants of the join operations consists of a join
type and a join condition.

 Join condition – defines which tuples in the two relations match,
and what attributes are present in the result of the join.

 Join type – defines how tuples in each relation that do not match
any tuple in the other relation (based on the join condition) are
treated.

Join Types

inner join

left outer join
right outer join

full outer join

Join Conditions

natural

on <predicate>
using (A1, A2, ..., An)

5.60

Joined Relations (Cont.)

 Relation loan

 Relation borrower

customer-name loan-number

Jones

Smith

Hayes

L-170

L-230

L-155

amount

3000

4000

1700

branch-name

Downtown

Redwood

Perryridge

loan-number

L-170

L-230

L-260

 Note: borrower information missing for L-260 and loan
information missing for L-155

5.61

Joined Relations (Cont.)

 loan inner join borrower on
loan.loan-number = borrower.loan-number

 loan left outer join borrower on
loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

3000

4000

customer-name loan-number

Jones

Smith

L-170

L-230

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

Perryridge

3000

4000

1700

customer-name loan-number

Jones

Smith

null

L-170

L-230

null

loan-number

L-170

L-230

L-260

5.62

Joined Relations (Cont.)

 loan natural inner join borrower

 loan natural right outer join borrower

branch-name amount

Downtown

Redwood

3000

4000

customer-name

Jones

Smith

loan-number

L-170

L-230

branch-name amount

Downtown

Redwood

null

3000

4000

null

customer-name

Jones

Smith

Hayes

loan-number

L-170

L-230

L-155

5.63

Joined Relations (Cont.)

 loan full outer join borrower using (loan-number)

 Find all customers who have either an account or a loan (but
not both) at the bank.

branch-name amount

Downtown

Redwood

Perryridge

null

3000

4000

1700

null

customer-name

Jones

Smith

null

Hayes

loan-number

L-170

L-230

L-260

L-155

select customer-name
 from (depositor natural full outer join borrower)
 where account-number is null or loan-number is null

5.64

10. Data Definition Language (DDL)

 The schema for each relation.

 The domain of values associated with each attribute.

 Integrity constraints

 The set of indices to be maintained for each relations.

 Security and authorization information for each
relation.

 The physical storage structure of each relation on
disk.

Allows the specification of not only a set of relations but
also information about each relation, including:

5.65

10.1. Domain Types in SQL

 char(n). Fixed length character string, with user-specified
length n.

 varchar(n). Variable length character strings, with user-
specified maximum length n.

 int. Integer (a finite subset of the integers that is machine-
dependent).

 smallint. Small integer (a machine-dependent subset of the
integer domain type).

 numeric(p,d). Fixed point number, with user-specified
precision of p digits (plus a sign), with d digits to the right of
decimal point.

 real, double precision. Floating point and double-precision
floating point numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision
of at least n digits.

5.66

Domain Types in SQL

 date. Dates, containing a (4 digit) year, month and date

 E.g. date ‘2001-7-27’
 time. Time of day, in hours, minutes and seconds.

 E.g. time ’09:00:30’
 timestamp: date plus time of day

 E.g. timestamp ‘2001-7-27 09:00:30’
 Interval: period of time

 E.g. Interval ‘1’ day

 Subtracting a date/time/timestamp value from another
gives an interval value

 Interval values can be added to date/time/timestamp
values

5.67

Domain Types in SQL

 Null values are allowed in all the domain types. Declaring
an attribute to be not null prohibits null values for that
attribute.

 create domain construct in SQL-92 creates user-defined
domain types

 create domain person-name char(20) not null

 We can extract values of individual fields from
date/time/timestamp

 E.g. extract (year from d)

 We can cast string types to date/time/timestamp

 E.g. cast <string-valued-expression> as date

5.68

10.2. Creating a Table Construct

 An SQL relation is defined using the create table command:

 create table r (A1 D1, A2 D2, ..., An Dn,
 (integrity-constraint1),
 ...,
 (integrity-constraintk))

 r is the name of the relation

 each Ai is an attribute name in the schema of relation r

 Di is the data type of values in the domain of attribute Ai

 Example:

 create table branch
 (branch-name char(15) not null,
 branch-city char(30),
 assets integer)

5.69

10.3. Integrity Constraints

 Integrity constraints ensure that the changes made to the
database by unauthorized users do not result in a loss of data
consistency. Some are:

 not null

 primary key (A1, ..., An)

 check (P), where P is a predicate

Example: Declare branch-name as the primary key for branch and
ensure that the values of assets are non-negative.
 create table branch
 (branch-name char(15),
 branch-city char(30)
 assets integer,
 primary key (branch-name),

 check (assets >= 0))

 primary key declaration on an attribute automatically ensures
not null in SQL-92 onwards, needs to be explicitly stated in SQL-
89

5.70

10.4. Drop and Alter Table Constructs
 To remove a relation from database, we use the drop

table command. It deletes all information about the
dropped relation from the database. To delete a
relation r, we write

 drop table r

 The alter table command is used to add attributes to
an existing relation.

 alter table r add A D

 where A is the name of the attribute to be added to
relation r and D is the domain of A.

 All tuples in the relation are assigned null as the
value for the new attribute.

 The alter table command can also be used to drop
attributes of a relation
 alter table r drop A
where A is the name of an attribute of relation r

 Dropping of attributes not supported by many
databases

5.71

11. Embedded SQL
 The SQL standard defines embeddings of SQL in a variety of

programming languages such as Pascal, PL/I, Fortran, C,
Java and Cobol.

 A language to which SQL queries are embedded is referred to
as a host language, and the SQL structures permitted in the
host language comprise embedded SQL.

 Programs written in the host language can use the embedded
SQL syntax to access and update data stored in a database.

 In embedded SQL, all query processing is performed by the
database system, which then makes the result of the query
available to the program one tuple at a time.

 An embedded SQL program must be processed by a special
processor prior to compilation. EXEC SQL statement is used
to identify embedded SQL request to the preprocessor. It has
the form

 EXEC SQL <embedded SQL statement > END-EXEC

 Note: this varies by language. E.g. the Java embedding uses
 # SQL { …. } ;

5.72

Embedded SQL (Cont.)

 We place the statement SQL INCLUDE in the program to
identify the place where the preprocessor should insert the
special variables used for communication between the
program and the database system.

 Variables of the host language can be used within
embedded SQL statements, but they must be preceded by
a colon (:) to distinguish them from SQL variables.

 To write a query, we use declare cursor statement. The
program must use open and fetch commands to obtain
the result tuples.

5.73

Embedded SQL (Cont.)

 Specify the query in SQL and declare a cursor for it

EXEC SQL

 declare c cursor for
select customer-name, customer-city
from depositor, customer, account
where depositor.customer-name = customer.customer-name
 and depositor account-number = account.account-number
 and account.balance > :amount

END-EXEC

Example

From within a host language, find the names and cities of
customers with more than the variable amount dollars in some
account.

5.74

Embedded SQL (Cont.)

 The open statement causes the query to be evaluated

 EXEC SQL open c END-EXEC

 The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

 EXEC SQL fetch c into :cn, :cc END-EXEC
Repeated calls to fetch get successive tuples in the query result

 A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the
temporary relation that holds the result of the query.

 EXEC SQL close c END-EXEC

Note: above details vary with language. E.g. the Java embedding
defines Java iterators to step through result tuples.

5.75

Embedded SQL (Cont.)

 We can also update tuples fetched by cursor by declaring that
the cursor is for update

 EXEC SQL
declare c cursor for
 select *
 from account
 where branch-name = ‘Perryridge’
 for update
END-EXEC

 To update tuple at the current location of cursor

 update account
 set balance = balance + 100
 where current of c

 We can also modify databases by using embedded SQL. E.g.

 EXEC SQL <any valid update, insert or delete > END-EXEC

5.76

12. Dynamic SQL

 The dynamic SQL component of SQL allows programs to construct and

submit SQL queries at run time.

 In contrast, embedded SQL statements must be completely present at

compile time; they are compiled by the embedded SQL preprocessor.

 Using dynamic SQL, programs can create SQL queries as strings at run

time and can either have them executed immediately or have them

prepared for subsequent use.

 Example of the use of dynamic SQL from within a C program.

char * sqlprog = “update account

 set balance = balance * 1.05

 where account-number = ?”

EXEC SQL prepare dynprog from :sqlprog;

char account [10] = “A-101”;
EXEC SQL execute dynprog using :account;

 The dynamic SQL program contains a ?, which is a place holder for a

value that is provided when the SQL program is executed.

