
1 Chapter3

Query Language

 A query language is a language in which a user requests
information from the database.

 Query languages can be categorized as either procedural or
nonprocedural.

 In a procedural language, the user instructs the system to
perform a sequence of operations on the database to compute
the desired result. For example, relational algebra.

 In a nonprocedural language, the user describes the desired
information without giving a specific procedure for obtaining that
information. For example, tuple relational calculus and domain
relational calculus.

 Most commercial relational database systems offer a query
language that includes elements of both procedural and
nonprocedural approaches.

 Example: SQL (Structured Query Language).

2 Chapter3

Relational Algebra

 It is a procedural query language

 It consists of a set of operations that take one or two relations as
input and produce a new relation as their result. The six
fundamental operations are:

 select

 project

 union

 set difference

 Cartesian product

 rename

 The select, project, and rename operations are called unary
operators, because they operate on one relation. The remaining
three operations are called binary operations, because they
operate on pairs of relations.

3 Chapter3

Consider the following Relational Database

 Here, we use the following relational database to illustrate

the operations of relational algebra.

 branch (branch-name, branch-city, assets)

 customer (customer-name, customer-street, customer-city)

 account (account-number, branch-name, balance)

 loan (loan-number, branch-name, amount)

 depositor (customer-name, account-number)

 borrower (customer-name, loan-number)

4 Chapter3

Select Operation – Example

• Relation r A B C D

















1

5

12

23

7

7

3

10

• A=B ^ D > 5 (r)
A B C D









1

23

7

10

5 Chapter3

Select Operation
 Notation:  p(r)

 p is called the selection predicate

 Defined as:

 p(r) = {t | t  r and p(t)}

 Where p is a formula in propositional calculus consisting
of terms connected by :  (and),  (or),  (not)
Each term is one of:

 <attribute> op <attribute> or <constant>

 where op is one of: =, , >,  < 

 Examples of selection:
To select those tuples of the loan relation where the
branch is “Perryridge”, we write

  branch-name = “Perryridge” (loan)

 We can find all tuples of the loan relation in which the
amount lent is more than $1200 by writing

  amount > 1200 (loan)

6 Chapter3

Select Operation
 To find those tuples pertaining to loans of more than

$1200 made by the “Perryridge” branch, we write

  branch-name = “Perryridge” ^ amount>1200 (loan)

 To find all customers who have the same name as their
loan officer, we can write

  customer-name = banker-name (loan-officer)

7 Chapter3

Project Operation – Example

 Relation r: A B C









10

20

30

40

1

1

1

2

A C









1

1

1

2

=

A C







1

1

2

 A,C (r)

8 Chapter3

Project Operation

 Notation:

 A1, A2, …, Ak (r)

 where A1,..,Ak are attribute names and r is a relation name.

 The result is defined as the relation of k columns obtained by
erasing the columns that are not listed

 Duplicate rows are removed from result, since relations are sets

 E.g. To eliminate the branch-name attribute of loan
 loan-number, amount (loan)

9 Chapter3

Union Operation – Example

 Relations r, s:

 r  s:

A B







1

2

1

A B





2

3

r

s

A B









1

2

1

3

10 Chapter3

Union Operation

 Notation: r  s

 Defined as:

 r  s = {t | t  r or t  s}

 For r  s to be valid.

 1. r, s must have the same arity (same number of attributes)

 2. The attribute domains must be compatible (e.g., 2nd column
 of r deals with the same type of values as does the 2nd
 column of s)

 E.g. to find the name of all customers with either an account or a
loan
 customer-name (depositor)  customer-name (borrower)

11 Chapter3

Set Difference Operation – Example

 Relations r, s:

r – s:

A B







1

2

1

A B





2

3

r

s

A B





1

1

12 Chapter3

Set Difference Operation

 Notation r – s

 Defined as:

 r – s = {t | t  r and t  s}

 Set differences must be taken between compatible relations.

 r and s must have the same arity

 attribute domains of r and s must be compatible

 For example, we can find the name of all customers of a bank
who have an account but not loan by writing

 customer-name (depositor) - customer-name (borrower)

13 Chapter3

Cartesian-Product Operation-Example

Relations r, s:

r x s:

A B





1

2

A B
















1

1

1
1

2

2

2

2

C D















10

10

20
10

10

10

20

10

E

a

a

b
b

a

a

b

b

C D








10
10

20

10

E

a
a

b

b r

s

14 Chapter3

Cartesian-Product Operation

 Notation r x s

 Defined as:

 r x s = {t q | t  r and q  s}

 Assume that attributes of r(R) and s(S) are disjoint. (That is,
R  S = ).

 If attributes of r(R) and s(S) are not disjoint, then renaming must be
used.

 For example, suppose that we want to find the names of all
customers who have a loan at the “Perryridge” branch. We need
the information in both the loan and borrower relation to do so. For
this we can write

 branch-name = “Perryridge” (borrower  loan)

 The customer-name column may contain customers who do not
have a loan at the “Perryridge” branch. If a customer has a loan in
the “Perryridge” branch, then there is some tuple in borrower  loan
that contains this name and borrower.loan-number = loan.loan-
number. So, if we write,

15 Chapter3

Cartesian-Product Operation

 borrower.loan-number = loan.loan-number (branch-name = “Perryridge” (borrower

loan))

 We can get only those tuples of borrowerloan that pertain to
customers who have a loan at the “Perryridge” branch.

 Finally, since we want only customer-name, we do a projection

 customer-name (borrower.loan-number = loan.loan-number (branch-name=“Perryridge”
(borrower  loan)))

 Alternatively, we can also write

 customer-name(loan.loan-number = borrower.loan-number(
 (branch-name = “Perryridge”(loan)) x borrower))

16 Chapter3

Composition of Operations

 Relational-algebra operations can be composed together into a
relational-algebra expression.

 Example: A=C (r x s)

 r x s

 A=C (r x s)

A B
















1

1

1
1

2

2

2

2

C D















10

10

20
10

10

10

20

10

E

a

a

b
b

a

a

b

b

A B C D E






1

2

2







10

20

20

a

a

b

17 Chapter3

Composition of Operations

 For example, to find the name of those customers who live in
“Harrison” city, we write

 customer-name (customer-city = “Harrison” (Customer))

18 Chapter3

Rename Operation

 Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.

 Allows us to refer to a relation by more than one name.

Example:

  x (E)

returns the expression E under the name X

If a relational-algebra expression E has arity n, then

 x (A1, A2, …, An) (E)

returns the result of expression E under the name X, and with the

attributes renamed to A1, A2, …., An.

19 Chapter3

Rename Operation

 For example, to find the largest account balance, we write

 balance(account) - account.balance

 (account.balance < d.balance (account x d (account)))

 To find the names of all customers who live on the same street
and in the same city as Smith, we write

 customer.customer-name(customer.customer-street = smith-

addr.street ^ customer.customer-city = smith-addr.city (customer x

smith-addr(street,city) (customer-street, customer-city (

customer-name = “Smith” (customer)))))

20 Chapter3

Formal Definition of Relational Algebra

 A basic expression in the relational algebra consists of either one
of the following:

 A relation in the database

 A constant relation; that is by listing its tuples within { }, for
example { (A-101, Downtown,500), (A-215, Mianus, 700) }

 Let E1 and E2 be relational-algebra expressions; the following are
all relational-algebra expressions:

 E1  E2

 E1 - E2

 E1 x E2

 p (E1), P is a predicate on attributes in E1

 s(E1), S is a list consisting of some of the attributes in E1

  x (E1), x is the new name for the result of E1

21 Chapter3

Additional Operations

We define additional operations that do not add any power to the

relational algebra, but that simplify common queries.

 Set intersection

 Natural join

 Division

 Assignment

22 Chapter3

Set-Intersection Operation - Example

 Relation r, s:

 r  s

A B





1
2
1

A B




2
3

r s

A B

 2

23 Chapter3

Set-Intersection Operation

 Notation: r  s

 Defined as:

 r  s ={ t | t  r and t  s }

 Assume:

 r, s have the same arity

 attributes of r and s are compatible

 Note: r  s = r - (r - s)

 For example, to find the name of all customers who have both a
loan and an account, we can write

 customer-name (borrower)  customer-name (depositor)

24 Chapter3

Natural-Join Operation

 The natural join is a binary operation that allows us to combine
certain selections and a Cartesian product into one operation. It
performs Cartesian product and a selection forcing equality on those
attributes that appear in both relation schemas, and finally removes
duplicate attributes.

 For example, to find the names of all customers who have a loan at
the bank, along with the loan number and the loan amount, we can
use Cartesian product as follows:

 customer-name, loan.loan-number, amount(borrower.loan-number =

loan.loan-number(borrower x loan))

 but we can express the above query by using natural
join as follows:

 customer-name, loan-number, amount(borrower loan)

 Note: r s = r x s if R  S = 

25 Chapter3

 Notation: r s

Natural-Join Operation

 Let r and s be relations on schemas R and S respectively.
Then, r s is a relation on schema R  S obtained as follows:

 Consider each pair of tuples tr from r and ts from s.

 If tr and ts have the same value on each of the attributes in R  S, add
a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:

R = (A, B, C, D)

S = (E, B, D)

 Result schema = (A, B, C, D, E)

 r s is defined as:

 r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x s))

26 Chapter3

Natural Join Operation – Example

 Relations r, s:

A B









1

2

4

1
2

C D









a
a
b
a
b

B

1

3

1

2
3

D

a
a
a
b
b

E









r

A B










1

1

1
1

2

C D









a
a
a
a
b

E








s

r s

27 Chapter3

Other Examples

 To find the names of all branches with customers who
have an account in the bank and who live in Harrison,
we write

 branch-name(customer-city = “Harrison”(customer account

 depositor)

 To find all customers who have both a loan and an
account at the bank, we write

 customer-name(borrower depositor)

28 Chapter3

Division Operation

 Suited to queries that include the phrase “for all”.
 Let r and s be relations on schemas R and S respectively

where

 R = (A1, …, Am, B1, …, Bn)

 S = (B1, …, Bn)

The result of r  s is a relation on schema

R – S = (A1, …, Am)

 r  s = { t | t   R-S(r)   u  s (tu  r) }

 r  s

29 Chapter3

Division Operation – Example

Relations r, s:

r  s: A

B





1

2

A B


















1
2

3

1

1

1
3

4

6

1

2

r

s

30 Chapter3

Another Division Example

A B














a
a
a
a
a
a
a
a

C D











a
a
b
a
b
a
b
b

E

1

1

1

1

3
1

1

1

Relations r, s:

r  s:

D

a
b

E

1
1

A B




a
a

C




r

s

31 Chapter3

Division Operation (Cont.)

 For example, to find the name of all customers who have an
account at all branches located in Brooklyn, we write

 customer-name, branch-name (depositor account)
  branch-name (branch-city = “Brooklyn” (branch))

32 Chapter3

Assignment Operation

 The assignment operation () provides a convenient way to
express complex queries.

 Write query as a sequential program consisting of

 a series of assignments

 followed by an expression whose value is displayed as a result of
the query.

 Assignment must always be made to a temporary relation variable.

 Example: Write r  s as

 temp1  R-S (r)

 temp2  R-S ((temp1 x s) – R-S,S (r))

 result = temp1 – temp2

 The result to the right of the  is assigned to the relation variable on

the left of the .

 May use variable in subsequent expressions.

33 Chapter3

Extended Relational-Algebra-Operations

 Generalized Projection

 Aggregate Functions

 Outer Join

34 Chapter3

Generalized Projection

 Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

  F1, F2, …, Fn(E)

 E is any relational-algebra expression

 Each of F1, F2, …, Fn are arithmetic expressions involving
constants and attributes in the schema of E.

 For example, given relation credit-info(customer-name, limit,
credit-balance), find how much more each person can spend:

 customer-name, limit – credit-balance (credit-info)

 The attribute resulting from the expression limit - credit-balance
does not have a name and we can give it name as follows:

 customer-name, limit – credit-balance as credit-available (credit-info)

35 Chapter3

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns a
single value as a result.

 avg: average value
 min: minimum value
 max: maximum value
 sum: sum of values
 count: number of values

 Aggregate operation in relational algebra

 G1, G2, …, Gn g F1(A1), F2(A2),…, Fn(An) (E)

 E is any relational-algebra expression

 G1, G2 …, Gn is a list of attributes on which to group (can be empty)

 Each Fi is an aggregate function

 Each Ai is an attribute name

36 Chapter3

Aggregate Operation – Example

 Relation r:

A B

















C

7

7

3

10

g sum(C) (r)
sum-C

27

37 Chapter3

Aggregate Operation – Example

 Relation account grouped by branch-name:

branch-name g sum(balance) (account)

branch-name account-number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch-name balance

Perryridge
Brighton
Redwood

1300
1500
700

38 Chapter3

Aggregate Functions (Cont.)

 Result of aggregation does not have a name

 Can use rename operation to give it a name

 For convenience, we permit renaming as part of aggregate
operation

 There are cases where we must eliminate multiple occurrences
of a value before computing an aggregate function. For this, we
use the function name with the addition of the hyphenated string
“distinct” appended to the end of the function name (for
example, count-distinct). For example, to find the number of
branches appearing in the pt-works relation, we write

 g
count-distinct(branch-name)(pt-works)

branch-name g
sum(balance) as sum-balance, max(balance) as

max-balance (account)

39 Chapter3

Outer Join
 An extension of the natural join operation that avoids loss of

information.

 Computes the natural join and then adds tuples form one relation
that does not match tuples in the other relation to the result of the
natural join.

 Uses null values; null signifies that the value is unknown or does not
exist

 There are three forms of outer join: left outer join, right outer join
and full outer join.

 The left outer join takes all tuples in the left relation that did not
match with any tuple in the right relation, pads the tuples with null
values for all other attributes from the right relation and adds them
to the result of the natural join.

 Similarly, right outer join takes all tuples in the right relation that did
not match with any tuple in the left relation, pads the tuples with null
values for all other attributes from the left relation and adds them to
the result of the natural join.

 The full outer join does both of the left outer join and right outer join
operations.

40 Chapter3

Outer Join – Example

 Relation loan

 Relation borrower

customer-name loan-number

Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan-number amount

L-170
L-230
L-260

branch-name

Downtown
Redwood
Perryridge

41 Chapter3

Outer Join – Example

 Inner Join

loan Borrower

loan-number amount

L-170
L-230

3000
4000

customer-name

Jones
Smith

branch-name

Downtown
Redwood

Jones
Smith
null

loan-number amount

L-170
L-230
L-260

3000
4000
1700

customer-name branch-name

Downtown
Redwood
Perryridge

 Left Outer Join

 loan Borrower

42 Chapter3

Outer Join – Example

 Right Outer Join

 loan borrower

loan borrower

 Full Outer Join

loan-number amount

L-170
L-230
L-155

3000
4000
null

customer-name

Jones
Smith
Hayes

branch-name

Downtown
Redwood
null

loan-number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer-name

Jones
Smith
null
Hayes

branch-name

Downtown
Redwood
Perryridge
null

43 Chapter3

Modification of the Database

 The content of the database may be modified using the following
operations:

 Deletion

 Insertion

 Updating

 All these operations are expressed using the assignment
operator.

44 Chapter3

Deletion

 A delete request is expressed similarly to a query, except instead
of displaying tuples to the user, the selected tuples are removed
from the database.

 Can delete only whole tuples; cannot delete values on only
particular attributes

 A deletion is expressed in relational algebra by:

 r  r – E

 where r is a relation and E is a relational algebra query.

45 Chapter3

Deletion Examples

 Delete all account records in the Perryridge branch.

Delete all accounts at branches located in Needham.

r1  branch-city = “Needham” (account branch)

r2  branch-name, account-number, balance (r1)

r3   customer-name, account-number (r2 depositor)

account  account – r2

depositor  depositor – r3

Delete all loan records with amount in the range of 0 to 50

loan  loan – amount 0and amount  50 (loan)

account  account – branch-name = “Perryridge” (account)

46 Chapter3

Insertion

 To insert data into a relation, we either:

 specify a tuple to be inserted or

 write a query whose result is a set of tuples to be inserted

 in relational algebra, an insertion is expressed by:

 r  r  E

 where r is a relation and E is a relational algebra expression.

 The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.

47 Chapter3

Insertion Examples

 Insert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

 Provide as a gift for all loan customers in the Perryridge
 branch, a $200 savings account. Let the loan number serve
 as the account number for the new savings account.

account  account  {(“Perryridge”, A-973, 1200)}

depositor  depositor  {(“Smith”, A-973)}

r1  (branch-name = “Perryridge” (borrower loan))

account  account  loan-number, branch-name,200 (r1)

depositor  depositor  customer-name, loan-number(r1)

48 Chapter3

Updating

 A mechanism to change a value in a tuple without charging all
values in the tuple

 Use the generalized projection operator to do this task

 r   F1, F2, …, FI, (r)

 Each Fi is either

 the ith attribute of r, if the ith attribute is not updated, or,

 if the attribute is to be updated Fi is an expression, involving only
constants and the attributes of r, which gives the new value for the
attribute

49 Chapter3

Update Examples

 Make interest payments by increasing all balances by 5 percent.

 Pay all accounts with balances over $10,000 6 percent interest
 and pay all others 5 percent

 account   AN, BN, BAL * 1.06 ( BAL  10000 (account))

  AN, BN, BAL * 1.05 (BAL  10000 (account))

account   AN, BN, BAL * 1.05 (account)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

50 Chapter3

Views

 In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the database).
Security considerations may require that certain data be hidden
from users.

 Consider a person who needs to know a customer’s loan number
but has no need to see the loan amount. This person should see
a relation described, in the relational algebra, by

 customer-name, loan-number (borrower loan)

 Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

51 Chapter3

View Definition

 A view is defined using the create view statement which has the
form

 create view v as <query expression>

 where <query expression> is any legal relational algebra query
expression. The view name is represented by v.

 Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

 View definition is not the same as creating a new relation by
evaluating the query expression

 Rather, a view definition causes the saving of the definition of the
view itself, rather than the result of evaluation the relational algebra
expression that defines the view; whenever a view relation appears
in a query, it is replaced by the stored query expression.

52 Chapter3

View Examples

 Consider the view (named all-customer) consisting of branches
and their customers.

 Using the view all-customer, we can find all customers of the
Perryridge branch by writing:

create view all-customer as

 branch-name, customer-name (depositor account)

  branch-name, customer-name (borrower loan)

 customer-name

 (branch-name = “Perryridge” (all-customer))

53 Chapter3

Updates Through View

 Database modifications expressed as views must be translated
to modifications of the actual relations in the database.

 Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person, branch-
loan, is defined as:

 create view branch-loan as

 branch-name, loan-number (loan)

 Since we allow a view name to appear wherever a relation name
is allowed, the person may write:

 branch-loan  branch-loan  {(“Perryridge”, L-37)}

54 Chapter3

Updates Through Views (Cont.)

 The previous insertion must be represented by an insertion into the
actual relation loan from which the view branch-loan is constructed.

 An insertion into loan requires a value for amount. The insertion
can be dealt with by either.

 rejecting the insertion and returning an error message to the user.

 inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

 Some updates through views are impossible to translate into
database relation updates

 create view v as branch-name = “Perryridge” (account))

 v  v  (L-99, Downtown, 23)

 Others cannot be translated uniquely

 all-customer  all-customer  {(“Perryridge”, “John”)}
 Have to choose loan or account, and

create a new loan/account number!

55 Chapter3

Views Defined Using Other Views

 One view may be used in the expression defining another view

 A view relation v1 is said to depend directly on a view relation v2

if v2 is used in the expression defining v1

 A view relation v1 is said to depend on view relation v2 if either v1

depends directly to v2 or there is a path of dependencies from
v1 to v2

 A view relation v is said to be recursive if it depends on itself.

56 Chapter3

View Expansion

 A way to define the meaning of views defined in terms of other
views.

 Let view v1 be defined by an expression e1 that may itself contain
uses of view relations.

 View expansion of an expression repeats the following
replacement step:

 repeat
 Find any view relation vi in e1
 Replace the view relation vi by the expression defining vi
 until no more view relations are present in e1

 As long as the view definitions are not recursive, this loop will
terminate

