o Query Language

A query language is a language in which a user requests
information from the database.

Query languages can be categorized as either procedural or
nonprocedural.

In a procedural language, the user instructs the system to
perform a sequence of operations on the database to compute
the desired result. For example, relational algebra.

In a nonprocedural language, the user describes the desired
information without giving a specific procedure for obtaining that
iInformation. For example, tuple relational calculus and domain
relational calculus.

Most commercial relational database systems offer a query
language that includes elements of both procedural and
nonprocedural approaches.

Example: SQL (Structured Query Language).

1 Chapter3

~

Relational Algebra

m ltis a procedural query language

m |t consists of a set of operations that take one or two relations as
input and produce a new relation as their result. The six
fundamental operations are:

/UEe

(

2y

=)

=)

=)

select

project

union

set difference
Cartesian product
rename

m The select, project, and rename operations are called unary
operators, because they operate on one relation. The remaining
three operations are called binary operations, because they
operate on pairs of relations.

2 Chapter3

_onsider the following Relational Database

Here, we use the following relational database to illustrate

the operations of relational algebra.

branch (branch-name, branch-city, assets)

customer (customer-name, customer-street, customer-city)
account (account-number, branch-name, balance)

loan (loan-number, branch-name, amount)

depositor (customer-name, account-number)

borrower (customer-name, loan-number)

3 Chapter3

Select Operation — Example

>
Wy
O
)

* Relation r

12
23|10

™ ™ R R
D> ™ ™ R

®* Gpgrps5(M)

4 Chapter3

Select Operation
Notation: o ()
p is called the selection predicate
Defined as:

op(r) ={t| t € rand p(t)}

Where p is a formula in propositional calculus consisting
of terms connected by : A (and), v (or), — (not)
Each term is one of:

<attribute> op <attribute> or <constant>
where opis one of: =, #,>,><<

Examples of selection:
To select those tuples of the loan relation where the
branch is “Perryridge”, we write

O pranch-name = “Perryridge” (I Oan)
We can find all tuples of the loan relation in which the
amount lent is more than $1200 by writing

O amount > 1200 (/ Oan)
5 Chapter3

Select Operation

To find those tuples pertaining to loans of more than
$1200 made by the “Perryridge” branch, we write

O pranch-name = “Perryridge” » amount>1200 (/ Oan)

To find all customers who have the same name as their
loan officer, we can write

O customer-name = banker-name (/ oan-officer)

6 Chapter3

m Relation r:

Al B|C
a | 10| 1
a | 20| 1
p 130 1
p 40| 2
Al C A
a | 1 a
al 1| = | p
g1 p
B 2

Project Operation — Example

Chapter3

P Project Operation

m Notation:

Ha1, a2, ..., ak (1)
where A,,..,A, are attribute names and ris a relation name.

®m The result is defined as the relation of k columns obtained by
erasing the columns that are not listed

m Duplicate rows are removed from result, since relations are sets
m E.g. To eliminate the branch-name attribute of loan

1—[loan-number, amount (Ioan)

8 Chapter3

. Union Operation — Example

m Relations r, s: Al B

A | B
a | 1 a
a | 2 p| 3
g1 s
r
ruv Ss: Al B
a | 1
a | 2
p| 1
p| 3

9 Chapter3

o Union Operation

m Notation: ru s
m Defined as:
rous={t|terorte s

m For ru sto be valid.
1. r, s must have the same arity (same number of attributes)

2. The attribute domains must be compatible (e.g., 2nd column
of rdeals with the same type of values as does the 2nd
column of s)

m E.g.to find the name of all customers with either an account or a
loan

chstomer—name (depOSI tor) - chstomer-name (bor rower)

10 Chapter3

_ Set Difference Operation — Example

m Relations r, s: Al B Al B
a | 1 a
a | 2 B | 3
B 1 s
r
r—s: Al B
a | 1
p| 1

11 Chapter3

o Set Difference Operation

® Notationr—s
m Defined as:
r—s ={t|terandt ¢ s}
m Set differences must be taken between compatible relations.

¥ rand s must have the same arity
? attribute domains of r and s must be compatible

m For example, we can find the name of all customers of a bank
who have an account but not loan by writing

chstomer—name (depositor) - chstomer-name (borrower)

12 Chapter3

Cartesian-Product Operation-Example

~
Relations r, s: A| B C|D| E
a | 1 a | 10| a
p |10 a
plz p 20| b
r y | 10| b
S
rxs:
A|B|C|D|E
al| 1| a| 10| a
al| 1| |10| a
a| 1| 120 b
a| 1|y |10| b
Bl 2| a| 10| a
Bl 2| p|10)| a
Bl 2| B|20| b
gl 21 y1101 b

13 Chapter3

~

Cartesian-Product Operation

Notation rx s
Defined as:
rxs={tqg|terand g c s}

Assume that attributes of r(R) and s(S) are disjoint. (That is,
RN S= 9.

If attributes of r(R) and s(S) are not disjoint, then renaming must be
used.

For example, suppose that we want to find the names of all
customers who have a loan at the “Perryridge” branch. We need
the information in both the loan and borrower relation to do so. For
this we can write

O pranch-name = “Perryridge” (bOf rower x Ioan)

The customer-name column may contain customers who do not
have a loan at the “Perryridge” branch. If a customer has a loan in
the “Perryridge” branch, then there is some tuple in borrower x loan
that contains this name and borrower.loan-number = loan.loan-
number. So, if we write,

14 Chapter3

.~ Cartesian-Product Operation

O porrower.loan-number = loan.loan-number (Gbranch-name = “Perryridge” (b orrowerx
loan))

We can get only those tuples of borrowerxloan that pertain to
customers who have a loan at the “Perryridge” branch.

Finally, since we want only customer-name, we do a projection

chstomer-name (Gborrower. loan-number = loan.loan-number (Gbranch—name=“Perryridge 7
(borrower x loan)))

Alternatively, we can also write

chstomer-name(cloan.Ioan-number = borrower.loan-number(
(Gbranch—name = “Perryridge”(loan)) X borrower))

15 Chapter3

o Composition of Operations

m Relational-algebra operations can be composed together into a
relational-algebra expression.

B Example: o, (rxs)

>

B

O
)
m

M rxs

10
10
20
10
10
10
20
10

R™I™®™IAINI™®
SCTLOT T L QO

1
1
1
1
2
2
2
2

RIIZKR R KRR

>
Wy
O
S
m

B G, (rxs)

10
20
20
6 Chapter3

Q

T QO

™™™ R
N
| ™™ R

o Composition of Operations

For example, to find the name of those customers who live in
“Harrison” city, we write

chstomer-name (chstomer-city = “Harrison” (Customer))

17 Chapter3

o Rename Operation

m Allows us to name, and therefore to refer to, the results of
relational-algebra expressions.

m Allows us to refer to a relation by more than one name.
Example:

P x (E)

returns the expression E under the name X
If a relational-algebra expression E has arity n, then

Px (A1, A2, ..., An) (E)
returns the result of expression E under the name X, and with the

attributes renamed to A1, A2,, An.

18 Chapter3

o Rename Operation

For example, to find the largest account balance, we write

1_[bav/avnce(accoun t)) 1_[avc:c:ounz‘.ba/avnce

(S account balance < d.balance (@ccount x py (account)))

To find the names of all customers who live on the same street
and in the same city as Smith, we write

chstomer. customer—name(ccustomer. customer-street = smith-
addr.street customer.customer-city = smith-adar.city (CUStomer x

Psmith-addr(street,city) (chstomer-street, customer-city (
O customer-name = “Smith” (CUStomer)))))

19 Chapter3

_Formal Definition of Relational Algebra

m A basic expression in the relational algebra consists of either one
of the following:

¢ A relation in the database

? A constant relation; that is by listing its tuples within { }, for
example { (A-101, Downtown,500), (A-215, Mianus, 700) }

m Let E, and E, be relational-algebra expressions; the following are
all relational-algebra expressions:

" E,;UE,

v E, -E,

" E x E,

¢ o, (E,), Pis a predicate on attributes in E,

© TI4(E;), Sis a list consisting of some of the attributes in E;
" p,(E,), x is the new name for the result of E,

20 Chapter3

o Additional Operations

We define additional operations that do not add any power to the
relational algebra, but that simplify common queries.

m Set intersection
m Natural join

® Division

m Assignment

21 Chapter3

_Set-Intersection Operation - Example

m Relationr,s: | A | B A | B
o | 1 o | 2
HI I
r S
B rns Al B
o | 2

22 Chapter3

o Set-Intersection Operation

Notation: rn s
Defined as:
rns={t|terandte s}

Assume:
¥ r, s have the same arity
? attributes of r and s are compatible

m Note:rmns=r-(r-s)

m For example, to find the name of all customers who have both a
loan and an account, we can write

chstomer-name (borrower) a chstomer—name (depositor)

23 Chapter3

o Natural-Join Operation

® The natural join is a binary operation that allows us to combine
certain selections and a Cartesian product into one operation. It
performs Cartesian product and a selection forcing equality on those
attributes that appear in both relation schemas, and finally removes
duplicate attributes.

m For example, to find the names of all customers who have a loan at
the bank, along with the loan number and the loan amount, we can
use Cartesian product as follows:

chstomer—name, loan.loan-number, amount(cborrower./oan-number =
loan.loan-numberAPOrrower x loan))

but we can express the above query by using natural
join as follows:

chstomer—name, loan-number, amount(bor rower X loan)
Note:riXs=r xSIfRnS=¢

24 Chapter3

o Natural-Join Operation

m Notation: rx s

B |et rand sbe relations on schemas R and S respectively.
Then, r X s is a relation on schema R U S obtained as follows:

¢ Consider each pair of tuples t,from rand ts from s.

¢ If t,and tg have the same value on each of the attributes in R n S, add
a tuple t to the result, where

t has the same value as tron r

thas the same value as {gon s
m Example:
R= (A, B, C, D)
S=(E, B, D)
» Result schema = (A, B, C, D, E)
» rXsis defined as:
Hra rBrc rp sECrB=sBArD=5sD(X 9))

25 Chapter3

_ Natural Join Operation — Example

m Relationsr, s:

I Q R U

©C © © O O

—om =™

S NI W

C @© © @© O

I I =~ N

- - - =~ Q

C © O @© O

A/ B|C|D|E

I I I IN

S Qs

- Y~y

A|B|C|D

S QNI N

rixs

Chapter3

26

Other Examples

~

m To find the names of all branches with customers who
have an account in the bank and who live in Harrison,
we write

1_[branch-navrr]e(Gcusz‘omer—ciz‘y - “Harrison”(CUStomer X account
X depositor)

m To find all customers who have both a loan and an
account at the bank, we write

[customer-name(POrrowerx depositor)

27 Chapter3

Division Operation

r—=—3S

m Suited to queries that include the phrase “for all”.

B Let rand s be relations on schemas R and S respectively
where
" R=(Aq, ..., A, By, .., B)
7 S=(By, ..., B,)
The result of r + s is a relation on schema
R-S=(Aq, ..., A

m)

r~s={t| tellpgs(nAVues(tuer)}

28 Chapter3

Division Operation — Example

~

Relations r, s: A | B B
o | 1 1
a | 2
a | 3 2
g1 s
y | 1
o | 1
o | 3
o | 4
e| 6
e | 1
B2

r—+ S: A r

29 Chapter3

ion Example

ivi

Another D

~

11113111

T ©CO .o .00

NG

NG

S N U NN

©

©

C (M @ @© T @© @© ©

NG

A|B|C|D|E

SEESERSIESEES SR e

Relations r, s:

Chapter3

30

Division Operation (Cont.)

m For example, to find the name of all customers who have an
account at all branches located in Brooklyn, we write

chstomer—name, branch-name (deposi tor i accoun t)
- 1_[branch-navme (Gbranch-city = “Brooklyn” (br an Ch))

31 Chapter3

Assignment Operation

The assignment operation («) provides a convenient way to
express complex queries.

Write query as a sequential program consisting of
a series of assignments

followed by an expression whose value is displayed as a result of
the query.

» Assignment must always be made to a temporary relation variable.
Example: Write r+ s as

templ < I1g.g (1)
temp2 < 11g.g ((temp1 x s) —Ilg.g 5(N)
result = temp1 — temp?2

¥ The result to the right of the «— is assigned to the relation variable on
the left of the «.

¥ May use variable in subsequent expressions.

32 Chapter3

\/Extended Relational-Algebra-Operations

® Generalized Projection
m Aggregate Functions
® Quter Join

33 Chapter3

o Generalized Projection

m Extends the projection operation by allowing arithmetic functions
to be used in the projection list.

H F1,F2, ..., Fn(E)
m FEis any relational-algebra expression

m Eachof Fy, F,, ..., F, are arithmetic expressions involving
constants and attributes in the schema of E.

m For example, given relation credit-info(customer-name, limit,

credit-balance), find how much more each person can spend:
chstomer—name, limit — credit-balance (credit-info)
The attribute resulting from the expression limit - credit-balance

does not have a name and we can give it name as follows:

chstomer—name, limit — credit-balance as credit-available (credit-info)

34 Chapter3

_ Aggregate Functions and Operations

m Aggregation function takes a collection of values and returns a
single value as a result.

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

m Aggregate operation in relational algebra

G1,G2, ..., Gn gF1(A1), F2(A2),..., Fn(An) (E)
v Eis any relational-algebra expression
" Gy, G, ..., G, is alist of attributes on which to group (can be empty)
© Each F;is an aggregate function
¢ Each A;is an attribute name

35 Chapter3

. Aggregate Operation — Example

m Relationr:

g sum(C) (r)

>
®

™ ™ R R
D™ ™ R

sum-

C

27

36

Chapter3

~

®m Relation account grouped by branch-name:

Aggregate Operation — Example

branch-name | account-number balance
Perryridge A-102 400
Perryridge A-201 900
Brighton A-217 750
Brighton A-215 750
Redwood A-222 700

branch-name 9 sum(balance) (account)

branch-name balance
Perryridge 1300
Brighton 1500
Redwood 700

37

Chapter3

.~ Aggregate Functions (Cont.)

m Result of aggregation does not have a name
» Can use rename operation to give it a name

? For convenience, we permit renaming as part of aggregate
operation
branch-name g sum(balance) as sum-balance, max(balance) as

max-balance (aCCOI’m 4)

m There are cases where we must eliminate multiple occurrences
of a value before computing an aggregate function. For this, we
use the function name with the addition of the hyphenated string
“distinct” appended to the end of the function name (for
example, count-distinct). For example, to find the number of
branches appearing in the pt-works relation, we write

g count-distinct(branch-name)(pt -works)

38 Chapter3

P Outer Join

®m An extension of the natural join operation that avoids loss of
information.

m Computes the natural join and then adds tuples form one relation
that does not match tuples in the other relation to the result of the
natural join.

m Uses null values; null signifies that the value is unknown or does not
exist

m There are three forms of outer join: left outer join, right outer join
and full outer join.

m The left outer join takes all tuples in the left relation that did not
match with any tuple in the right relation, pads the tuples with null
values for all other attributes from the right relation and adds them
to the result of the natural join.

m Similarly, right outer join takes all tuples in the right relation that did
not match with any tuple in the left relation, pads the tuples with null
values for all other attributes from the left relation and adds them to
the result of the natural join.

®m The full outer join does both of the left outer join and right outer join

operations.
39 Chapter3

o Outer Join — Example

m Relation loan

loan-number | branch-name | amount
L-170 Downtown 3000
L-230 Redwood 4000
L-260 Perryridge 1700
m Relation borrower

customer-name| loan-number

Jones L-170

Smith L-230

Hayes L-155

40

Chapter3

o Outer Join — Example

® Inner Join

loan Xl Borrower

loan-number | branch-name | amount |customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
m Left Outer Join
loan _ X Borrower
loan-number | branch-name | amount |customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null

41 Chapter3

o Outer Join — Example

® Right Outer Join
loan [X_ borrower

loan-number | branch-name | amount |customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-155 null null Hayes

® Full Outer Join
loan X_borrower

loan-number | branch-name | amount |customer-name
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null
L-155 null null Hayes

42 Chapter3

_ Modification of the Database

® The content of the database may be modified using the following
operations:

7 Deletion
? Insertion
» Updating

m All these operations are expressed using the assignment
operator.

43 Chapter3

P Deletion

®m A delete request is expressed similarly to a query, except instead
of displaying tuples to the user, the selected tuples are removed
from the database.

m Can delete only whole tuples; cannot delete values on only
particular attributes

m A deletion is expressed in relational algebra by:
r<—r—E

where ris a relation and E is a relational algebra query.

44 Chapter3

P Deletion Examples

®m Delete all account records in the Perryridge branch.

account < account—G pranch-name = “Perryridge” (@ccount)

mDelete all loan records with amount in the range of 0 to 50

loan < loan— G gmount > 0 and amount < 50 (10an)
mDelete all accounts at branches located in Needham.

Iy <= O pranch-city = “Needham” (@ccount X branch)

P 1_Ibranch-name, account-number, balance (ry)

rg< 11 customer-name, account-number (r, X depositor)
account < account — r,

depositor <— depositor — r;

45 Chapter3

P Insertion

®m To insert data into a relation, we either:
» specify a tuple to be inserted or
? write a query whose result is a set of tuples to be inserted
®m in relational algebra, an insertion is expressed by:
r<—r v E
where ris a relation and E is a relational algebra expression.

® The insertion of a single tuple is expressed by letting E be a
constant relation containing one tuple.

46 Chapter3

P Insertion Examples

®m [nsert information in the database specifying that Smith has
$1200 in account A-973 at the Perryridge branch.

account <— account v {(“Perryridge”, A-973, 1200)}
depositor <~ depositor U {(“Smith”, A-973)}

®m Provide as a gift for all loan customers in the Perryridge
branch, a $200 savings account. Let the loan number serve
as the account number for the new savings account.

r < (Gbranch-name = “Perryridge” (bOf rowenx Ioan))
account < account v 1_[loan-number, branch-name,200 (I’ 1)
depositor < dep OSi tor v chstomer—name, Ioan-number(r 1)

47 Chapter3

~

Updating

B A mechanism to change a value in a tuple without charging all
values in the tuple

m Use the generalized projection operator to do this task

r1lepp . A

m Each F;is either

N\

the ith attribute of r, if the ith attribute is not updated, or,

if the attribute is to be updated F; is an expression, involving only
constants and the attributes of r, which gives the new value for the
attribute

48 Chapter3

P Update Examples

m Make interest payments by increasing all balances by 5 percent.
account < I1 an g, BAL * 1.05 (@ccount)

where AN, BN and BAL stand for account-number, branch-name
and balance, respectively.

m Pay all accounts with balances over $10,000 6 percent interest
and pay all others 5 percent

account < 11 an, N, BAL*1.06 (O BAL > 10000 (ACCOUNT))
V an, Bn, BAL *1.05 (OBAL < 10000 (ACCOUNE))

49 Chapter3

P Views

B In some cases, it is not desirable for all users to see the entire
logical model (i.e., all the actual relations stored in the database).
Security considerations may require that certain data be hidden
from users.

B Consider a person who needs to know a customer’s loan number
but has no need to see the loan amount. This person should see
a relation described, in the relational algebra, by
I customer-name, loan-number (bOrrowerxtloan)

® Any relation that is not of the conceptual model but is made
visible to a user as a “virtual relation” is called a view.

50 Chapter3

P View Definition

m A view is defined using the create view statement which has the
form

create view v as <query expression>

where <query expression> is any legal relational algebra query
expression. The view name is represented by v.

B Once a view is defined, the view name can be used to refer to
the virtual relation that the view generates.

® View definition is not the same as creating a new relation by
evaluating the query expression

Rather, a view definition causes the saving of the definition of the
view itself, rather than the result of evaluation the relational algebra
expression that defines the view; whenever a view relation appears
in a query, it is replaced by the stored query expression.

51 Chapter3

P View Examples

m Consider the view (named all-customer) consisting of branches
and their customers.

create view all-customer as

U pranch-name, customer-name (@€POSITOrX account)
Y Hpranch-name, customer-name (bOrrowerx loan)

m Using the view all-customer, we can find all customers of the
Perryridge branch by writing:

chstomer—name
(Sbranch-name - “Perryridge” (8ll-customer))

52 Chapter3

Updates Through View

~

m Database modifications expressed as views must be translated
to modifications of the actual relations in the database.

m Consider the person who needs to see all loan data in the loan
relation except amount. The view given to the person, branch-
loan, is defined as:

create view branch-loan as

1_[branch-name, loan-number (/ Oan)

® Since we allow a view name to appear wherever a relation name
Is allowed, the person may write:

branch-loan <— branch-loan v {(“Perryridge”, L-37)}

53 Chapter3

Updates Through Views (Cont.)

~

B The previous insertion must be represented by an insertion into the
actual relation loan from which the view branch-loan is constructed.

B An insertion into /oan requires a value for amount. The insertion
can be dealt with by either.

¥ rejecting the insertion and returning an error message to the user.
¥ inserting a tuple (“L-37”, “Perryridge”, null) into the loan relation

B Some updates through views are impossible to translate into
database relation updates

" create VieW V as Gpranch-name - “Perryridge” (@ccount))
v < v U (L-99, Downtown, 23)
m Others cannot be translated uniquely

v all-customer <« all-customer U {(“Perryridge”, “John”)}

Have to choose loan or account, and
create a new loan/account number!

54 Chapter3

_ Views Defined Using Other Views

B One view may be used in the expression defining another view

m A view relation v, is said to depend directly on a view relation v,
if v, is used in the expression defining v,

m A view relation v, is said to depend on view relation v, if either v,
depends directly to v, or there is a path of dependencies from
v, to v,

m A view relation vis said to be recursive if it depends on itself.

55 Chapter3

P View Expansion

m A way to define the meaning of views defined in terms of other
views.

m Letview v, be defined by an expression e, that may itself contain
uses of view relations.

® View expansion of an expression repeats the following
replacement step:

repeat

Find any view relation v;in e,

Replace the view relation v; by the expression defining v;
until no more view relations are present in e,

®m As long as the view definitions are not recursive, this loop will
terminate

56 Chapter3

