
Nanda Kishor Ray 1-1

1

Introduction
• Flat File Systems

• Database Management System (DBMS)

• Database Applications

• Purpose of DBMS

• Database Users

• DBMS Architecture

• Instances and Schemas

• Data Independence

• Data Models

• Client/Server Architecture

Nanda Kishor Ray 1-2

Flat-file Systems

• In early processing systems, an organization's information

was stored as groups of records in separate files. The file

processing systems consisted of a few data files and many

application programs. Each file, called a flat file, contained

processed information for one specific function, such as

accounting or inventory.

• A flat file system stores data in a plain text file. Each line

of the text file holds one record, with fields separated by

delimiters, such as commas or tabs.

• A File Management System (FMS) accommodate flat files

that have no relation to other files. This type of database is

ideal for a simple databases that do not contain a lot of

repeated information. Examples include excel spreadsheet

or word data list file.

Nanda Kishor Ray 1-3

Database Management System

• A database is the collection of related persistent data and

contains information relevant to an enterprise. The

database is also called the repository or container for a

collection of data files. For example, university database

for maintaining information about students, courses and

grades in university.

• A database system is basically just a computerized

record-keeping system. A database system involves four

major components: data, hardware, software, and users.

• The database management system (DBMS) is the

software that handles all access to the database. It is

defined as the collection of interrelated data and a set of

programs to access those data.

Nanda Kishor Ray 1-4

Database Management System

• Users of a DBMS system can perform the following basic

operations on the database:

 Adding new, empty files to the database.

 Inserting data into existing files.

 Retrieving data from existing files.

 Changing data in existing files.

 Deleting data from existing files.

 Removing existing files from the database.

Nanda Kishor Ray 1-5

Database Applications

• Databases form an essential part of almost all enterprises.

Some database applications are given below:

 Banking: For customer information, accounts, and loans, and

banking transactions.

 Airlines: For reservation and schedule information.

 Universities: For student information, course registrations, and

grades.

 Credit card transactions: For purchase on credit cards and

generation of monthly statements.

 Telecommunication: For keeping records of call made, generating

monthly bills, maintaining balances on prepaid calling cards, and

storing information about the communication networks.

 Finance: For storing information about holdings, sales, and

purchase of financial instruments such as stocks and bonds.

Nanda Kishor Ray 1-6

Database Applications
 Sales: For customer, product, and purchase information.

 Manufacturing: For management of supply chain and for tracking

production of items in factories, inventories of items in

warehouses/stores, and orders for items.

 Human resources: For information about employees, salaries,

payroll taxes and benefits, and for generation of paychecks.

Nanda Kishor Ray 1-7

Purpose of DBMS

• In early days, database applications were built on top of

file systems. These systems have many drawbacks.

Database systems offer solutions to all the drawbacks of

file systems. The benefits using DBMS are:

 Redundancy can be reduced: The database is said to be

redundant if the same information is duplicated in several places

(data files). For example, the address and telephone number of a

particular customer may appear in a file that consists of saving-

account records and in a file that consists of checking-account

records. We can reduce redundancy by using DBMS.

 Inconsistency can be avoided: The database is said to be

inconsistent if various copies of the same data may no longer

agree. For example, a changed customer address may be reflected

in saving account but not elsewhere in the system. By using

DBMS we can avoid inconsistency.

Nanda Kishor Ray 1-8

Purpose of DBMS
 Data can be shared: The data in the database can be shared

among many users and applications.

 Transaction support can be provided: A transaction involves

several database operations. For example, transfer of a cash

amount from account A to account B. In this example two update

operations are required.

 Integrity can be maintained: The problem of integrity is the

problem of ensuring that the data in database is correct. By using

DBMS, we can maintain integrity problems.

 Security can be enforced: Not every user of the database system

should be able to access all data.

 Efficient Backup and Recovery can be provided: Provide

facilities for recovering from software and hardware failures to

reinstate database to previous consistent state.

 Data in the database can be accessed easily.

Nanda Kishor Ray 1-9

Database Users

• Database users can be classified into two categories: actors

on the scene and workers behind the scene.

• Actors on the Scene:

 These people’s jobs involve develop, use, and administer the

database. These people are classified into following categories:

 Database administrators: These people are responsible for

authorizing access to the database, for coordinating and monitoring

its use, acquiring software and hardware resources, controlling its

use and monitoring efficiency of operations. Thus DBA is

responsible for the overall control of the system at technical level.

Hence, DBA is responsible for the following tasks:

• Defining Conceptual Schema

• Defining Internal Schema

• Defining Security & Integrity Constraints

Nanda Kishor Ray 1-10

Database Users
• Monitoring performance & responsibilities to changing requirements

• Liaising with users

• Defining Dump and Reload policies

 Database Designers: These people are responsible for defining

the content, the structure, the constraints, and functions or

transactions against the database. They must communicate with the

end-users and understand their needs.

 End Users: They use the database for querying, updating and

generating reports. End-users can be categorized as follows:

• Casual end users: They access database occasionally when needed.
They use sophisticated database query language. They are middle or
high-level managers.

• Naive or Parametric end users: They make up a large section of the
end-user population. They use previously well-defined functions in
the form of “canned transactions” against the database. For example,
bank-tellers, reservation clerks.

Nanda Kishor Ray 1-11

Database Users
• Sophisticated end users: They have clear knowledge of database

system facilities to construct complex queries. They are Engineers,
Scientists. They make use of most database facilities.

• Stand-alone end user: They make use of personal databases by using
ready-made program packages that provide easy-to-use menu based
interface.

 System Analysts and Application Programmers:

• System analysts determine the requirements of end users, especially

naive and parametric end users and develop specifications for canned

transactions that meet these requirements.

• Application programmers implement these specifications as

programs; then they test, debug, document and maintain these canned

transactions.

Nanda Kishor Ray 1-12

Database Users

• Workers Behind the Scene:

 These people are associated with the design, development, and

operation of the DBMS software and system environment. These

people are not actively interested in the database itself. These

people are classified into following types:

 DBMS System Designers and implementers: These people

design and implement the DBMS modules and interfaces as a

software package.

 Tool Developers: These persons design and implement tools – the

software packages that facilitate database system design and use

and that help improve performance.

 Operators and Maintenance Personnel: These personnel are

responsible for the actual running and maintenance of the hardware

and software environment for the database system.

Nanda Kishor Ray 1-13

DBMS Architecture

• The DBMS architecture proposed by ANSI/SPARC

(American National Standards Institute, Standards Planning

And Requirements Committee) (ANSI/SPARC architecture)

is defined at three levels. This architecture is also called

three-schema architecture.

• This architecture provides three levels of abstraction to

simplify users’ interaction with the system.

• It provides users with an abstract view of data. The system

hides certain details of how data are stored and maintained.

• The goal of this architecture is to separate the user

applications from physical database.

• It divides the system into three levels of abstraction: the

internal or physical level, the logical or conceptual level, and

the external or view level.

Nanda Kishor Ray 1-14

DBMS Architecture

Conceptual Schema

Internal Schema

External

View 1

External

View n

End Users

• • •External

Level

Conceptual

Level

Internal

Level

Stored Database

external/conceptual

mapping

conceptual/internal

mapping

Nanda Kishor Ray 1-15

DBMS Architecture

• Physical Level or Internal Level:

 It is the lowest level of abstraction and describes how the data in the

database are actually stored.

 This level describes complex low-level data structures in detail and is

concerned with the way the data is physically stored.

 Data only exists at physical level.

• Logical Level or Conceptual Level:

 This is the next higher level of abstraction and describes what data are

stored in the database, and what relationships exist among those data.

 It describes the structure of whole database and hides details of

physical storage structure.

 It concentrates on describing entities, data types, relationships,

attributes and constraints.

 All of the views must be derivable from this conceptual schema.

Nanda Kishor Ray 1-16

DBMS Architecture

• View Level or External Level:

 It is the highest level of abstraction and is concerned with the way

the data is seen by individual users.

 This level simplifies the users’ interaction with the system.

 It includes a number of user views and hence is guided by the end

user requirement.

 It describes only those part of the database in which the users are

interested and hides rest of all from those users. Each user group

refers to its own external schema.

• The DBMS must transform a request specified on an

external schema into a request against the conceptual

schema, and then into a request on the internal schema for

processing over the database. The process of transforming

requests and results between levels is called mapping.

Nanda Kishor Ray 1-17

Instances and Schemas

• Instances:

 Databases change over time as information is inserted and deleted.

The collection of information stored in the database at a particular

moment is called an instance of the database.

 It is also known as database state.

• Schema:

 The overall design of the database which is not expected to change

frequently is called the database schema.

 There are three schemas, partitioned according to the levels of

abstraction. The physical schema describes the database design at

physical level. The logical schema describes the database design at

the logical level. The schema at the view level is sometimes called

subschema and describes the view of the database. A database may

have several subschema.

Nanda Kishor Ray 1-18

Data Independence

• The three schema architecture further explains the concept

of data independence, the capacity to change the schema at

one level without having to change the schema at the next

higher level.

 Logical Data Independence

 Physical Data Independence

• Logical Data Independence:

 The capacity to change the conceptual schema without having to

change the external schemas and their associated application

programs.

• Physical Data Independence:

 The capacity to change the internal schema without having to

change the conceptual schema.

Nanda Kishor Ray 1-19

Data Independence

• For example, the internal schema may be changed when

certain file structures are reorganized or new indexes are

created to improve database performance

• When a schema at a lower level is changed, only the

mappings between this schema and higher-level schemas

need to be changed in a DBMS that fully supports data

independence. The higher-level schemas themselves are

unchanged.

• Hence, the application programs need not be changed since

they refer to the external schemas.

Nanda Kishor Ray 1-20

Data Models
• The basic structure or design of the database is the data

model. A data model is a collection of conceptual tools for

describing data, data relationships, data semantics, and

consistency constraints. Some data models are given below:

• Entity-Relationship Model:

 Entity-relationship (E-R) model is a high level data model based

on a perception of a real world that consists of collection of basic

objects, called entities, and of relationships among these entities.

 An entity is a thing or object in the real world that is distinguishable

from other objects.

 Entities are described in a database by a set of attributes.

 A relationship is an association among several entities.

 The set of all entities of the same type is called an entity set and the

set of all relationships of the same type is called a relationship set.

Nanda Kishor Ray 1-21

Data Models
 Overall logical structure of a database can be expressed graphically

by E-R diagram. The basic components of this diagram are:

• Rectangles (represent entity sets)

• Ellipses (represent attributes)

• Diamonds (represent relationship sets among entity sets)

• Lines (link attributes to entity sets and entity sets to relationship sets)

 The figure below shows an example of E-R diagram.

Nanda Kishor Ray 1-22

Data Models
 In addition, the E-R model also represents certain constraints to

which the contents of the database must conform. The constraints

are mapping cardinalities and participation constraints.

(discussed later)

• Relational Model:

 It is the current pervasive model. The relational model is a lower

level model that uses a collection of tables to represent both data and

relationships among those data. Each table has multiple columns,

and each column has a unique name. Each table corresponds to an

entity set or relationship set, and each row represents an instance of

that entity set or relationship set.

 Relationships link rows from two tables by embedding row

identifiers (keys) from one table as attribute values in the other table.

 Structured query language (SQL) is used to manipulate data stored

in tables.

Nanda Kishor Ray 1-23 Fig: A sample relational database

Nanda Kishor Ray 1-24

Data Models
 The relational data model is the most widely used data model, and a

vast majority of current database systems are based on the relational

model. The relational model is at a lower level of abstraction than

the E-R model. Database designs are often carried out in the E-R

model, and then translated to the relational model.

• Object-oriented Model:

 This model represents an entity set as a class. A class represents

both object attributes as well as the behavior of the entity.

 Instances of class are objects. Within an object, the class attributes

takes specific values. However the behavior patterns of the class is

shared by all the objects belonging to the class.

 Attribute values can be primitive data types usually associated with

databases and programming languages or other objects. The object-

oriented model maintains relationships through ‘logical-
containment’.

Nanda Kishor Ray 1-25

Data Models
• Object Relational Model:

 This model combines the features of the object-oriented data model

and relational data model.

• Semistructured Model:

 This model permits the specification of data where individual data

items of the same type may have different set of attributes. The

extensible markup language (XML) is widely used to represent

semistructured data.

• Hierarchical Model:

 This model assumes that a tree structure is the most frequently

occurring relationship.

• Network Model:

 The network model replaces the hierarchical tree with a graph thus

allowing more general connections among the nodes. This model

was evolved to specially handle non-hierarchical relationships.

Nanda Kishor Ray 1-26

Client/Server Architecture
• In client/server architecture, user interface and application programs are

located on the client side and query and transaction facility are located

on the server side.

• The server is often called a query server or transaction server because it

provides these two functionality. It is also called an SQL server since

most servers are based on the SQL language and standard.

• The user interface programs and application programs can run on the

client side.

• When DBMS access is required, the program establishes a connection to

the DBMS which is on the server side.

• Once the connection is created, the client program can communicate

with the DBMS.

• Some interfaces that provide an application programming interface

(API) that allow client side programs to call the DBMS are ODBC

(Open Database Connectivity) and JDBC (Java Database Connectivity).

Nanda Kishor Ray 1-27

Client/Server Architecture
• Other variations of clients are also possible. For example, in some

DBMSs, more functionality is transferred to clients including user

interface, data dictionary functions, interactions with programming

language compilers, global query optimization, concurrency control,

and recovery across multiple servers. In such situations the server may

be called the Data Server.

• The architecture described so far is called two-tier architecture

because the software components are distributed over two systems:

client and server.

• Many Web applications use an architecture called the three-tier

architecture which adds an intermediate layer (middle tier or

application server or Web server) between the client and the database

server.

• This server plays an intermediary role by storing business rules

(procedures or constraints) that are used to access data from the database

server.

Nanda Kishor Ray 1-28

Client/Server Architecture
• It can also improve database security by checking a client's credentials

before forwarding a request to the database server.

• Clients contain GUI interfaces and some additional application-specific

business rules.

• Advances in encryption and decryption technology make it safer to

transfer sensitive data from server to client in encrypted form, where it

will be decrypted.

