CHAPTER 2: TERM STRUCUTRE OF INTEREST RATES

1. Solution

Here given: Interest rate $(\mathrm{i})=8 \%$; Inflation risk premium $(\operatorname{IRP})=1.75 \%$; Real interest rate $(R R)=3.5 \%$; Liquidity risk premium $(L R P)=0.25 \%$; Maturity risk premium $(M R P)=0.85 \%$; Special feature premium $(S C P)=0$; Default risk premium $(\mathrm{DRP})=$?
We have
ic $\quad=\mathrm{RR}+\mathrm{IRP}+\mathrm{LRP}+\mathrm{MRP}+\mathrm{DRP}+\mathrm{SCP}$
Or, $8 \%=3.5 \%+1.75 \%+0.25 \%+0.85 \%+\operatorname{DRP}+0$
Or, $8 \%-6.35 \% \quad=$ DRP
Or, DRP $=1.65 \%$
2. Solution

Here given: One year T-bills rate ($\mathrm{i}_{\text {Tbills }}$) $=3.25 \%$; Real interest rate $(R R)=2.25 \%$; Default risk premium $(D R P)=$ 1.15%; Liquidity risk premium $(\operatorname{LRP})=0.50 \%$; Maturity risk premium $(M R P)=1.75 \%$; Special feature premium (SCP) $=0$
a. Inflation premium $(\mathrm{IP})=$?
$\mathrm{i}_{\mathrm{T} \text {-bills }}=\mathrm{RR}+\mathrm{IP}$ Or, $3.25 \%=2.25 \%+\mathrm{IP}$ Or, $\mathrm{IP}=1 \%$
a. Fair interest rate for corporation $\left(\mathrm{i}_{\mathrm{c}}\right)=$?

We have,
$i_{C} \quad=R R+I P+L R P+M R P+D R P+S C P$

$$
=2.25 \%+1 \%+0.50 \%+1.75 \%+1.15 \%+0 \%=6.65 \%
$$

3. Solution

Here given: Current one year T-bill rate $\left(\mathrm{S}_{1}\right)=5.2 \%$; Expected one year rate 12 months from now $\left(\mathrm{f}_{1,2}\right)=5.8 \%$; Current rate for 2 year Treasury security $\left(\mathrm{S}_{2}\right)=$?
We have,
$\left(1+\mathrm{S}_{2}\right)^{2}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)$
Or, $\left(1+\mathrm{S}_{2}\right)^{2}=(1+0.052)(1+0.058)$
Or, $\left(1+\mathrm{S}_{2}\right)^{2}=1.113016$
Or, $\left(1+\mathrm{S}_{2}\right)=(1.113016)^{1 / 2}$
Or, $\mathrm{S}_{2}=1.0550-1=0.0550$ Or, 5.5%
Therefore the current rate for a two year Treasury security is 5.5%.
4. Solution

Here given:
Current one year rate $(\mathrm{S} 1)=6 \%$; Expected one year T-bill rate in year $2\left(\mathrm{f}_{1,2}\right)=7 \%$; Expected one year T-bill rate in year $3\left(f_{2,3}\right)=7.5 \%$; Expected one year T-bill rate in year $4\left(f_{3,4}\right)=7.85$; Current long term rate for one year Tsecurity $\left(\mathrm{S}_{1}\right)=$?
$S_{1}=6 \%$ (given)
Current long term rate for two year T-security $\left(\mathrm{S}_{2}\right)=$?;
$\left(1+\mathrm{S}_{2}\right)^{2}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)$
Or, $\left(1+\mathrm{S}_{2}\right)^{2}=(1+0.06)(1+0.07)$
Or, $\left(1+\mathrm{S}_{2}\right)^{2}=1.1342$
Or, $\left(1+\mathrm{S}_{2}\right)=(1.1342)^{1 / 2}$
Or, $\mathrm{S}_{2}=1.0650-1=0.0650$ Or, 6.50%
Therefore the current rate for a two year Treasury security is 6.50%.
Current long term rate for three year T-security $\left(\mathrm{S}_{3}\right)=$?
$\left(1+\mathrm{S}_{3}\right)^{3}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)\left(1+\mathrm{f}_{2,3}\right)$
Or, $\left(1+\mathrm{S}_{3}\right)^{3}=(1+0.06)(1+0.07)(1+0.075)$
Or, $\left(1+\mathrm{S}_{3}\right)^{3}=1.219265$

Or, $\left(1+\mathrm{S}_{3}\right)=(1.219265)^{1 / 3}$
Or, $\mathrm{S}_{3}=1.06832-1=0.06832$ Or, 6.832%
Current long term rate for four year T-security $\left(\mathrm{S}_{4}\right)=$?
$\left(1+\mathrm{S}_{4}\right)^{4}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)\left(1+\mathrm{f}_{2,3}\right)\left(1+\mathrm{f}_{3,4}\right)$
Or, $\left(1+\mathrm{S}_{4}\right)^{4}=(1+0.06)(1+0.07)(1+0.075)(1+0.0785)$
Or, $\left(1+\mathrm{S}_{4}\right)^{4}=1.3150$
Or, $\left(1+\mathrm{S}_{4}\right)=(1.3150)^{1 / 4}$
Or, $\mathrm{S}_{4}=1.07085-1=0.07085$ Or, 7.085%
5. Solution

Here given: Current one year T-bill rate $\left(\mathrm{S}_{1}\right)=3.45 \%$; Expected one year rate from now $\left(\mathrm{f}_{1,2}\right)=3.65 \%$; Current rate for 2 year Treasury security $\left(\mathrm{S}_{2}\right)=$?
We have,
$\left(1+\mathrm{S}_{2}\right)^{2}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)$
Or, $\left(1+\mathrm{S}_{2}\right)^{2}=(1+0.0345)(1+0.0365)$
Or, $\left(1+\mathrm{S}_{2}\right)^{2}=1.07226$
Or, $\left(1+\mathrm{S}_{2}\right)=(1.07226)^{1 / 2}$
Or, $\mathrm{S}_{2}=1.0355-1=0.0355$ Or, 3.55%
Therefore the current rate for a two year Treasury security is 3.55%.
6. Solution

Here given: Current one year T-bill rate $\left(\mathrm{S}_{1}\right)=8 \%$; Current rate for 2 year Treasury security $\left(\mathrm{S}_{2}\right)=10 \%$; Expected one year interest rate expected one year from now $\left(\mathrm{f}_{1,2}\right)=$?
We have,
$\left(1+\mathrm{S}_{2}\right)^{2}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)$
Or, $(1+0.10)^{2}=(1+0.08)\left(1+f_{1,2}\right)$
Or, $1.21=(1.08)\left(1+\mathrm{f}_{1,2}\right)$
Or, $1.12037=\left(1+f_{1,2}\right)$
Or, $\mathrm{f}_{1,2}=1.12037-1=0.12037$ Or, 12.037%
Therefore the current rate for a two year Treasury security is 12.037%.
7. Solution

Here given:
Three year Treasury security rate $\left(S_{3}\right)=12 \%$; Expected one year rate in year $2\left(f_{1,2}\right)=8 \%$; Expected one year rate in year $3\left(\mathrm{f}_{2,3}\right)=10 \%$; One year Treasury security $\left(\mathrm{S}_{1}\right)=$?
We have,
$\left(1+\mathrm{S}_{3}\right)^{3}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)\left(1+\mathrm{f}_{2,3}\right)$
Or, $(1+0.12)^{3}=\left(1+\mathrm{S}_{1}\right)(1+0.08)(1+0.10)$
Or, $1.4049=\left(1+\mathrm{S}_{1}\right) 1.188$
Or, $\left(1+\mathrm{S}_{1}\right)=1.1826$
Or, $S_{1}=1.1826-1=0.1826$ Or, 18.26%
8. Solution

Here given:
Four year Treasury security rate $\left(S_{4}\right)=5.6 \%$; Five year Treasury securities $\left(S_{5}\right)=6.15 \%$; One year Treasury rate to be four years from today $\left(f_{4,5}\right)=$?
We have,
$\left(1+\mathrm{S}_{5}\right)^{5}=\left(1+\mathrm{S}_{4}\right)^{4}\left(1+\mathrm{f}_{4,5}\right)$
Or, $(1+0.0615)^{5}=(1+0.056)^{4}\left(1+\mathrm{f}_{4,5}\right)$
Or, $1.3477=1.2435\left(1+\mathrm{f}_{4,5}\right)$

Or, $\left(1+\mathrm{f}_{4,5}\right)=1.0838$
Or, $\mathrm{f}_{4,5}=1.0838-1=0.0838$ Or, 8.38%
9. Solution

Here given:
Yield on three year Treasury note $\left(\mathrm{S}_{3}\right)=2.25 \%$; Yield on four year Treasury note $\left(\mathrm{S}_{4}\right)=2.60 \%$; Yield on five year Tnote $\left(\mathrm{S}_{5}\right)=2.98 \%$; Yield on six year Treasury note $\left(\mathrm{S}_{6}\right)=3.25 \%$
Expected one year rate during 4 year $\left(\mathrm{f}_{3,4}\right)=$?
We have,
$\left(1+\mathrm{S}_{4}\right)^{4}=\left(1+\mathrm{S}_{3}\right)^{3}\left(1+\mathrm{f}_{3,4}\right)$
Or, $(1+0.026)^{4}=(1+0.0225)^{3}\left(1+\mathrm{f}_{3,4}\right)$
Or, $1.1081=1.0690\left(1+\mathrm{f}_{3,4}\right)$
Or, $\left(1+f_{3,4}\right)=1.0366$
Or, $\mathrm{f}_{3,4}=1.0366-1=0.0366$ Or, 3.66%
Expected one year rate during 5 year $\left(\mathrm{f}_{4,5}\right)=$?
We have,
$\left(1+\mathrm{S}_{5}\right)^{5}=\left(1+\mathrm{S}_{4}\right)^{4}\left(1+\mathrm{f}_{4,5}\right)$
Or, $(1+0.0298)^{5}=(1+0.026)^{4}\left(1+\mathrm{f}_{4,5}\right)$
Or, $1.1581=1.1081\left(1+\mathrm{f}_{4,5}\right)$
Or, $\left(1+\mathrm{f}_{4,5}\right)=1.0451$
Or, $\mathrm{f}_{4,5}=1.0451-1=0.0451$ Or, 4.51%
Expected one year rate during 6 year $\left(f_{5,6}\right)=$?
We have,
$\left(1+\mathrm{S}_{6}\right)^{6}=\left(1+\mathrm{S}_{5}\right)^{5}\left(1+\mathrm{f}_{5,6}\right)$
Or, $(1+0.0325)^{6}=(1+0.0298)^{5}\left(1+f_{5,6}\right)$
Or, $1.2115=1.1581\left(1+f_{5,6}\right)$
Or, $\left(1+f_{5,6}\right)=1.0461$
Or, $\mathrm{f}_{4,5}=1.0461-1=0.0461$ Or, 4.61%
10. Solution

Here given:
Current one year rate $\left(S_{1}\right)=0.10$ or 10%; Current two year rate $\left(S_{2}\right)=0.14$ or 14%; Expected one year rate in year 2 $\left(f_{1,2}\right)=0.10$ or 10%; Liquidity premium for year $2\left(\mathrm{~L}_{2}\right)=$?
We have,
$\left(1+\mathrm{S}_{2}\right)^{2}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}+\mathrm{L}_{2}\right)$
Or, $(1+0.14)^{2}=(1+0.10)\left(1+0.10+\mathrm{L}_{2}\right)$
Or, $1.2996=(1.10)\left(1.10+\mathrm{L}_{2}\right)$
Or, $1.1815=\left(1.10+\mathrm{L}_{2}\right)$
Or, $\mathrm{L}_{2}=1.1815-1.10=0.08145$ Or, 8.145%
Therefore the liquidity premium for year 2 is 8.145%.
11. Solution

Here given: current one year rate $\left(\mathrm{S}_{1}\right)=5.65 \%$; One year rate in year $2\left(\mathrm{f}_{1,2}\right)=6.75 \%$; One year rate in year $3\left(\mathrm{f}_{2,3}\right)=$ 6.85%; One year rate in year $4\left(f_{3,4}\right)=7.15 \%$; Liquidity premium in year $2\left(\mathrm{~L}_{2}\right)=0.05 \%$; Liquidity premium in year $3\left(\mathrm{~L}_{3}\right)=0.10 \%$; Liquidity premium in year $4\left(\mathrm{~L}_{4}\right)=0.12 \%$
Current long term rate for one year T-security $\left(\mathrm{S}_{1}\right)=$?
$\mathrm{S}_{1}=6 \%$ (given)
Current long term rate for two year T-security $\left(\mathrm{S}_{2}\right)=$?
We have,
$\left(1+\mathrm{S}_{2}\right)^{2}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}+\mathrm{L}_{2}\right)$

Or, $\left(1+\mathrm{S}_{2}\right)^{2}=(1+0.0565)(1+0.0675+0.0005)$
Or, $\left(1+\mathrm{S}_{2}\right)=(1.128342)^{1 / 2}$
Or, $S_{2}=1.0622-1=0.0622$ Or, 6.22%
Therefore the spot rate of 2 years Treasury security is 6.22%.
Current long term rate for three year T-security $\left(\mathrm{S}_{3}\right)=$?
We have,
$\left(1+\mathrm{S}_{3}\right)^{3}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}+\mathrm{L}_{2}\right)\left(1+\mathrm{f}_{2,3}+\mathrm{L}_{3}\right)$
Or, $\left(1+\mathrm{S}_{3}\right)^{3}=(1+0.0565)(1+0.0675+0.0005)(1+0.0685+0.0010)$
Or, $\left(1+\mathrm{S}_{3}\right)^{3}=(1.0565)(1.068)(1.0695)$
Or, $\left(1+S_{3}\right)=(1.206762)^{1 / 3}$
Or, $S_{3}=1.0646-1=0.0646$ Or, 6.46%
Therefore the spot rate of 3 years Treasury security is 6.46%.
Current long term rate for four year T-security $\left(\mathrm{S}_{4}\right)=$?
We have,
$\left(1+\mathrm{S}_{4}\right)^{4}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}+\mathrm{L}_{2}\right)\left(1+\mathrm{f}_{2,3}+\mathrm{L}_{3}\right)\left(1+\mathrm{f}_{3,4}+\mathrm{L}_{4}\right)$
Or, $\left(1+\mathrm{S}_{4}\right)^{4}=(1+0.0565)(1+0.0675+0.0005)(1+0.0685+0.0010)(1+0.0715+0.0012)$
Or, $\left(1+\mathrm{S}_{4}\right)^{4}=(1.0565)(1.068)(1.0695)(1.0727)$
Or, $\left(1+\mathrm{S}_{4}\right)=(1.2945)^{1 / 4}$
Or, $S_{4}=1.0666-1=0.0666$ Or, 6.66%
Therefore the spot rate of 4 years Treasury security is 6.66%.
Yield curve will be upward sloping because liquidity premium is increasing.
12. Solution

Here given: Rate on three year Treasury securities $\left(S_{3}\right)=5.25 \%$; Rate on four year Treasury securities $\left(S_{4}\right)=5.50 \%$; One year rate expected in three years $\left(\mathrm{f}_{2,3}\right)=6.10 \%$; Liquidity premium for four year bond $\left(\mathrm{L}_{4}\right)=$?
We have,
$\left(1+\mathrm{S}_{4}\right)^{4}=\left(1+\mathrm{S}_{3}\right)^{3}\left(1+\mathrm{f}_{3,4}+\mathrm{L}_{4}\right)$
Or, $(1+0.0550)^{4}=(1+0.0525)^{3}\left(1+0.0610+\mathrm{L}_{4}\right)$
Or, $1.2388=(1.1659)\left(1.0610+\mathrm{L}_{4}\right)$
Or, $1.0625=\left(1.0610+L_{4}\right)$
Or, $L_{4}=1.0625-1.0610=0.0015$ Or, 0.15%
Therefore the liquidity premium for four year Treasury security is 0.15%.
13. Solution
a. Here given: Current one year T-bill rate $\left(S_{1}\right)=5.50 \%$; Current rate for 2 year Treasury security $\left(S_{2}\right)=6.50 \%$; Current rate for 3 year Treasury security $\left(S_{3}\right)=9.00 \%$; Expected one year forward rate for the period beginning one year from today $\left(\mathrm{f}_{1,2}\right)=$?
We have,
$\left(1+\mathrm{S}_{2}\right)^{2}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)$
Or, $(1+0.065)^{2}=(1+0.055)\left(1+\mathrm{f}_{1,2}\right)$
Or, $1.1342=(1.055)\left(1+f_{1,2}\right)$
Or, $1.07507=\left(1+f_{1,2}\right)$
Or, $\mathrm{f}_{1,2}=1.07507-1=0.07507$ Or, 7.507%
Therefore the expected one year forward rate for the period beginning one year from today is 7.507%.
b. Expected one year forward rate for the period beginning two years from today $\left(\mathrm{f}_{2,3}\right)=$?

We have,
$\left(1+\mathrm{S}_{3}\right)^{3}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)\left(1+\mathrm{f}_{2,3}\right)$
Or, $(1+0.09)^{3}=(1+0.055)(1+0.07507)\left(1+\mathrm{f}_{2,3}\right)$

```
Or, \(1.295029=(1.1342)\left(1+\mathrm{f}_{2,3}\right)\)
Or, \(1.1418=\left(1+\mathrm{f}_{2,3}\right)\)
Or, \(\mathrm{f}_{2,3}=1.1418-1=0.1418\) Or, \(14.18 \%\)
Therefore the expected one year forward rate for the period beginning two year from today is \(14.18 \%\).
```

14. Solution

Here given: Current one year rate $\left(\mathrm{S}_{1}\right)=4.75 \%$; Current rate for 2 year rate $\left(\mathrm{S}_{2}\right)=4.95 \%$; Current rate for 3 year rate
$\left(\mathrm{S}_{3}\right)=5.25 \%$; Current rate for 4 year rate $\left(\mathrm{S}_{4}\right)=5.65 \%$; One year forward rate on treasury bonds $\left(\mathrm{f}_{1,2}\right)=$?
We have,
$\left(1+\mathrm{S}_{2}\right)^{2}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)$
Or, $(1+0.0495)^{2}=(1+0.0475)\left(1+\mathrm{f}_{1,2}\right)$
Or, $1.1015=(1.0475)\left(1+f_{1,2}\right)$
Or, $1.05155=\left(1+f_{1,2}\right)$
Or, $\mathrm{f}_{1,2}=1.05155-1=0.05155$ Or, 5.16%
Therefore the one year forward rate in year 2 is 5.16%.
One year forward rate in year 3 on treasury bonds $\left(\mathrm{f}_{2,3}\right)=$?
We have,
$\left(1+\mathrm{S}_{3}\right)^{3}=\left(1+\mathrm{S}_{2}\right)^{2}\left(1+\mathrm{f}_{2,3}\right)$
Or, $(1+0.0525)^{3}=(1+0.0495)^{2}\left(1+\mathrm{f}_{2,3}\right)$
Or, $1.1659=(1.1015)\left(1+f_{2,3}\right)$
Or, $1.0585=\left(1+\mathrm{f}_{2,3}\right)$
Or, $\mathrm{f}_{2,3}=1.0585-1=0.0585$ Or, 5.85%
Therefore the one year forward rate in year 3 is 5.85%.
One year forward rate in year 4 on treasury bonds $\left(\mathrm{f}_{3,4}\right)=$?
We have,
$\left(1+\mathrm{S}_{4}\right)^{4}=\left(1+\mathrm{S}_{3}\right)^{3}\left(1+\mathrm{f}_{3,4}\right)$
Or, $(1+0.0565)^{4}=(1+0.0525)^{3}\left(1+\mathrm{f}_{3,4}\right)$
Or, $1.2459=(1.1659)\left(1+\mathrm{f}_{3,4}\right)$
Or, $1.0686=\left(1+\mathrm{f}_{3,4}\right)$
Or, $\mathrm{f}_{2,3}=1.0686-1=0.0686$ Or, 6.86%
Therefore the one year forward rate in year 4 is 6.86%.
15. Solution

Here given:
Interest rate for 3 years Treasury note $\left(S_{3}\right)=6 \%$; Interest rate for 4 years bond $\left(S_{4}\right)=6.35 \%$; Interest rate for 5 years bond $\left(S_{5}\right)=6.65 \%$; Interest rate for 6 years bond $\left(S_{6}\right)=6.75 \%$
One year forward rate in year 4 on treasury notes $\left(f_{3,4}\right)=$?
We have,
$\left(1+\mathrm{S}_{4}\right)^{4}=\left(1+\mathrm{S}_{3}\right)^{3}\left(1+\mathrm{f}_{3,4}\right)$
Or, $(1+0.0635)^{4}=(1+0.06)^{3}\left(1+\mathrm{f}_{3,4}\right)$
Or, $1.2792=(1.1910)\left(1+\mathrm{f}_{3,4}\right)$
Or, $1.0741=\left(1+f_{3,4}\right)$
Or, $\mathrm{f}_{2,3}=1.0741-1=0.0741$ Or, 741%
Therefore the one year forward rate in year 4 is 7.41%.
One year forward rate in year 5 on treasury notes $\left(\mathrm{f}_{4,5}\right)=$?
We have,
$\left(1+\mathrm{S}_{5}\right)^{5}=\left(1+\mathrm{S}_{4}\right)^{4}\left(1+\mathrm{f}_{4,5}\right)$

Or, $(1+0.0665)^{5}=(1+0.0635)^{4}\left(1+\mathrm{f}_{4,5}\right)$
Or, $1.3798=(1.2792)\left(1+f_{4,5}\right)$
Or, $1.0786=\left(1+\mathrm{f}_{4,5}\right)$
Or, $\mathrm{f}_{4,5}=1.0786-1=0.0786$ Or, 7.86%
Therefore the one year forward rate in year 5 is 7.86%.
One year forward rate in year 6 on treasury notes $\left(\mathrm{f}_{5,6}\right)=$?
We have,
$\left(1+\mathrm{S}_{6}\right)^{6}=\left(1+\mathrm{S}_{5}\right)^{5}\left(1+\mathrm{f}_{5,6}\right)$
Or, $(1+0.0675)^{6}=(1+0.0665)^{5}\left(1+f_{5,6}\right)$
Or, $1.4798=(1.3798)\left(1+f_{5,6}\right)$
Or, $1.0725=\left(1+f_{5,6}\right)$
Or, $\mathrm{f}_{5,6}=1.0725-1=0.0725$ Or, 7.25%
Therefore the one year forward rate in year 6 is 7.25%.
16. Solution

Here given: Current interest rate on a one year Treasury bond $\left(S_{1}\right)=4.50 \%$; Current rate on two year Treasury bond $\left(S_{2}\right)=5.25 \%$; Current rate on three year Treasury bond $\left(S_{3}\right)=6.50 \%$; One year interest rate expected on treasury bills during 3 years $\left(\mathrm{f}_{2,3}\right)=$?
We have,
$\left(1+\mathrm{S}_{3}\right)^{3}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)\left(1+\mathrm{f}_{2,3}\right)$
Or, $(1+0.065)^{3}=(1+0.045)(1+0.0601)\left(1+\mathrm{f}_{2,3}\right)$
Or, $1.2079=(1.1078)\left(1+f_{2,3}\right)$
Or, $1.0904=\left(1+\mathrm{f}_{2,3}\right)$
Or, $\mathrm{f}_{2,3}=1.0904-1=0.0904$ Or, 9.04%
Therefore the one year forward rate in year 3 is 9.04%.
Working notes:
Calculation of one year forward rate in year $2\left(\mathrm{f}_{1,2}\right)$
We have,
$\left(1+\mathrm{S}_{2}\right)^{2}=\left(1+\mathrm{S}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)$
Or, $(1+0.0525)^{2}=(1+0.045)\left(1+\mathrm{f}_{1,2}\right)$
Or, $1.1078=(1.045)\left(1+\mathrm{f}_{1,2}\right)$
Or, $1.0601=\left(1+f_{1,2}\right)$
Or, $\mathrm{f}_{1,2}=1.0601-1=0.0601$ Or, 6.01%
Therefore the one year forward rate in year 2 is 6.01%.
17. Solution

The general solution to forward rate problems is:
$(1+\text { long spot rate })^{\mathrm{n}}=(1+\text { short spot rate })^{\mathrm{n}}(1+\text { short forward rate })^{\mathrm{n}}$
Knowing any two of the three rates lets you calculate the third by multiplying or dividing and taking the appropriate root.
a. The square of the two year spot rate is equal to the product of the one year spot rate and one year forward rate:
$\left(1+\mathrm{s}_{2}\right)^{2}=\left(1+\mathrm{s}_{1}\right)\left(1+\mathrm{f}_{1,2}\right)$
Or, $(1.115)^{2}=(1+0.11)\left(1+f_{1,2}\right)$
Or, $\left(1+f_{1,2}\right)=1.243 / 1.115=1.12$ Or $f_{1,2}=12 \%$
b. The product of the cube of the three year spot rate and the square of the two -year forward rate is equal to the five year spot rate to the fifth power.
$\left(1+\mathrm{s}_{5}\right)^{5}=\left(1+\mathrm{s}_{3}\right)^{3}\left(1+\mathrm{f}_{3,5}\right)^{2}$

Or, $\left(1+\mathrm{f}_{3,5}\right)^{2}=(1.128)^{5} /(1.123)^{3}$
Or, $\left(1+f_{3,5}\right)=(1.2895)^{1 / 2}$
Or, $\mathrm{f}_{2,5}=1.1355-1=0.1355$ Or 13.55%
c. The four year spot rate to the fourth power is equal to the product of the one year spot rate and the cube of the three year forward rate.
$\left(1+\mathrm{s}_{4}\right)^{4}=\left(1+\mathrm{s}_{1}\right)^{1}\left(1+\mathrm{f}_{1,4}\right)^{3}$
Or, $\left(1+\mathrm{f}_{1,4}\right)^{3}=(1.125)^{4} /(1.11)$
Or, $\left(1+\mathrm{f}_{1,4}\right)=(1.4431)^{1 / 3}$
Or, $\mathrm{f}_{1,4}=1.1300-1=0.1300$ Or 13.00\%
d. The product of the four year spot rate to the fourth power and the one year forward rate is equal to the five year spot rate to the fifth power.
$\left(1+\mathrm{s}_{5}\right)^{5}=\left(1+\mathrm{s}_{4}\right)^{4}\left(1+\mathrm{f}_{4,5}\right)$
Or, $\left(1+\mathrm{f}_{4,5}\right)=(1.128)^{5} /(1.125)^{4}$
Or, $\left(1+\mathrm{f}_{4,5}\right)=1.1401$
Or, $\mathrm{f}_{1,4}=1.1401-1=0.1401$ Or 14.01%
e. Your forecast would be the two year forward rate from year three to year five, computed as 13.55%.

CHAPTER 3: THE CENTRAL BANK AND MONETARY POLICY

1. Solution

Here given:
Reserve injected by the central bank $(\Delta R)=$ Rs 10 million
Required reserve ratio $($ REQ $)=10$ percent
Money multiplier (M)=?
We have, Money multiplier $(M)=\frac{1}{\operatorname{REQ}}=\frac{1}{0.10}=10$ times
Total demand deposit created $(\triangle T D D)=$?
We have, $\Delta \mathrm{TDD}=\frac{\Delta \mathrm{R}}{\mathrm{REQ}}=\frac{\mathrm{Rs} 10}{0.10}=$ Rs 100 million
2. Solution

```
Here given:
Required reserve ratio (REQ) = 12%; Total deposit of Bank A (D)=Rs 100 million; Total deposits of Bank B (D)= Rs 50 million
a. Required reserve=?
We have,
Required reserve (Q) = D × REQ
For Bank A: Q = Rs 100 * 0.12= Rs 12 million
For Bank B: Q = Rs 50 < 0.12=Rs 6 million
b. Excess reserve of Bank A =?
We have,
Excess reserve = Total reserve - Required reserve = Rs 20-Rs 12=Rs 8 million
c. Short of reserve of Bank B =?
Excess reserve = Total reserve - Required reserve
    = Rs 5-Rs 6 = -Rs 1 million
    Therefore short of reserve of Bank B is Rs }1\mathrm{ million.
    d. Funds available =?
    We have,
    Funds available = D (1 - REQ)
    For Bank A: Funds available = Rs 100 (1-0.12) = Rs 88 million
    For Bank B: Funds available = Rs 50 (1-0.12)= Rs 44 million
```

3. Solution

For the purchase of $\$ 1$ billion in securities, the balance sheet of the Federal Reserve System and commercial banks is shown below.
Change in Federal Reserve's Balance Sheet

| Assets | Liabilities | |
| :--- | :--- | :--- | :--- |

8

Treasury securities	$+\$ 1$	Reserve account of securities dealers' banks	$+\$ 1$

Change in Commercial Bank Balance Sheets

Assets		Liabilities	
Reserve accounts of Federal Reserve	$+\$ 1$	Securities dealers' demand deposit accounts	$+\$ 1$

4. Solution

For the sale of $\$ 850$ million in securities, the balance sheet of the Federal Reserve System and commercial banks is shown below.
Change in Federal Reserve's Balance Sheet

Assets		Liabilities	
Treasury securities	$-\$ 850$	Reserve account of securities dealers' banks	$-\$ 850$

Change in Commercial Bank Balance Sheets

Assets		Liabilities	
Reserve accounts of Federal Reserve	$-\$ 850$	Securities dealers' demand deposit accounts	$-\$ 850$

5. Solution
a. Panel A: Initial Balance Sheets

Federal Reserve Bank

Assets		Liabilities	
Securities	$+\$ 60$	Reserve accounts	$+\$ 60$

Bank Three

Assets		Liabilities	
Loans	$+\$ 540$	Transaction deposits	$+\$ 600$
Reserve deposits at Fed	60		
Total	$\$ 600$	Total	$\$ 600$

Panel B: Balance sheet after all changes resulting from decrease in reserve requirement
New initial required reserves $=0.08 \times \$ 600=\$ 48$ million
Change in bank deposits $=(1 / 0.08) \times(\$ 60-\$ 48)=\$ 150$ million
Federal Reserve Bank

Assets		Liabilities	
Securities	$+\$ 60$	Reserve accounts	$+\$ 60$

Bank Three

Assets		Liabilities	
Loans (\$750- \$ 60)	$+\$ 690$	Transaction deposits (\$60/0.08)	$+\$ 750$
Reserve deposits at Fed	60		
Total	$\$ 750$	Total	$\$ 750$

b. Panel A: Initial Balance Sheets

Federal Reserve Bank

Assets		Liabilities	
Securities	$+\$ 60$	Reserve accounts	$+\$ 60$

Bank Three

Assets		Liabilities	
Loans	$+\$ 540$	Transaction deposits	$+\$ 600$
Reserve deposits at Fed	60		
Total	$\$ 600$	Total	$\$ 600$

Panel B: Balance sheet after all changes resulting from decrease in reserve requirement New initial required reserves $=0.12 \times \$ 600=\$ 72$ million

Change in bank deposits $=(1 / 0.12) \times(\$ 60-\$ 72)=-\$ 100$ million
Federal Reserve Bank

Assets		Liabilities	
Securities	$+\$ 60$	Reserve accounts	$+\$ 60$

Bank Three

Assets		Liabilities	
Loans $(\$ 500-\$ 60)$	$+\$ 440$	Transaction deposits $(\$ 60 / 0.12)$	$+\$ 500$
Reserve deposits at Fed	60		
Total	$\$ 500$	Total	$\$ 500$

6. Solution
a. Increase in bank deposits and money supply $=\frac{1}{0.05} \times \$ 500=\$ 10,000$ million
b. Increase in bank deposits and money supply $=\frac{1}{[0.05+(1-0.95)]} \times \$ 500=\$ 5,000$ million

CHAPTER - 4 MONEY MARKETS

1. Solution

Here given:
Discount yield $(\mathrm{d})=$?; Bond equivalent yield $(\mathrm{BEY})=$?; Effective annual rate $(\mathrm{EAR})=$?; Face value $(\mathrm{FV})=$ Rs $1,000,000$; Purchase price $(\mathrm{P})=97.375 \%$ of Rs $1,000,000=$ Rs 973,750 ; Days to maturity $(\mathrm{t})=65$ days
$d=\frac{F V-P}{F V} \times \frac{360}{t}=\frac{\text { Rs. } 1,000,000-\text { Rs } 973,750}{\text { Rs. } 1,000,000} \times \frac{360}{65}=0.1454$ or 14.54%
$B E Y=\frac{F V-P}{P} \times \frac{365}{t}=\frac{\text { Rs. } 1,000,000-\text { Rs } 973,750}{\text { Rs. } 973,750} \times \frac{365}{65}=0.1514$ or 15.14%
Effective annual rate $(E A R)=$?
We have,
$E A R=\left(1+\frac{B E Y}{m}\right)^{m}-1=\left(1+\frac{0.1514}{5.6154}\right)^{5.6154}-1=1.1611-1=0.1611$ Or, 16.11%

Working notes:

Number of compounding in a year $(\mathrm{m})=\frac{365}{\mathrm{t}}=\frac{365}{65}=5.6154$ times
2. Solution

Here given:
Bond equivalent yield $(B E Y)=$?; Effective annual rate $(E A R)=$?; Days to maturity $(t)=115$ days; Nominal yield (i) $=6.56 \%$

Bond equivalent yield (BEY) $=\frac{\mathrm{i}}{360} \times 365=\frac{0.0656}{360} \times 365=0.0665$ Or, 6.65
Effective annual rate $(E A R)=$?
We have,
$\operatorname{EAR}=\left(1+\frac{\mathrm{i}}{\mathrm{m}}\right)^{\mathrm{m}}-1=\left(1+\frac{0.0656}{3.1739}\right)^{3.1739}-1=1.0671-1=0.0671$ Or, 6.71%
Working notes:
Number of compounding in a year $(\mathrm{m})=\frac{365}{\mathrm{t}}=\frac{365}{115}=3.1739$ times
3. Solution

Here given:
Face value $(F V)=$ Rs 10,000; Days to maturity $(t)=68$ days; Purchase price $(P)=$ Rs 9,875; Discount yield $(d)=$?

10
$d=\frac{F V-P}{F V} \times \frac{360}{t}=\frac{\text { Rs. } 10,000-\text { Rs } 9,875}{\text { Rs. } 10,000} \times \frac{360}{68}=0.0662$ or 6.62%
4. Solution

Here given:
Days to maturity $(t)=125$ days; Purchase price $(P)=$ Rs 9,765 ; Face value $(F V)=$ Rs 10,000
a. Discount yield (d) $=$?
$d=\frac{F V-P}{F V} \times \frac{360}{t}=\frac{\text { Rs. } 10,000-\text { Rs } 9,765}{\text { Rs. } 10,000} \times \frac{360}{125}=0.06768$ or 6.768%
b. Bond equivalent yield $(\mathrm{BEY})=$?
$B E Y=\frac{F V-P}{P} \times \frac{365}{t}=\frac{\text { Rs. } 10,000-\text { Rs } 9,765}{\text { Rs } 9,765} \times \frac{365}{125}=0.07027$ or 7.0271%
5. Solution

Here given:
Days to maturity $(t)=95$ days; Purchase price $(P)=$ Rs 9,965 ; Face value $(F V)=$ Rs 10,000
a. Discount yield (d) =
$\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}}=\frac{\text { Rs. } 10,000-\text { Rs } 9,965}{\text { Rs. } 10,000} \times \frac{360}{95}=0.013263$ or 1.3263%
b. Bond equivalent yield $(\mathrm{BEY})=$?
$B E Y=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{P}} \times \frac{365}{\mathrm{t}}=\frac{\text { Rs. } 10,000-\text { Rs } 9,965}{\text { Rs. } 9,965} \times \frac{365}{95}=0.013495$ or 1.3495%
c. Effective annual rate $(E A R)=$?

We have,
$\operatorname{EAR}=\left(1+\frac{\mathrm{i}}{\mathrm{m}}\right)^{\mathrm{m}}-1=\left(1+\frac{0.013495}{3.8421}\right)^{3.8421}-1=1.013563-1=0.013563$ Or, 1.3563%
Working notes:
Number of compounding in a year $(\mathrm{m})=\frac{365}{\mathrm{t}}=\frac{365}{95}=3.8421$ times
6. Solution
a. Ask price $=\mathrm{P}=$?

Days to maturity $(\mathrm{t})=57$ days; Ask price $(\mathrm{P})=$?; Face value $(\mathrm{FV})=$ Rs 10,000 (assume)
$d=\frac{F V-P}{F V} \times \frac{360}{t}$ Or, $0.0191=\frac{\text { Rs. } 10,000-P}{\text { Rs. } 10,000} \times \frac{360}{57}$ Or, $P=$ Rs 9,969.7583
b. Bid price $=P=$?

Days to maturity $(\mathrm{t})=127$ days; Bid price $(\mathrm{P})=$?; Face value $(\mathrm{FV})=$ Rs 10,000 (assume)
$d=\frac{F V-P}{F V} \times \frac{360}{t}$ Or, $0.0212=\frac{\text { Rs. } 10,000-P}{\text { Rs. } 10,000} \times \frac{360}{127}$ Or, $P=$ Rs $9,925.21$
7. Solution

Bid price $=P=$?; Face value (FV) $=$ Rs 10,000; Bid discount rate $(d)=2.23 \%$
If days to maturity $(\mathrm{t})=10$ days
$\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}}$ Or, $0.0223=\frac{\text { Rs. } 10,000-\mathrm{P}}{\text { Rs. } 10,000} \times \frac{360}{10}$ Or, $\mathrm{P}=$ Rs $9,993.81$
If days to maturity $(\mathrm{t})=25$ days
$d=\frac{F V-P}{F V} \times \frac{360}{t}$ Or, $0.0223=\frac{\text { Rs. } 10,000-P}{R s .10,000} \times \frac{360}{25}$ Or, $P=$ Rs $9,984.51$
If days to maturity $(\mathrm{t})=50$ days
$d=\frac{F V-P}{F V} \times \frac{360}{t}$ Or, $0.0223=\frac{\text { Rs. } 10,000-P}{R s \cdot 10,000} \times \frac{360}{50}$ Or, $P=$ Rs $9,969.03$
If days to maturity $(\mathrm{t})=100$ days
$\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}}$ Or, $0.0223=\frac{\text { Rs. } 10,000-\mathrm{P}}{\text { Rs. } 10,000} \times \frac{360}{100}$ Or, $\mathrm{P}=$ Rs $9,938.06$
If days to maturity $(\mathrm{t})=250$ days

$$
\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}} \text { Or, } 0.0223=\frac{\text { Rs. } 10,000-\mathrm{P}}{\text { Rs. } 10,000} \times \frac{360}{250} \text { Or, } \mathrm{P}=\text { Rs } 9,845.14
$$

8. Solution

Here given:
Days to maturity $(t)=225$ days; Purchase price $(P)=$ Rs 95,850 ; Face value $(F V)=$ Rs 100,000
a. Discount yield $(\mathrm{d})=$?
$d=\frac{F V-P}{F V} \times \frac{360}{t}=\frac{\text { Rs. } 100,000-\text { Rs } 95,850}{\text { Rs. } 100,000} \times \frac{360}{225}=0.0664$ or 6.64%
Bond equivalent yield (BEY) = ?
$B E Y=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{P}} \times \frac{365}{\mathrm{t}}=\frac{\text { Rs. } 100,000-\text { Rs } 95,850}{\text { Rs. } 95,850} \times \frac{365}{225}=0.07024$ or 7.024%
b. Days to maturity $(\mathrm{t})=300$ days

Discount yield (d) = ?
$\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}}=\frac{\text { Rs. } 100,000-\text { Rs } 95,850}{\text { Rs. } 100,000} \times \frac{360}{300}=0.0498$ or 4.98%
Bond equivalent yield (BEY) $=$?
$B E Y=\frac{F V-P}{P} \times \frac{365}{\mathrm{t}}=\frac{\text { Rs. } 100,000-\text { Rs } 95,850}{\text { Rs. } 95,850} \times \frac{365}{300}=0.0527$ or 5.27%
9. Solution

Here given:
Discount yield $(\mathrm{d})=$?; Face value $(\mathrm{FV})=$ Rs 10,000; Purchase price $(P)=$ Rs 8,885
Days to maturity $(\mathrm{t})=10$ days
$\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}}=\frac{\text { Rs. } 10,000-\text { Rs } 8,885}{\text { Rs. } 10,000} \times \frac{360}{10}=4.014 \%$,
Days to maturity $(\mathrm{t})=25$ days
$\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}}=\frac{\text { Rs. } 10,000-\text { Rs } 8,885}{\text { Rs. } 10,000} \times \frac{360}{25}=1.606 \%$
Days to maturity $(\mathrm{t})=50$ days
$\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}}=\frac{\text { Rs. } 10,000-\text { Rs } 8,885}{\text { Rs. } 10,000} \times \frac{360}{50}=0.803 \%$
Days to maturity $(\mathrm{t})=100$ days
$\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}}=\frac{\text { Rs. } 10,000-\text { Rs } 8,885}{\text { Rs. } 10,000} \times \frac{360}{100}=0.401 \%$
Days to maturity $(\mathrm{t})=250$ days
$\mathrm{d}=\frac{\mathrm{FV}-\mathrm{P}}{\mathrm{FV}} \times \frac{360}{\mathrm{t}}=\frac{\text { Rs. } 10,000-\text { Rs } 8,885}{\text { Rs. } 10,000} \times \frac{360}{250}=0.161 \%$
10. Solution

Here given:
Interest rate $=2.25 \%$; Bond equivalent rate or bond equivalent yield $(B E Y)=$?; Quoted rate $=3.75 \%$
We have,
Bond equivalent yield = Quoted interest rate $\times \frac{365}{360}=2.25 \% \times \frac{365}{360}=2.28 \%$
Bond equivalent yield $=$ Quoted interest rate $\times \frac{365}{360}=3.75 \% \times \frac{365}{360}=3.80 \%$
11. Solution

Here given:
Selling price $=$ Rs $10,008,548 ;$ Purchase price $=$ Rs $10,000,000 ;$ Days to maturity $=5$ days; discount yield on repo $=$?;
bond equivalent yield on repo $=$?
a. Calculation of discount yield on repo

We have,
Interest $=$ Loan \times repo rate $/ 360 \times$ days to maturity

Or, Rs $50,000=$ Rs $25,000,000 \times$ Repo rate $/ 360 \times 7$
Or, $50,000=$ Rs $486,111.1111$ Repo rate
\therefore Repo rate $=$ Rs $50,000 /$ Rs $486,111.1111=0.1029$ Or, 10.29%
b. Calculation of discount yield on repo

We have,
Interest $=$ Loan \times repo rate $/ 360 \times$ days to maturity
Or, Rs $50,000=$ Rs $25,000,000 \times$ Repo rate $/ 360 \times 21$
Or, $50,000=$ Rs $1,458,333.333$ Repo rate
\therefore Repo rate $=$ Rs $50,000 /$ Rs $1,458,333.333=0.0343$ Or, 3.43%
12. Solution

Here given:
Days to maturity $(t)=45$ days; Purchase price $(P)=$ Rs 495,000 ; Face value $(F V)=$ Rs 500,000
Discount yield (d) = ?
$d=\frac{F V-P}{F V} \times \frac{360}{t}=\frac{\text { Rs. } 500,000-\text { Rs } 495,000}{\text { Rs. } 500,000} \times \frac{360}{45}=0.08$ or 8%
Bond equivalent yield (BEY) $=$?
$B E Y=\frac{F V-P}{P} \times \frac{365}{t}=\frac{\text { Rs. } 500,000-\text { Rs } 495,000}{\text { Rs } 495,0000} \times \frac{365}{45}=8.19 \%$
13. Solution

Days to maturity $(\mathrm{t})=4$ months; Principal $=$ Rs 500,$000 ;$ Interest rate $=5.5 \%$
a. Market interest rate $=6 \%$; Current market value $(\mathrm{P})=$?

We have,

b. Market interest rate $=5.25 \%$; Current market value $(\mathrm{P})=$? We have,

$$
P=\frac{P+\left[P \times \frac{i}{12} \times m\right]}{\left[1+\frac{\mathrm{k}}{12} \times \mathrm{m}\right]}=\frac{\operatorname{Rs} 500,000+\left[\operatorname{Rs} 500,000 \times \frac{0.055}{12} \times 4\right]}{\left[1+\frac{0.0525}{12} \times 4\right]}=\frac{\text { Rs } 500,000+\text { Rs 9,166.67 }}{1.0175}
$$

$$
=\text { Rs 500,409.5 }
$$

14. Solution:

Here given
Bid price $=97.270$; Days to maturity $(\mathrm{t})=91$ days
a. Discount interest rate $(\mathrm{d})=$?

We have,
$\mathrm{d}=\frac{360}{\mathrm{t}} \times \frac{\text { DISC }}{\text { FV }}=\frac{360}{91} \times \frac{\text { Rs. } 2.73}{\text { Rs. } 100}=0.108$ Or, 10.8%
Working notes:
Discount amount (DISC) $=$ FV - P = Rs $100-$ Rs $97.27=$ Rs 2.73
b. Equivalent yield = ?

We have,
Equivalent yield $=\frac{365 \times \mathrm{d}}{360-\mathrm{d} \times \mathrm{t}}=\frac{365 \times 0.108}{360-0.108 \times 91}=0.1126$ Or, 11.26%
c. Price of T-bill after 30 days $=$? Remaining days $\left(\mathrm{t}_{1}\right)=91-30=61$ days; Discount rate after 30 days $\left(\mathrm{d}_{1}\right)=12 \%$

We have,
$\mathrm{d}_{1}=\frac{\text { DISC }}{\mathrm{FV}} \times \frac{360}{\mathrm{t}_{1}}$ Or, $0.12=\frac{\text { Rs } 100-\mathrm{PP}}{\text { Rs. } 100} \times \frac{360}{61}$ Or, $0.12 \times 61 \times$ Rs $100=360(100-\mathrm{PP})$ Or, $732=36,000-360$ PP Or, PP
$=35,268 / 360=$ Rs 97.97
d. Holding period return for 30 days

We have,
HPR $=\frac{(\text { Ending price }- \text { Beginning price })}{\text { Beginning price }}=\frac{(\text { Rs. } 97.97-\text { Rs. } 97.27)}{\text { Rs. } 97.27}=0.007196$ or 0.7196%
Annual rate or $\mathrm{EAR}=(1+\text { periodic rate })^{\mathrm{m}}-1=(1+0.007196)^{365 / 30}-1=9.1156 \%$
15.Solution

Here given:
Asked discount yield $=6.58 \%$; Days to maturity $=124$ days
a. \quad Asked price $=$?; Face value $=$ Rs 100,000

Ask price $\quad=$ Face value - Rupee discount
$=$ Face value - [Face value \times discount yield $\times(\mathrm{t} / 360)$]
$=$ Rs $100,000-[$ Rs $100,000 \times 0.0658 \times(124 / 360)]$
$=$ Rs 100,000 - Rs 2,266.44
= Rs 97,733.56
b. The asked price corresponds to the price asked by the securities dealer - or, the amount paid by the investor.
c. Bond equivalent yield = ?

Bond equivalent yield \quad	$=\frac{\text { Par value }- \text { Purchase price }}{\text { Purchase price }} \times \frac{365}{\text { Days to maturity }}$
	$=\frac{\text { Rs } 100,000-\text { Rs } 97,733.56}{\text { Rs } 97,733.56} \times \frac{365}{124}=0.0683$ Or, 6.83%

16. Solution
a. Here given:

Borrowed amount = Rs 25 million; RP rate $=6.25 \%$; Time to maturity $=24$-hour or 1 day; RP Interest income $=$? We have,

$$
\begin{array}{r}
\text { RP interest income }=\text { Amount of loan } \times \operatorname{RP} \text { rate } \times \frac{\text { Number of days loaned }}{360 \text { days }} \\
=\text { Rs } 25,000,000 \times 0.0625 \times \frac{1}{360}=\operatorname{Rs} 4,340.28
\end{array}
$$

Therefore the dealer income from the 24 -hour loan is Rs $4,340.28$
b. Here given:

Borrowed amount $=$ Rs 40 million; time to maturity $(\mathrm{t})=1$ day; interest payment $(\mathrm{I})=$ Rs 3,500 ; RP loan rate $=$?
We have,
RP interest income $=$ Amount of loan $\times \mathrm{RP}$ rate $\times \frac{\text { Number of days loaned }}{360 \text { days }}$
Or, Rs 3,500
$=$ Rs $40,000,000 \times$ Current RP rate $\times \frac{1}{360}$
Or, Current RP rate $=$ Rs $3,500 /$ Rs $111,111.111=0.0315$ Or, 3.15%
c. Here given:

Interest income (I) = Rs 55,600; RP loan rate (r) = 5.7\%; Amount of loan =?
We have,
RP interest income $=$ Amount of loan \times current RP rate $\times \frac{\text { Number of days loaned }}{360 \text { days }}$
Or, Rs 55,600 = Amount of loan $\times 0.057 \times \frac{1}{360}$
Or, Rs 55,600 = Amount of loan $\times 0.000158$
Or, Amount of loan = Rs 55,600/0.000158 = Rs 351,898,734.2
17. Solution
a. Yield $=\frac{\text { Face value }- \text { Purchase price }}{\text { purchase price }} \times \frac{365}{\mathrm{t}}=\frac{10000-8800}{8800} \times \frac{365}{91}=0.547 \mathrm{Or}, 54.7 \%$
b. Price $=$? We have, Price $=\frac{\text { Rs } 10000}{(1+0.03)}=$ Rs $9,708.74$
c. \quad T-bill yield $=$?

We have,
Yield $=\frac{\text { Face value }- \text { Purchase price }}{\text { purchase price }} \times \frac{365}{\mathrm{t}}=\frac{\text { Rs } 100,000-\text { Rs } 98,000}{\text { Rs } 98,000} \times \frac{365}{120}=0.0621 \mathrm{Or}, 6.21 \%$
Discount yield $=\frac{F V-P}{F V} \times \frac{360}{t}=\frac{\text { Rs } 100,000-\text { Rs } 98,000}{\text { Rs } 100,000} \times \frac{360}{120}=0.0600$ Or, 6.00%
d. Yield $=$?

We have,
Yield $=\frac{\text { Selling price }- \text { Purchase price }}{\text { purchase price }} \times \frac{365}{\mathrm{t}}=\frac{\text { Rs } 9,100-\text { Rs } 9,000}{\text { Rs } 9,000} \times \frac{365}{90}=0.0451$ Or, 4.51%
18. Solution
a. $\operatorname{HPR}=(1,000,000-980,000)+45,000 / 980,000=0.0663$ Or, 6.63%
b. Calculation of discount yield on repo We have, $100,000=4,900,000 \times$ repo rate $/ 360 \times 40$
\therefore Repo rate $=$ Rs $100,000 / 544,444.44=0.1837$ Or, 18.37%
c. Investor's yield =?

We have,
Yield $=\frac{\text { Face value }- \text { Purchase price }}{\text { purchase price }} \times \frac{365}{\mathrm{t}}=\frac{\text { Rs } 1,000,000-\text { Rs } 940,000}{\text { Rs } 940,000} \times \frac{365}{180}=0.1294 \mathrm{Or}, 12.94 \%$
d. Required rate of return

We have,
$\mathrm{FV}=\mathrm{PV}(1+\text { required rate })^{\mathrm{n}}$
Or, $10,000=$ Rs $8,816.60 .(1+\text { required rate })^{2}$ Required rate $=6.5 \%$

CHAPTER -5 CAPITAL MARKETS

a. The Ask price is $\$ 10,000 \times 1079 / 32 \%=\$ 10,728.125$
b. The Bid price is $\$ 10,000 \times 10431 / 32 \%=\$ 10,496.875$
2. Solution
a. July 19,2010 to March 31,2011 is 256 days, or 0.70136986 years. Thus,
$V_{b}=(0.875 \% / 2)\left\{\left[1-\left(1 /(1+.002374 / 2)^{2(0.70136986)}\right)\right] .002374 / 2\right\}+100 \% /(1+.002374 / 2)^{2(0.70136986)}=100.4465566 \%$ or to the nearest $1 / 32 \%=$ 100-14\%
On a financial calculator: $\mathrm{N}=0.70136986(2)=1.40273972, \mathrm{I}=.002374 / 2=0.1187, \mathrm{PMT}=0.4375, \mathrm{FV}=100$, $=>P V=100.4465566 \%$
b. July 19,2010 to November 30, 2013 is 3 years 136 days, or 3.37260274 years. Also, $103: 02=103.0625 \%$. Thus, $103.0625 \%=$
$(2.00 \% / 2)\left\{\left[1-(1 /(1+\text { ask yield/2 }))^{2(3.37260274)}\right)\right] /$ ask yield/2 $\}+100 \% /(1+\text { ask yield/2 })^{2(3.37260274)}$
Solving for Asked yield, we get 1.0734%
On a financial calculator: $\mathrm{N}=3.37260274(2)=6.74520248, \mathrm{PV}=-103.0625 \%, \mathrm{PMT}=1.000, \mathrm{FV}=100$,
=> $1=0.5367 \times 2=1.0734$
3. Solution
a. July 19,2010 to August 15,2015 is 5.07671233 years. Also, the Asked price is 91.173%. Thus,
$91.173 \%=100 \% /(1+\text { Asked yield } / 2)^{2 \times 5.07671233}$
Solving for "Asked yield," we get 1.83%
b. July 19,2010 to November 15,2016 is 6.32876712 years. Thus,
$V_{b}=100 \% /(1+2.24515 \% / 2)^{2 \times 6.32876712}=86.823 \%$
4. Solution
a. Accrued interest over the 145 days is calculated as:
$(4.375 \% / 2) \times 145 / 184=1.723845 \%$
of the face value of the bond, or $\$ 172.38$ per $\$ 10,000$ face value bond.
b. Clean price + Accrued interest $=$ Dirty price
$105.25 \%+1.723845 \%=106.973845 \%$ of the face value of the bond, or $\$ 10,697.3845$ per $\$ 10,000$ face value bond.
5. Solution
a. The inflation-adjusted principal at the end of the first six months June 30,2014 , is found by multiplying the original par value $(\$ 100,000)$ by the semiannual inflation rate. Thus, is adjusted upward by 0.3 percent (e.g., $\$ 100,000 \times 1.003$), or to $\$ 100,300$. Therefore, the first coupon payment, paid on June 30, 2014, is $\$ 4,012$ ($\$ 100,300 \times 4.0 \%$).
b. The inflation adjusted principal at the beginning of the second six months is $\$ 100,300$.
c. The principal amount used to determine the second coupon payment is adjusted upward by 1 percent (e.g., $\$ 100,300 \times 1.01$), or to $\$ 101,303$. The coupon payment to the investor for the second six month period is the inflation-adjusted principal on this coupon payment date ($\$ 101,304$) times the semiannual coupon rate (4 percent). Or on December 31,2014 , the investor receives a coupon payment of $\$ 4,052.12$ ($\$ 101,303 \times 4.0 \%$).
6. Solution

If your marginal tax rate is 21 percent, the after-tax or equivalent tax exempt rate of return on the taxable bond is
$9.5 \%(1-.21)=7.50 \%$
The municipal that pays 7.75 percent is the better deal.
7. a. If your marginal tax rate is 28 percent, the after-tax or equivalent tax exempt rate of return on the taxable bond is $6.75 \% /(1-.28)=$ 9.375\%
b. If your marginal tax rate is 21 percent, the after-tax or equivalent tax exempt rate of return on the taxable bond is $6.75 \% /(1-.21)=$ 8.554\%
8. a. The Hawaii Department of Budget \& Finance bonds had a coupon rate of 5.500%, their price was 95.757%, and the yield was 5.80%.
b. On July 15, 2010, the Massachusetts Department of Transportation bonds were selling at $105.232 \%-.078 \%=105.154 \%$
c. $97.736 \%=(5.000 \% / 2)\left\{\left[1-\left(1 /(1+0.0515 / 2)^{2 \text { (years })}\right)\right] / 0.0515 y t m / 2\right\}+100 \% /(1+0.0515 / 2)^{2 \text { (years) }}$

Solving for the years, we get 29.53816 years.
On a financial calculator: $\mathrm{PV}=-97.736 \%, \mathrm{PMT}=2.500, \mathrm{FV}=100, \mathrm{I}=5.15 / 2=2.575$
$\Rightarrow N=59.07632744$ and years $=59.07632744 / 2=29.53816$ years
9. Solution
a. The closing price of Bank of America bonds on July 16,2010 was 105.266% of the face value of the bond.
b. The S\&P bond rating on Morgan Stanley 5.500 percent coupon bonds maturing in 2020 on July 16, 2010 was A.
c. The closing price of Cox Communications 7.750 percent bonds on July 15,2010 was $101.800 \%+0.158 \%=101.958 \%$ of the face value of the bond.
10. Solution

Before the rating change:
$V_{b}=(\$ 1,000(6.5 \%) / 2)\left\{\left[1-\left(1 /(1+0.072 / 2)^{2(15)}\right)\right] / 0.072 / 2\right\}+1,000 /(1+0.072 / 2)^{2(15)}$
Solving for V_{b}, we get $\$ 936.4268335$.
On a financial calculator: $\mathrm{PMT}=32.50, \mathrm{FV}=1,000, \mathrm{I}=7.20 / 2=3.60, \mathrm{~N}=15(2)=30=\mathrm{PV}=-936.4268335$
After the rating change:
$\mathrm{V}_{\mathrm{b}}=(\$ 1,000(6.5 \%) / 2)\left\{\left[1-\left(1 /(1+0.085 / 2)^{2(15)}\right)\right] / 0.085 / 2\right\}+1,000 /(1+0.085 / 2)^{2(15)}$
Solving for V_{b}, we get \$832.2098283.
On a financial calculator: $\mathrm{PMT}=32.50, \mathrm{FV}=1,000, \mathrm{I}=8.5 / 2=4.25, \mathrm{~N}=15(2)=30=>\mathrm{PV}=-832.2098283$
$\$$ change in $V_{b}=\$ 832.2098283-\$ 936.4268335=-\$ 104.2170052$
\% change in $\mathrm{V}_{\mathrm{b}}=(\$ 832.2098283-\$ 936.4268335) / \$ 936.4268335=-\$ 104.2170052 / \$ 936.4268335=-11.129 \%$
11. Solution:

Since the client's marginal tax rate is 33 percent, the tax equivalent rate of return on the municipal bond is $4.5 \% /(1-.33)=6.716 \%$. This is greater than the yield on the corporate bond, 6.45%, so the client would make more profit with the municipal bond.
12. Solution

Before the rating change
$V_{b}=(1,000(6.75 \%) / 2)\left\{\left[1-\left(1 /(1+0.082 / 2)^{2(10)}\right)\right] / 0.082 / 2\right\}+1,000 /(1+0.082 / 2)^{2(10)}$
Solving for V_{b}, we get $\$ 902.336888$.
On a financial calculator: $\mathrm{PMT}=33.75, \mathrm{FV}=1,000, \mathrm{I}=8.20 / 2=4.10, \mathrm{~N}=10(2)=20=>\mathrm{PV}=-902.336888$

After the rating change:
$\mathrm{V}_{\mathrm{b}}=(1,000(6.75 \%) / 2)\left\{\left[1-\left(1 /(1+0.071 / 2)^{2(10)}\right)\right] / 0.071 / 2\right\}+1,000 /(1+0.071 / 2)^{2(10)}$
Solving for V_{b}, we get $\$ 975.2404439$.
On a financial calculator: $\mathrm{PMT}=33.75, \mathrm{FV}=1,000, \mathrm{I}=7.1 / 2=3.55, \mathrm{~N}=10(2)=20=>\mathrm{PV}=-975.2404439$
$\$$ change in $V_{b}=\$ 975.2404439-\$ 902.336888=\$ 72.9035558$
$\%$ change in $\mathrm{V}_{\mathrm{b}}=(\$ 975.2404439-\$ 902.336888) / \$ 902.336888=\$ 72.9035558 / \$ 902.336888=8.079 \%$
13. Solution: Bond value $=102-17 \% ;$ Bond value $=103-03 \% ;$ Bond value $=103-19 \% ;$ Bond value $=104-14 \%$
14. Solution
a. If a bond holder were to convert Hilton Hotels bonds into stock, each bond (worth $\$ 975.00$) could be exchanged for 61.2983 shares of stock worth $\$ 15.90$. The conversion value of the bonds is: $\$ 15.90 \times 61.2983=\$ 974.50$
b. The bonds are currently worth $\$ 975.00$ per bond, while their conversion value is $\$ 974.5$. Thus, there is virtually no difference in dollar value of the investment to the investor if he or she holds Hilton's debt or its common stock equivalent.
15. Solution
a.Here given:

Holding period $\left(n_{H}\right)=5$ years; Purchase price $(P P)=$ Rs 935 ; Selling price $(S P)=$ Rs 980 ; Interest payment $(I)=$ Rs 75 per year; Realized yield $=$?
We have,
Approximate yield $=\frac{1+\frac{\mathrm{SP}-\mathrm{PP}}{\mathrm{n}_{\mathrm{H}}}}{\frac{\mathrm{SP}+2 \mathrm{PP}}{3}}=\frac{\mathrm{Rs} .75+\frac{\mathrm{Rs} .980-\mathrm{Rs} .935}{5}}{\frac{\mathrm{Rs} .980+2 \times \mathrm{Rs} .935}{3}}=(75+9) / 950=8.84 \%$
Referring approximate yield, it is seems that the actual yield lies between 8% and 9%, so try at these rates.
NPV = TPV - Purchase price
NPV $=\left[I \times\right.$ PVIFAr, $n_{H}+$ SP \times PVIFr, $\left.n_{H}\right]-$ Purchase price
At 8%
NPV $\quad=\left[\right.$ Rs $75 \times$ PVIFA $_{8,5}+$ SP \times PVIF $\left._{8,5}\right]-$ Purchase price
$=[$ Rs $75 \times 3.9927+$ Rs $980 \times 0.6806]$ - Rs 935
$=$ Rs $966.4405-935$
= Rs 31.4405
At 9\%
NPV $\quad=\left[\right.$ Rs $75 \times$ PVIFA $_{9,5}+$ SP \times PVIF $\left._{9,5}\right]$-Purchase price
$=[R s 75 \times 3.8897+$ Rs $980 \times 0.6499]-$ Rs 935
$=$ Rs 928.6295 - 935
=-Rs 6.3705
Interpolation between these two values
$\begin{aligned} \text { Actual yield } & =\mathrm{LR}+\frac{\mathrm{NPV}_{\mathrm{LR}}}{\mathrm{NPV} V_{L R}-\mathrm{NPV}_{H R}} \times(\mathrm{HR}-\mathrm{LR}) \\ & =8 \%+\frac{31.4405}{\operatorname{Rs} 31.4405-(-\mathrm{Rs} 6.3705)} \times(9 \%-8 \%) \\ & =8 \%+0.8315 \%=8.8315 \%\end{aligned}$
b. Here given:

Holding period $\left(n_{H}\right)=5$ years; Purchase price $(P P)=$ Rs 935 ; Selling price $(S P)=$ Rs 980 ; Interest payment $(I)=$ Rs 75 per year; Realized yield $=$?
$\begin{aligned} & \text { Approximate yield }=\frac{1+\frac{\mathrm{SP}-\mathrm{PP}}{\mathrm{n}_{H}}}{\frac{\mathrm{SP}+2 \mathrm{PP}}{3}}=\frac{\mathrm{Rs} .75+\frac{\mathrm{Rs} .990-\mathrm{Rs} .980}{3}}{\frac{\mathrm{Rs} .990+2 \times \mathrm{Rs} .980}{3}} \\ &=(75+3.3333) / 983.3333=7.966 \%\end{aligned}$
16. Solution
a. $V_{b}=1,000(.12)\left\{\left[1-\left(1 /(1+.10)^{12}\right)\right]\right\}+1,000 /(1+.10)^{12}=\$ 1,136.27$
b. $V_{b}=1,000(.12)\left\{\left[1-\left(1 /(1+.11)^{12}\right)\right]\right\}+1,000 /(1+.11)^{12}=\$ 1,064.92$
c. $\Delta \mathrm{V}_{\mathrm{b}}=(\$ 1,064.92-\$ 1,136.27) / \$ 1,136.27=-0.0628$ or -6.28 percent.
d. $V_{b}=1,000(.12)\left\{\left[1-\left(1 /(1+.10)^{16}\right)\right]\right\}+1,000 /(1+.10)^{16}=\$ 1,156.47$

```
V}=1,000(.12){[1-(1/(1+.11)\mp@subsup{)}{}{16})]}+1,000/(1+.11)\mp@subsup{)}{}{16}=$1,073.7
\DeltaV
e. For the same change in interest rates, longer-term fixed-rate assets experience a greater change in price.
```

17. Solution
a. $\mathrm{V}_{\mathrm{b}}=1,000(.15)\left\{\left[1-\left(1 /(1+.12)^{5}\right)\right]\right\}+1,000 /(1+.12)^{12}=\$ 1,108.14$
b. $V_{b}=1,000(.15)\left\{\left[1-\left(1 /(1+.13)^{5}\right)\right]\right\}+1,000 /(1+.13)^{12}=\$ 1,070.34$
c. $\Delta \mathrm{V}_{\mathrm{b}}=(\$ 1,070.34-\$ 1,108.14) / \$ 1,108.14=-0.0341$ or -3.41 percent.
d. $V_{b}=1,000(.15)\left\{\left[1-\left(1 /(1+.11)^{5}\right)\right]\right\}+1,000 /(1+.11)^{12}=\$ 1,147.84$
$\Delta \mathrm{V}_{\mathrm{b}}=(\$ 1,147.84-\$ 1,108.14) / \$ 1,108.14=0.0358$ or 3.58 percent
e. For a given percentage change in interest rates, the absolute value of the increase in price caused by a decrease in rates is greater than the absolute value of the decrease in price caused by an increase in rates.
18. Solution
a. $\mathrm{V}_{\mathrm{b}}=1,000(.08)\left\{\left[1-\left(1 /(1+.09)^{10}\right)\right] / .09\right\}+1,000(1+.09)^{10}=\$ 935.82$
b. Bond Value $=\$ 1,268.27$; Bond Value $=\$ 1,169.36$; Bond Value $=\$ 1,000.00$; Bond Value $=\$ 862.01$
c. $V_{b}=1,000(.07)\left\{\left[1-\left(1 /(1+.14 / 4)^{4(4)}\right)\right] / 14 / 4\right\}+1,000 /(1+.14 / 4)^{4(4)}=\$ 788.35$

4
19. Solution
a. $\$ 1,100=\frac{1,000(.12)}{2}\left\{\left[1-\left(1 /(1+\mathrm{ytm} / 2)^{2(10)}\right)\right] / \mathrm{ytm} / 2\right\}+1,000 /(1+\mathrm{ytm} / 2)^{2(10)} \Rightarrow \mathrm{ytm}=10.37 \%$
b. $\mathrm{V}_{\mathrm{b}}=945.80=\frac{1,000(.09)}{2}\left\{\left[1-\left(1 /(1+\mathrm{ytm} / 2)^{2(7)}\right)\right] / \mathrm{ytm} / 2\right\}+1,000 /(1+\mathrm{ytm} / 2)^{2(7)} \Rightarrow \mathrm{ytm}=10.099 \%$
20. Solution
$\$ 863.73=1,000(.08)\left\{\left[1-\left(1 /(1+.10)^{n}\right)\right] / .10\right\}+1,000 /(1+.10)^{n} \quad=>n=12$ years
Or, on a financial calculator: $I=10, P V=-963.73, P M T=80, F V=1,000,=>n=12$ years
21. Solution
a. $V_{b}=\frac{1,000(.1)}{2}\left\{\left[1-\left(1 /(1+.06 / 2)^{2(10)}\right)\right] / .06 / 2\right\}+1,000 /(1+.06 / 2)^{2(10)}=\$ 1,297.55$

2
b. $\mathrm{V}_{\mathrm{b}}=1,000(.1)\left\{\left[1-\left(1 /(1+.08 / 2)^{2(10)}\right)\right] / .08 / 2\right\}+1,000 /(1+.08 / 2)^{2(10)}=\$ 1,135.90$ 2
c. From parts a . and b . of this problem, there is a negative relation between required rates and fair values of bonds.
22. Solution
a. $985=\underline{1,000(.09)}\left\{\left[1-\left(1 /(1+\mathrm{ytm} / 2)^{2(15)}\right)\right] / \mathrm{ytm} / 2\right\}+1,000 /(1+\mathrm{ytm} / 2)^{2(15)} \Rightarrow \mathrm{ytm}=9.186 \%$
b. $915=\underline{1,000(.08)}\left\{\left[1-\left(1 /(1+\mathrm{ytm} / 4)^{4(10)}\right)\right] / \mathrm{ytm} / 4\right\}+1,000 /(1+\mathrm{ytm} / 4)^{4(10)} \Rightarrow \mathrm{ytm}=9.316 \%$
c. $1,065=1,000(.11)\left\{\left[1-\left(1 /(1+y t m)^{6}\right)\right] / \mathrm{ytm}\right\}+1,000 /(1+\mathrm{ytm})^{6}=>\mathrm{ytm}=9.528 \%$

23. Solution

a. $\mathrm{V}_{\mathrm{b}}=\frac{1,000(.06)}{2}\left\{\left[1-\left(1 /(1+.10 / 2)^{2(12)}\right)\right] / .10 / 2\right\}+1,000 /(1+.10 / 2)^{2(12)}=\$ 724.03$
b. $V_{b}=\frac{1,000(.08)}{2}\left\{\left[1-\left(1 /(1+.10 / 2)^{2(12))}\right] / .10 / 2\right\}+1,000 /(1+.10 / 2)^{2(12)}=\$ 862.01\right.$
c. $V_{b}=\frac{1,000(.10)}{2}\left\{\left[1-\left(1 /(1+.10 / 2)^{2(12)}\right)\right] / .10 / 2\right\}+1,000 /(1+.10 / 2)^{2(12)}=\$ 1,000.00$
d. From parts a. through c. in this problem, there is a positive relation between coupon rates and present values of bonds.
e. a. $V_{b}=\underline{1,000(.06)}\left\{\left[1-\left(1 /(1+.08 / 2)^{2(12)}\right)\right] / .08 / 2\right\}+1,000 /(1+.08 / 2)^{2(12)}=\$ 847.53$

2
b. $\mathrm{V}_{\mathrm{b}}=\frac{1,000(.08)}{2}\left\{\left[1-\left(1 /(1+.08 / 2)^{2(12))]}\right] .08 / 2\right\}+1,000 /(1+.08 / 2)^{2(12)}=\$ 1,000.00\right.$
$\%$ change in bond value versus part $(\mathrm{a})=(\$ 1,000-\$ 847.53) / \$ 847.53=17.99 \%$
c. $\mathrm{V}_{\mathrm{b}}=\frac{1,000(.10)}{2}\left\{\left[1-\left(1 /(1+.08 / 2)^{2(12)}\right)\right] / .08 / 2\right\}+1,000 /(1+.08 / 2)^{2(12)}=\$ 1,152.47$

2
\% change in bond value versus part $(\mathrm{b})=(\$ 1,152.47-\$ 1,000) / \$ 1,000=15.25 \%$
d. From these results we see that as coupon rates increase, price volatility decreases.
24. Ans: a. Rs 1,135.90; b. Rs 1,172.92; c. Rs. 1,197.93; d. Positive; e. Rs $940.25 ; \%$ change $=-17.22 \%$; Rs $927.33 ; \%$ change $=-13$. Solution
a. $V_{b}=\frac{1,000(.10)}{2}\left\{\left[1-\left(1 /(1+.08 / 2)^{2(10)}\right)\right] / .08 / 2\right\}+1,000 /(1+.08 / 2)^{2(10)}=\$ 1,135.90$
b. $\mathrm{V}_{\mathrm{b}}=\frac{1,000(.10)}{2}\left\{\left[1-\left(1 /(1+.08 / 2)^{2(15)}\right)\right] / .08 / 2\right\}+1,000 /(1+.08 / 2)^{2(15)}=\$ 1,172.92$
c. $\mathrm{V}_{\mathrm{b}}=\frac{1,000(.10)}{2}\left\{\left[1-\left(1 /(1+.08 / 2)^{2(20)}\right)\right] / .08 / 2\right\}+1,000 /(1+.08 / 2)^{2(20)}=\$ 1,197.93$
d. From these results we see that there is a positive relation between time to maturity and the difference between present values and face values on bonds.
e. a. $V_{b}=\frac{1,000(.10)}{2}\left\{\left[1-\left(1 /(1+.11 / 2)^{2(10)}\right)\right] / .11 / 2\right\}+1,000 /(1+.11 / 2)^{2(10)}=\$ 940.25$
$\%$ change in bond value $=(\$ 940.25-\$ 1,135.90) / \$ 1,135.90=-17.22 \%$
b. $\mathrm{V}_{\mathrm{b}}=\frac{1,000(.10)}{2}\left\{\left[1-\left(1 /(1+.11 / 2)^{2(15)}\right)\right] / .11 / 2\right\}+1,000 /(1+.11 / 2)^{2(15)}=\$ 927.33, \%$ change 3.72%
$\%$ change in bond value $=(\$ 927.33-\$ 1,172.92) / \$ 1,172.92=-20.94 \%$
c. $\mathrm{V}_{\mathrm{b}}=\underline{1,000(.10)}\left\{\left[1-\left(1 /(1+.11 / 2)^{2(20)}\right)\right] / .11 / 2\right\}+1,000 /(1+.11 / 2)^{2(20)}=\$ 919.77 \%$ change 2.28% 2
$\%$ change in bond value $=(\$ 919.77-\$ 1,197.93) / \$ 1,197.93=-23.22 \%$
d. As interest rates increase the variability in bond prices increases as time to maturity increases.
25. Solution

Price before the change in interest rates:
$V_{b}=1,000(.06)\left\{\left[1-\left(1 /(1+.05 / 2)^{2(5)}\right)\right] / .05 / 2\right\}+1,000 /(1+.05 / 2)^{2(5)}=\$ 1,043.76$ 2
Price after the change in interest rates:
$V_{b}=\frac{1,000(.06)}{2}\left\{\left[1-\left(1 /(1+.055 / 2)^{2(5)}\right)\right] / .055 / 2\right\}+1,000 /(1+.055 / 2)^{2(5)}=\$ 1,021.60$
Or, the bond decreased in price by $\$ 22.16$.
26. Solution
a. $P_{0}=2.10 / .054=\$ 38.89 ; b . P_{0}=3.501 .068=\$ 51.47$
27. Solution
a. $P_{0}=5 / .10=\$ 50$
b. $\quad P_{0}=\underline{1.20(1+.10)}=\$ 66.00$
.12-. 10
c. $P_{0}=\underline{0.60(1+.125)}=\$ 33.75$ 145-. 125
28. Solution
a. $\quad P_{0}=2.50(1+.015)=\$ 24.167$

$$
\text { . } 12-.015 .
$$

b. $\quad P_{4}=\frac{2.50(1+.015)^{5}}{.15-.015}=\$ 19.95$
29. Solution
a. $\quad E\left(r_{s}\right)=\underline{4.50}+.03=10.03 \%$
b. $E\left(r_{s}\right)=\frac{4.50}{64}+.05=12.03 \%$
c. From parts a . and b . of this problem, there is a positive relation between the dividend growth rate and the expected rate of return on stocks.
30. Solution

Step 1: Find the present value of dividends during the period of supernormal growth.

| $\frac{\text { Year }}{1}$ | $\frac{\text { Dividends }\left(D_{0}\left(1+\mathrm{g}_{5}{ }^{t}\right)\right.}{5.5(1+.08)^{1}=5.940}$ | $\frac{1 /(1+.10)^{\mathrm{t}}}{}$ | .9091 |
| :---: | :---: | ---: | ---: |\quad| Present Value |
| :--- |
| 2 |

Present value of dividends during supernormal growth period $\$ 30.963$
Step 2: Find present value of dividends after period of supernormal growth
a. Find stock value at beginning of constant growth period

$$
P_{6}=\frac{D_{7}}{r_{s}-g}=\frac{D_{0}\left(1+g_{s}\right)^{6}(1+g)^{1}}{r_{s}-g}=\frac{5.5(1+.08)^{6}(1+.03)^{1}}{.10-.03}=\$ 128.423
$$

b. Find present value of constant growth dividends

$$
\mathrm{P}_{0}=\mathrm{P}_{6} /(1+.10)^{6}=128.423(.5645)=\$ 72.492
$$

Step 3: Find present value of stock = value during supernormal growth period + value during normal growth period $\quad \$ 30.963+\$ 72.492=$ \$103.455
31. Solution
a. $\mathrm{k}_{\mathrm{s}}=\underline{0.46}+0.145=15.54 \%$
b. $k s=0.84+0.15=17.09 \%$ 40.11
c. $P_{0}=(\$ 1.32 \times(1+0.095)) /(0.13-0.95)=\$ 41.30$
d. $k_{s}=[\$ 0.35 \times(1+0.105) /$ Rs 24.25$]+0.105=12.09 \%$

CHAPTER 6: COMMERCIAL BANKS

1. Solution:

The treasury security offers 7% before tax and 4.9% after tax. This is less than the 5% offered by the municipal. Alternatively, the municipal offers a 7.14% tax equivalent yield. Of course, the treasury security should have less risk than the municipal.
2. Solution: The tax equivalent yield is $0.06 /(1-0.35)=0.0923$ or 9.23%.
3. Solution:
a. Earning assets $=$ investment securities + net loans
$=$ Rs 4,050 + Rs $2,025+$ Rs $15,525-$ Rs 1,125 = Rs 20,475
b. $\mathrm{ROA}=(\mathrm{Rs} 2,600-\operatorname{Rs} 1,650-$ Rs $180+$ Rs $140-$ Rs $420-$ Rs 90$) / R s 23,960=1.67 \%$
c. Asset utilization $=($ Rs $2,600+$ Rs 140$) /$ Rs $23,960=11.44 \%$
d. Spread $=($ Rs $2,600 / R s 20,475)-(\operatorname{Rs} 1,650 /(\operatorname{Rs} 10,800+R s 3,200+\operatorname{Rs} 2,250))=2.54 \%$
4. Solution:
a. Earning assets $=$ investment securities + net loans $=$ Rs $3,100+$ Rs $1,664+$ Rs $9,120=$ Rs 13,884
b. Interest bearing liabilities $=$ Rs $4,020+$ Rs $4,680+$ Rs $312=$ Rs 9,012
c. Total operating income $=$ Rs $1,150+$ Rs $260=$ Rs 1,410
d. Asset utilization ratio $=$ Rs $1,410 /$ Rs $15,600=9.038 \%$
e. Net interest margin $=($ Rs $1,150-$ Rs 475$) /$ Rs $13,884=4.862 \%$
5. Solution
a. Earning assets $=$ investment securities + net loans $=$ Rs $6,080+$ Rs $2,990+$ Rs $20,040=$ Rs 29,110
b. Interest bearing liabilities $=$ Rs $10,350+$ Rs $7,670+$ Rs $470=$ Rs 18,490
c. Spread $=(\operatorname{Rs} 4,048 / \operatorname{Rs} 29,110)-(\operatorname{Rs} 2,024 / \operatorname{Rs} 18,490)=2.959 \%$
d. Interest expense ratio $=$ Rs $2,024 /($ Rs $4,048+$ Rs 700$)=42.628 \%$
6. Solution
a. Earning assets $=$ investment securities + net loans $=$ Rs $1,800+$ Rs $900+$ Rs $6,900-$ Rs $500=$ Rs 9,100
b. $\mathrm{ROA}=(\operatorname{Rs} 2,450-\operatorname{Rs} 1,630-\operatorname{Rs} 80+\operatorname{Rs} 240-\operatorname{Rs} 410-\operatorname{Rs} 40) / R s 10,650=4.977 \%$
c. Total operating income $=$ Rs $2,450+$ Rs $240=$ Rs 2,690
d. Spread $=(\operatorname{Rs~2,450/Rs~9,100})-(\operatorname{Rs} 1,630 /(\operatorname{Rs~} 4,800+\operatorname{Rs} 1,425+\operatorname{Rs} 1,000))=4.363 \%$
7. Solution

Revenues (in thousands) $=6,000 \times 0.04+22,000 \times 0.08+12,000 \times 0.06+80,000 \times 0.10+4,000 \times 0.09=\operatorname{Rs} 11,080$

Expenses (in thousands) $=69,000 \times 0.05+18,000 \times 0.07+14,000 \times 0.08=5,830$
Net income $=11,080,000-5,830,000+120,000-80,000-2,500,000=$ Rs $2,790,000$ or Rs 2,790 (in thousands)
8. Solution (in millions of dollars)
a. return on equity $=5,000 / 28,000=17.86 \%$
b. return on assets $=5,000 / 183,000=2.73 \%$
c. asset utilization $=(20,000+2,000) / 183,000=12.02 \%$
d. equity multiplier $=183,000 /(12,000+4,000+12,000)=6.54 \mathrm{X}$
e. profit margin $=5,000 /(20,000+2,000)=22.73 \%$
f. interest expense ratio $=11,000 /(20,000+2,000)=50.00 \%$
g. provision for loan loss ratio $=2,000 /(20,000+2,000)=9.09 \%$
h. noninterest expense ratio $=1,000 /(20,000+2,000)=4.55 \%$
i. tax ratio $=3,000 /(20,000+2,000)=13.64 \%$
9. Solution
$\mathrm{ROA}=\mathrm{PM} \times \mathrm{AU}=0.21 \times 0.11=0.0231=2.31 \%$
ROE $=$ ROA $\times E M=0.0231 \times 12=0.2772=27.72 \%$
10. Solution
$\mathrm{ROA}=\mathrm{PM} \times \mathrm{AU}=0.05 \times 0.20=0.0100=1.00 \%$
ROE $=$ ROA $\times E M=0.0100 \times 7.75=0.0775=7.75 \%$
11. Solution
a.Tier one Capital $=$ Common stock + Perpetual preferred stock + Equity reserve + Undivided profit + Surplus $=10+6+25+15+4=60$
b. Tier two capital $=10$-year subordinated debt + Loan loss reserves + Limited life preferred stock $=35+20+15=70$
c. Bank's total risk weighted asset $=400 \times 0.00+600 \times 0.20+800 \times 0.50+1000 \times 1.00=$ Rs 1,520
d. Tier one capital ratio $=\frac{\text { Tier one capital }}{\text { Total risk weighted asset }}=\frac{60}{1520}=0.0395$ Or, 3.95\%

Since the Tier one capital ratio is less than 6 , so tier one capital is not sufficient to meet the regulatory requirement.
$\begin{aligned} \text { e.Total capital ratio } & =\frac{\text { Tier one capital }+ \text { Tier two capital }}{\text { Total risk weighted asset }} \\ & =\frac{60+70}{1520}=0.0855 \text { Or, } 8.55 \%\end{aligned}$
Since the total capital ratio is less than 10 percent, so total capital is not sufficient to meet the regulatory requirement.
12. Solution
a. The leverage ratio is (Rs $40+\operatorname{Rs} 30$)/Rs $1,090=0.06422$ or 6.422 percent.
b. Risk-adjusted assets $=$ Rs $20 \times 0.0+\operatorname{Rs} 40 \times 0.0+$ Rs $600 \times 0.5+$ Rs $430 \times 1.0=$ Rs 730 . Tier I capital ratio $=($ Rs $40+$ Rs 30$) /$ Rs $730=$ 0.09589 or 9.589 percent.
c. The total risk-based capital ratio $=(\operatorname{Rs} 40+$ Rs $40+$ Rs 30$) / R s 730=0.15068$ or 15.068 percent.
d. The bank would be place in the well-capitalized category.
13. Solution
a. Calculation of on-balance sheet items and credit equivalent off balance sheet items:

Assets items	Risk weight
Cash	Rs $120 \times 0=0$
Government securities	Rs $450 \times 0=0$
Domestic inter-bank deposits	Rs $240 \times 0.20=40$ million
Standby credit letters	Rs $75 \times 0.20=15$ million
Real estate loans (residential)	Rs $370 \times 1.00=370$ million
Commercial loans	Rs $520 \times 1.00=520$ million
Long term loan commitments	Rs $180 \times 1.00=90$ million
Total risk weighted assets	Rs 1,125 million

b. Tier 1 capital $=$ Common stock (par) + Surplus + Undivided profit $=18+22+84=124$ million

Tier 2 capital =Allowance for loan loss + Subordinated debt capital + Intermediate term preferred stock
$=75+40+12=127$ million
c. Tier one ratio $=\frac{\text { Tier one capital }}{\text { Total risk weighted assets }}=\frac{\text { Rs } 124 \text { million }}{\text { Rs } 1,125 \text { miliion }}=0.1102$ or 11.02%

Capital adequacy ratio $=\frac{\text { Total capital }}{\text { Total risk weighted assets }}=\frac{\text { Rs } 124+\text { Rs } 127}{\text { Rs } 1,125}=0.2231$ or 22.31%
The bank appears to have enough Tier 1 and total capital ratio to meet current regulatory requirements, therefore the bank is adequately capitalized.
d. Due to the minimum requirement of capital set by Basel agreement, the bank must hold required capital so selection of assets must be on the basis of minimum requirement.
14. Solution
a. Core capital = Paid up capital + General reserves + Capital adjustment reserve + Undistributed profit $=492+652+100+30=1274$
Supplementary capital $=$ Exchange fluctuation reserve + Loan loss provision $=38+135=173$
Total capital $=$ Core capital + Supplementary capital $=1274+173=1447$
b. Risk weighted assets

Risk weighted assets (on balance sheet)

Assets		Weight	Amount

Total risk weighted assets $=$ On balance sheet + off balance sheet $=8,802.4+2,984=11,786.4$
c. Calculation of Tier I and total capital ratio

Tier one ratio $=\frac{\text { Core capital }}{\text { Total risk weighted assets }}=\frac{1274}{11786.4}=10.81 \%$
Tier one ratio $=\frac{\text { Core capital }+ \text { Supplementary capital }}{\text { Total risk weighted assets }}=\frac{1274+173}{11786.4}=12.28 \%$
The bank have sufficient capital to meet the NRB capital requirements, the tier one capital is higher than 5.5 percent and total capital ratio is also higher than 11 percent.
15. Solution
a. Tier I capital decreases to Rs 400,000 and total capital decreases to Rs $400,000+$ Rs $400,000=R s 800,000$. Cash has a 0 risk weight so risk-weighted assets do not change. Thus, the Tier I ratio decreases to 4 percent and the total capital ratio decreases to 8 percent.
b. The risk weight for mortgages is 50 percent. Thus, risk-weighted assets increase to Rs 10 million + Rs 2 million (0.5) = Rs 11 million. The Tier I ratio decreases to Rs $500,000 /$ Rs 11 million $=4.54$ percent and the total capital ratio decreases to 8.18 percent.
c. T-bills have a 0 risk weight so risk-weighted assets remain unchanged. Thus, both ratios remain unchanged.
d. Tier I equity increases to Rs 1.3 million and total capital increases to Rs 1.7 million. Since the developer has an A-credit rating, the loan's risk weight is 50 percent. Thus, risk-weighted assets increase to Rs 10 million + Rs $800,000(0.5)=$ Rs 10.4 million. The Tier I ratio increases to Rs $1.3 \mathrm{~m} / \mathrm{Rs} 10.4 \mathrm{~m}=12.50$ percent and the total capital ratio increases to 16.35 percent.
e. Tier I capital is unchanged. Total capital increases to Rs 1.9 million. General obligation municipal bonds fall into the 20 percent risk category. So, risk-weighted assets increase to Rs 10 million + Rs 1 million (0.2) = Rs 10.2 million. Thus, the Tier I ratio decreases to Rs 500,000 /Rs 10.2 million $=4.90$ percent and the total capital ratio decreases to 18.63 percent.
f. The mortgage loans were Category $3(50 \%)$ risk weighted. The ATMs are Category $4(100 \%)$ risk weighted. Thus, risk-weighted assets increase to Rs 10 million - Rs 4 million (0.5) + Rs 2 million (1.0) = Rs 12 million. The Tier I capital ratio decreases to Rs $500,000 /$ Rs 12 million $=4.17$ percent and the total capital ratio decreases to 7.50 percent.

CHAPTER -7: INSURNACE COMPANY

1. Solution
a.PVA $=$ PMT \times PVIFAi, $n=$ Rs $14,000 \times$ PVIFA $6 \%, 38=$ Rs $14,000 \times 14.846=$ Rs 207,844.27
b. PVA $=$ PMT \times PVIFAi, $n=$ Rs $14,000 \times$ PVIFA $6 \%, 27=$ Rs $14,000 \times 13.2105=$ Rs 184,947
and $\mathrm{PV}=$ Rs $184,947 /(1+0.06)^{11}=$ Rs 97,428
2. Solution
a. The annual cash flows are given by X :
$\$ 1,000,000=X\left\{\left[1-\left(1 /(1+.10)^{20}\right)\right] / .10\right\} \Rightarrow X=\$ 1,000,000 /(8.51356372)=\$ 117,459.62$
Solving for X , annual cash flows $\mathrm{X}=\$ 117,459.62$.
or using a financial calculator, $\mathrm{N}=20, \mathrm{I}=10, \mathrm{FV}=1,000,000$, then compute $\mathrm{PMT}=\$ 117,459.62$
b. In this case, the first annuity is to be received five years from today. The initial sum today will have to be compounded by
five periods to estimate the annuities: $\$ 1,000,000(1+0.10)^{5}=\mathrm{X}\left\{\left[1-\left(1 /(1+.10)^{20}\right)\right] / .10\right\}$
Solving for X, annual cash flows, $X=\$ 189,169.90$ or using a financial calculator, $\mathrm{N}=20, \mathrm{I}=10, \mathrm{PV}=1,000,000(1+0.10)^{5}$, then compute $\mathrm{PMT}=\$ 117,459.62$
c. The required payment is the present value of $\$ 200,000$ per year for 20 years at 10 percent.
$200,000\left\{\left[1-\left(1 /(1+.10)^{20}\right)\right] / .10\right\}=\$ 1,702,712.74$
or using a financial calculator, $\mathrm{N}=20, \mathrm{I}=10, \mathrm{PMT}=200,000$, then compute $\mathrm{PV}=\$ 1,702,712.74$
3. Solution

You deposit Rs 10,000 annually into a life insurance fund for th2. The value of $\$ 10,000$ deposited nnually in a fund will amount to the following in ten years:
$\mathrm{FV}=10,000\left\{\left[(1+.08)^{10}-1\right] / .08\right\}=\$ 144,865.62$ or using a financial calculator, $\mathrm{N}=10, \mathrm{I}=8, \mathrm{PMT}=10,000$,
then compute FV $=\$ 144,865.62$
The annuities per year over the next twenty years at 8% will be:
$\$ 144,865.62=\mathrm{X}\left\{\left[1-\left(1 /(1+.08)^{20}\right)\right] / .08\right\}$
Solving for X , annual cash flows, $\mathrm{X}=\$ 14,754.88$ or using a financial calculator, $\mathrm{N}=20, \mathrm{I}=8, \mathrm{PV}=144,865.62$, then compute $\mathrm{PMT}=\$ 144,865.62$
4. Solution
a. $\mathrm{FV}=\$ 10,000\left\{\left[(1+.08)^{10}-1\right] / .08\right\}(1+.08)=\$ 10,000(14.48656247)(1+.06)=\$ 156,454.87$ or using a financial calculator, $\mathrm{N}=10, \mathrm{I}=8, \mathrm{PMT}=10,000, \mathrm{BEG}$ mode, then compute $\mathrm{FV}=\$ 156,454.87$ b. In this case, the first annuity is to be received ten years from today. The amount of retirement funds at the end of year ten (the answer to part (a) of $\$ 156,454.87$) will be paid out over twenty years with the first payment to be
$\$ 156,454.87=\mathrm{X}\left\{\left[1-\left(1 /(1+.08)^{20}\right)\right] / .08\right\}(1.08)=>X=\$ 14,754,88$ or using a financial calculator, $\mathrm{N}=20, \mathrm{I}=8, \mathrm{PV}=$ $\$ 156,454.87$, BEG mode, then compute $\mathrm{PMT}=\$ 14,754,88$

c.	Deposit Period	Value at 10 Years		Distributio Period		Annual Payment
	7 percent	\$147,835.99	7 percent	\$13,041.75		
				9 percent		\$14,857.72
9 percent		\$165,602.93	7 percent		\$14,609.11	
		9 percent			\$16,643.32	

5. Solution
a. $20,000\left\{\left[1-\left(1 /(1+.06)^{15}\right)\right] / .06\right\}=\$ 194,244.98$
or using a financial calculator, $\mathrm{N}=15, \mathrm{I}=6, \mathrm{PMT}=20,000$, then compute $\mathrm{PV}=\$ 194,244.98$
b. $20,000\left\{\left[1-\left(1 /(1+.06)^{20}\right)\right] / .06\right\}=\$ 229,398.42$
or using a financial calculator, $\mathrm{N}=20, \mathrm{I}=6, \mathrm{PMT}=20,000$, then compute $\mathrm{PV}=\$ 229,398.42$
c. For 15 years, the lump sum is $\$ 194,244.98 \times(1.06)=\$ 205,899.68$. For 20 years, the lump sum is $\$ 229,398.42 \times(1.06)=$ \$243,162.33.
6. Solution
a. No, because the combined ratio is $73 \%+12.5 \%+18 \%=103.5 \%$.
b. Yes, because the combined ratio adjusted for investment yield is $103.5 \%-8 \%=95.5 \%$.
7. Solution

Combined ratio $=77.5 \%+12.9 \%+16.0 \%=106.40 \%$.
In order to be profitable, the yields on investments have to be greater than 6.40%.
8. Solution

Pure loss $=\$ 3.6$ million $-\$ 1.96$ million $=\$ 1.64$ million
Expenses $=0.066 \times \$ 3,600,000=\$ 237,600$
Dividends $=0.012 \times \$ 3,600,000=\$ 43,200$
Investment returns $=\$ 170,000$
Net profits $=1,640,000-237,600-43,200+170,000=\$ 1,529,200$
9. Solution
a. The combined ratio (after dividends) $=75.5 \%+29.2 \%+1.5 \%=106.2 \%$
b. The operating ratio $=$ Combined ratio after dividends - investment yield
= 106.2 - 9.5 = 96.7%
c. The operating ratio being less than 100 suggests that Coverall is profitable. Note that, with insufficient investment income, they would be unprofitable on the basis of their premiums and losses - this is reflected in their combined ratio after dividends exceeding 100.
10. Solution

Loss ratio $=\$ 4,343,750 / \$ 6,250,000=69.5 \%$
Expense ratio $=\$ 1,593,750 / \$ 6,250,000=25.5 \%$
Dividend ratio $=\$ 156,250 / \$ 6,250,000=2.5 \%$
Combined ratio $=69.5 \%+25.5 \%+2.5 \%=97.5 \%$
Investment ratio $=\$ 218,750 / \$ 6,250,000=3.5 \%$
Operating ratio $=97.5 \%-3.5 \%=94.0 \%$
Overall profitability $=100.0 \%-94.0 \%=6.0 \%$

CHAPTER -8: SECURITIES FIRMS, INVESTMENT BANKS AND MUTUAL FUNDS

1. Solution

Here given:
Price paid to company $=$ Rs 23.50 ; Number of shares $(N)=3,000,000$; Selling price to the public $=$ Rs 25 ; Money
received by $\mathrm{KDO}=$?
We have,
Money received by KDO = Number of shares \times Price paid by investment banker $=3,000,000 \times$ Rs $23.50=$ Rs 70,500,000
Money received by investment banker $\quad=$ Number of shares \times Selling price to the public
$=3,000,000 \times$ Rs $25=$ Rs 75,000,000
Investment banker's profit $\quad=$ Money received - Money paid
$=$ Rs 75,000,000 - Rs 70,500,000
$=$ Rs 4,500,000
Therefore the investment banker's profit is Rs 4,500,000. From the perspective of KDO, the Rs $4,500,000$ represents the commission that it must pay to issue the stock.
2. Solution

Here given:
Price paid by investment banker $=$ Rs 33.50 ; Number of shares $=4$ million; Selling price to the public $=$ Rs 32 per share; Money received by GM = ?
We have,
Money received by GM = Number of shares \times Price paid by investment banker $=4,000,000 \times$ Rs 33.50
= Rs 134,000,000
Profit to the investment bank $=$ Number of shares \times (Selling price to the public - Price paid by investment banker)
$=4,000,000 \times($ Rs $32-$ Rs 33.50 $)=-$ Rs $6,000,000$
The stock price of GM is Rs 32.00 since that is what the public must pay. From the perspective of the investment bank, the Rs $6,000,000$ represents the loss that it must incur on the firm commitment offering.
3. Solution

Here given:
Number of shares issued $(N)=5,000,000$; Investment bank sells $=4,200,000$ shares; Selling price $=$ Rs 54 ;
Commission = Rs 1.25 per share; Money received by MEP = ? Investment bank's profit = ?; Stock price of MEP = ?

We have,
Money received by MEP $=$ Number of shares sold \times (Selling price - commission per share)

$$
=4,200,000 \times(\operatorname{Rs} 54-\operatorname{Rs} 1.25)
$$

= Rs 221,550,000

Investment bank's profit $=$ Number of shares sold \times Commission per share
$=4,200,000 \times$ Rs 1.25
$=$ Rs 5,250,000
Therefore investment bank's profit is Rs $5,250,000$, and the stock price is Rs 54 per share since that is what the public pays.
4. Solution

Here given:
Number of shares $=10$ million; Method of selling $=$ Best efforts basis; Number of shares sold $(\mathrm{N})=8.4$ million; Selling price $=$ Rs 27 per share; Commission $=$ Rs 0.675 per share; Money received by XYZ company $=$?; Profit to the investment bank = ?; Stock price of $\mathrm{XYZ}=$?
We have,
Gross money received by XYZ $=$ Number of shares sold \times Selling price
$=8,400,000 \times$ Rs 27
$=$ Rs 226,800,000
Net amount received by XYZ = Number of shares sold \times (Selling price - commission per share)
$=8,400,000 \times($ Rs $27-$ Rs 0.675$)$
$=$ Rs 221,130,000
Investment bank's profit $=$ Number of shares sold \times Commission per share

$$
=8,400,000 \times \operatorname{Rs} 0.675
$$

$$
=\text { Rs 5,670,000 }
$$

Therefore investment bank's profit is Rs $5,670,000$, and the stock price is Rs 27 per share since that is what the public pays.
5. Solution

Here given:
Underwrite amount = Rs 500 million, 10 year, 8% semiannual bond of KDO corporation
Required rate of return $\left(k_{d}\right)=8 \%$
Method of selling $=$ Commitment basis
Investment bank pays KDO on Thursday and plan to sale to public on Friday
Interest rate rise $=$ by 0.05% or 5 basis point
Impact on the profits of the investment bank =?
If the market rates increase by 5 basis points i.e. $\mathrm{k}_{\mathrm{d}}=8 \%+0.05 \%=8.05 \%$
$\mathrm{V}_{0} \quad=\mathrm{I} / 2 \times\left[\frac{1-\frac{1}{\left(1+\mathrm{k}_{\mathrm{d}} / 2\right)^{2 \mathrm{n}}}}{\mathrm{k}_{\mathrm{d}} / 2}\right]+\frac{\mathrm{M}}{\left(1+\mathrm{k}_{\mathrm{d}} / 2\right)^{2 \mathrm{n}}}$

$$
=\operatorname{Rs} 40,000,000 / 2 \times\left[\frac{1-\frac{1}{(1+0.0805 / 2)^{2 \times 10}}}{0.0805 / 2}\right]+\frac{\text { Rs } 500,000,000}{(1+0.0805 / 2)^{2 \times 10}}
$$

$$
=\operatorname{Rs} 20,000,000 \times\left[\frac{1-\frac{1}{(1+0.04025)^{20}}}{0.04025}\right]+\frac{\text { Rs } 500,000,000}{(1+0.04025)^{20}}
$$

$$
=\text { Rs } 20,000,000 \times 13.5603+\text { Rs } 227,099,153.3
$$

$$
=\text { Rs } 271,206,000+\text { Rs } 227,099,153.3
$$

$$
=\operatorname{Rs} 498,305,153.3
$$

Loss $=$ Rs 498,305,153.3 - Rs 500,000,000 $=$ Rs $1,694,846.7$
An increase in interest rates will cause the value of the bonds to fall. If rates increase 5 basis points over night, the bonds will lose Rs $1,695,036.30$ in value. The investment bank will absorb the decrease in market value, since the issuing firm has already received its payment for the bonds.
If the market rates decrease by 5 basis points i.e. $\mathrm{kd}=8-0.05 \%=7.95 \%$

$$
\begin{aligned}
& \mathrm{V}_{0} \quad=\mathrm{I} / 2 \times\left[\frac{1-\frac{1}{\left(1+\mathrm{k}_{\mathrm{d}} / 2\right)^{2 \mathrm{n}}}}{\mathrm{k}_{\mathrm{d}} 2}\right]+\frac{\mathrm{M}}{\left(1+\mathrm{k}_{\mathrm{d}} / 2\right)^{2 \mathrm{n}}} \\
& =\text { Rs } 40,000,000 / 2 \times\left[\frac{1-\frac{1}{(1+0.0795 / 2)^{2 \times 10}}}{0.0795 / 2}\right]+\frac{\text { Rs } 500,000,000}{(1+0.0795 / 2)^{2 \times 10}} \\
& =\operatorname{Rs} 20,000,000 \times\left[\frac{1-\frac{1}{(1+0.03975)^{20}}}{0.03975}\right]+\frac{\text { Rs } 500,000,000}{(1+0.03975)^{20}} \\
& =\text { Rs } 20,000,000 \times 13.6205+\text { Rs } 229,293,331.10 \\
& \text { = Rs } 272,410,000+\text { Rs 229,293,331.10 } \\
& =\text { Rs 501,703,331.1 } \\
& \text { Gain }=\text { Rs 501,703,331.1 }- \text { Rs 500,000,000 = Rs 1,703,331.1 }
\end{aligned}
$$

6. Solution

Here given: Net asset value of fund at beginning $\left(\mathrm{NAV}_{0}\right)=$ Rs 50 ; Dividend $\left(\mathrm{D}_{1}\right)=$ Rs 1.50; Capital gain $\left(\mathrm{CG}_{1}\right)=$ Rs 2; Fee $=$ Rs 2 at sold; Ending NAV $\left(\mathrm{NAV}_{1}\right)=$ Rs 52.50 ; Ending NAV after fee $\left(\mathrm{NAV}_{1}\right)=$ Rs $52.50-$ Rs $2=$ Rs 50.50 Rate of return $=$?
Rate of return =
We have,
Rate of return $=\frac{\left(\mathrm{NAV}_{1}-\mathrm{NAV}_{0}\right)+\mathrm{CG}_{1}+\mathrm{D}_{1}}{\mathrm{NAV}_{0}}=\frac{(\text { Rs. } 50.50-\text { Rs. } 50)+\text { Rs. } 1.50+\text { Rs } 2}{\text { Rs. } 50}=0.08$ or 8%
Therefore, the rate of return to an investor in the fund during the year is 8%.
7. Solution
a. $\mathrm{NAV}_{\text {open-end, }} \mathrm{A}=(165 \times \$ 25+50 \times \$ 45) / 1,000=\$ 6.375$

NAV $_{\text {closed-end, }}$ B $=(75 \times \$ 25+100 \times \$ 45) / 1,000=\$ 6.375$
b. $\mathrm{NAV}_{\text {open-end, }} \mathrm{A}=((165+165) \times \$ 25+50 \times \$ 45) /(1,000+647)=\$ 6.375$

Percentage change in NAV $=\$ 6.375-\$ 6.375) / \$ 6.375=0.00 \%$
c. $\mathrm{NAV}_{\text {open-end }, \mathrm{A}}=(165 \times \$ 26.25+50 \times \$ 43.375) / 1,000=\$ 6.50$

Percentage change in NAV $=(\$ 6.50-\$ 6.375) / \$ 6.375=1.96 \%$
NAV ${ }_{\text {closed-end, },}=(75 \times \$ 26.25+100 \times \$ 43.375) / 100=\$ 6.30625$
Percentage change in NAV $=(\$ 6.30625-\$ 6.375) / \$ 6.375=-1.08 \%$
Thus, the changes in prices lead to different effects. Fund A saw its NAV increase while Fund B saw it decline. The reason is Fund B had more shares that had a price decline than a price increase.
8. Solution
a. $\mathrm{NAV}=(400 \times$ Rs $16+400 \times$ Rs 28$) / 1,000=$ Rs $17,600 / 1,000=$ Rs 17.60
b. Expected NAV $=(400 \times$ Rs $20+400 \times$ Rs 20$) / 100=$ Rs $16,000 / 100=$ Rs 16.00 , or a decline of 9.09 percent
c. $(400 \times$ Rs 20$) / 1,000+(400 \times P M) / 1,000=$ Rs 17.60 . Solving for P, we get Rs 24 . The maximum decline is Rs 2 .
9. Solution

Here given: Net asset value of fund at beginning $\left(\mathrm{NAV}_{0}\right)=$ Rs 100; Dividend $\left(\mathrm{D}_{1}\right)=$ Rs 3; Capital gain $\left(\mathrm{CG}_{1}\right)=$ Rs 4; Fee $=$ Rs 2 at sold; Ending NAV $\left(\mathrm{NAV}_{1}\right)=$ Rs 105; Ending NAV after fee $\left(\mathrm{NAV}_{1}\right)=$ Rs $105-$ Rs $2=$ Rs 103, Rate of return $=$?
Rate of return $=$
We have,
Rate of return $=\frac{\left(\mathrm{NAV}_{1}-\mathrm{NAV}_{0}\right)+\mathrm{CG}_{1}+\mathrm{D}_{1}}{\mathrm{NAV}_{0}}=\frac{(\text { Rs. } 103-\text { Rs. } 100)+\text { Rs. } 3+\text { Rs } 4}{\text { Rs. } 100}=0.10$ or 10%
Therefore, the rate of return to an investor in the fund during the year is 10%.
10. Solution

Here given:
Total assets $=100 \times$ Rs. $14+200 \times$ Rs. $140=$ Rs. 29,400
Number of shares $=100$ shares
a. NAV of the fund $=$?

We have, Net asset value $($ NAV $)=\frac{\text { Assets-Liabilities }}{\text { Number of shares }}=\frac{\text { Rs. } 29,400-\text { Rs. } 0}{100}=$ Rs. 294 per share
b. NAV of the fund at the end of year = ?

We have,
Net asset value $($ NAV $)=\frac{\text { Assets }- \text { Liabilities }}{\text { Number of shares }}=\frac{\text { Rs. } 23,800-\text { Rs. } 0}{100}=$ Rs. 238 per share
Working notes
Total assets $\quad=100 \times$ Rs. $18+200 \times$ Rs. $110=$ Rs. 23,800
c. Price of Microsoft = ?

We have,
Net asset value (NAV)

$=$	$\frac{\text { Assets-Liabilities }}{\text { Number of shares }}$
	$=\frac{[(100 \times \text { Rs. } 18)+(200 \times x)]-0}{100}$
	$=$ Rs. $1,800+200 x$
	$=\frac{\text { Rs. } 27,600}{200}$
$=$	Rs. 138

$\therefore x \quad=$ Rs. 138
Therefore, the price of Microsoft Company decline to Rs. 138 i.e. decrease by Rs. 2.
11. Solution

Here given:

Open end Fund A		Closed end Fund B	
Number of shares purchase of ATT	100	Number of shares purchase of ATT	75
Price of ATT	Rs. 100	Price of ATT	Rs. 100
Number of shares purchase of Toro	50	Number of shares purchase of Toro	100
Price of Toro	Rs. 50	Price of Toro	Rs. 50
Number of shares outstanding	100	Number of shares outstanding	100

a. NAV for each fund = ?

We have,
Net asset value (NAV) $=\frac{\text { Assets-Liabilities }}{\text { Number of shares }}$
For fund A: NAV $=\frac{\text { Rs. } 125,00-\text { Rs. } 0}{100}=$ Rs. 125 per share
Total assets $\quad=100 \times$ Rs. $100+50 \times$ Rs. $50=$ Rs. 125,00
Number of shares $=100$ shares
Liabilities $=0$
For fund B: $\mathrm{NAV}=\frac{\text { Rs. } 125,00-\text { Rs. } 0}{100}=$ Rs. 125 per share
Total assets $\quad=75 \times$ Rs. $100+100 \times$ Rs. $50=$ Rs. 125,00
Number of shares $=100$ shares
Liabilities $=0$
b. NAV for each fund $=$? if price of ATT stock has increased to Rs. 105 and price of Toro stock has decreased to Rs. 45
We have,
Net asset value (NAV) $=\frac{\text { Assets-Liabilities }}{\text { Number of shares }}$
For fund A: NAV $=\frac{\text { Rs. } 12,750-\text { Rs. } 0}{100}=$ Rs. 127.5 per share
Total assets $\quad=100 \times$ Rs. $105+50 \times$ Rs. $45=$ Rs. 12,750
Number of shares $=100$ shares
Liabilities $\quad=0$

```
For fund B: NAV \(=\frac{\text { Rs. } 12,375-\text { Rs. } 0}{100}=\) Rs. 123.75 per share
Total assets \(=75 \times\) Rs. \(105+100 \times\) Rs. \(45=\) Rs. 12,375
Number of shares \(=100\) shares
Liabilities \(=0\)
Rate of return = ?
We have, Rate of return \(=\frac{N A V_{t+1}-N A V_{t}}{N A V_{t}}\)
For fund A: Rate of return \(=\frac{\text { Rs. } 127.5-\text { Rs. } 125}{\text { Rs. } 125}=0.02\) Or, \(2 \%\)
For fund B: Rate of return \(=\frac{\text { Rs. } 123.75-\text { Rs. } 125}{\text { Rs. } 125}=-0.01\) Or, \(-1 \%\)
c. Net asset value for fund A
We have,
Net asset value \((\) NAV \()=\frac{\text { Assets-Liabilities }}{\text { Number of shares }}=\frac{\text { Rs. } 225,00-\text { Rs. } 0}{100}=\) Rs. 225 per share
Total assets \(\quad=200 \times\) Rs. \(100+50 \times\) Rs. \(50=\) Rs. 225,00
Number of shares \(=100\) shares
Liabilities \(\quad=0\)
```

12. Solution
a. Net asset value

We have,
NAV $=\frac{\text { Total assets }- \text { Liabilities }}{\text { Number of shares outstanding }}=\frac{\text { Rs.1,654,994,445 }- \text { Rs.17,628,104.13 }}{50,000,000}=$ Rs. 32.7473 per share
Working notes:
Total assets $\quad=$ Investment in listed securities + Public issue/right share/bonus share + Bank balance + Other assets
$=1,362,379,421.94+48,462,374.63+217,462,443.51+26,690,205.05$
= 1,654,994,445
Total liabilities = Current liabilities + Fund manager and depository fee + Fund supervisor fee

$$
=1,283,728.21+15,010,141.16+1,334,234.76
$$

$$
=\operatorname{Rs} 17,628,104.13
$$

b. Buy the shares because shares are under priced.
c. NAV is the total asset value (net of expenses) per unit of the fund and is calculated by the Asset Management Company (AMC) at the end of every business day. Net asset value on a particular date reflects the realisable value that the investor will get for each unit that he is holding if the scheme is liquidated on that date.
d. This is closed end fund because this fund is trading at NEPSE.
e. Closed-end funds have a fixed number of shares outstanding. The share price is a function of supply and demand. Since closed-end funds issue a fixed number of shares at one time, which thereafter trade freely on the market among investors, depending on investor demand, a fund's share price may fall below or rise above its NAV.
13. Solution

Here given:
Investment $=$ Rs 20,000; investment period $(n)=2$ years; Load fee $=2.5 \%$; Operating expense $=0.55 \%$; fund rate of return $(\mathrm{r})=7 \%$; Annual rate of return on the fund over 2 year period $=$?
We have,
Investment after load fee adjustment = Rs 20,000 ($1-0.025$) = Rs 19,500
Investment value after one year $=$ Rs 19,500 $(1+0.07)=$ Rs 20,865

```
Average net asset value \(=\frac{\text { Rs. } 20,865+\text { Rs 19,500 }}{2}=\) Rs 20,182.50
Operating expense ( \(12 \mathrm{~b}-1\) fees) \(=0.55 \%\) of Rs \(20,182.50=0.0055 \times\) Rs \(20,182.50=\) Rs \(111.00375 \approx\) Rs 111.00
    Value of investment after 1 year \(=\) Rs \(20,865-\) Rs \(111=\) Rs 20,754
    Again,
    Value of investment at the end of two years = Rs 20,754 ( \(1+0.07\) ) = Rs 22,206.78
    Again,
    Average net asset value \(=\frac{\text { Rs. } 22,206.78+\text { Rs } 20,754}{2}=\) Rs \(21,480.39\)
    Operating expense \(=0.0055 \times\) Rs \(21,480.39=\) Rs 118.14
    Value of investment at the end of 2 years = Rs 22,206.78-Rs \(118.14=\) Rs 22,088.64
    Now, calculate annual rate of return for 2 year investment period
    We have,
    \(\mathrm{FV}=\mathrm{PV}(1+\mathrm{i})^{\mathrm{n}}\)
    Or, Rs \(22,088.64=\) Rs \(20,000(1+i)^{n}\)
    Or, Rs \(1.1044=(1+i)^{2}\)
    Or, \(1.0509=1+\mathrm{i}\)
Or, i. \(=1.0509-1=0.0509\) Or, \(5.09 \%\)
```

14. Solution

Here given:
Investment $=$ Rs 10,000 ; investment period $(n)=2$ years; load fee $=4 \%$; Operating expense $=0.85 \%$; fund rate of return $(r)=5 \%$; Annual rate of return on the fund over 2 year period $=$?
We have,
Investment after load fee adjustment = Rs 10,000 (1-0.04) = Rs 9,600
Investment value after one year $=$ Rs $9,600(1+0.05)=$ Rs 10,080
Average net asset value $=\frac{\text { Rs. } 10,080+\text { Rs } 9,600}{2}=$ Rs 9,840
Operating expense ($12 \mathrm{~b}-1$ fees) $=0.85 \%$ of Rs $9,840=0.0085 \times$ Rs $9,840=$ Rs 83.64
Value of investment after 1 year $=$ Rs 10,080 - Rs $83.64=$ Rs 9,996.36
The investor's return on the mutual fund investment after one year is
Rate of return $=\frac{(\text { Rs. } 9,996.30-\text { Rs 10,000 })}{\text { Rs } 10,000}=-0.0004$ or, -0.004%
Again,
Value of investment at the end of two years = Rs 9,996.36 ($1+0.05$) = Rs 10,496.178
Again,
Average net asset value $=\frac{\text { Rs. } 10,496.178+\text { Rs } 9,996.36}{2}=$ Rs 10,246.269
Operating expense $=0.0085 \times$ Rs $10,246.269=$ Rs 87.0933
Value of investment at the end of 2 years $=$ Rs $10,496.178$ - Rs $87.0933=$ Rs 10,409.0847
Now, calculate annual rate of return for 2 year investment period
We have,
FV $=P V(1+i)^{n}$
Or, Rs 10,409.0847 = Rs 10,000 $(1+\mathrm{i})^{\mathrm{n}}$
Or, Rs $1.0409=(1+i)^{2}$
Or, $1.0202=1+\mathrm{i}$
Or, i. $=1.0202-1=0.0202$ Or, 2.02%
Therefore, the investor's annual return on the mutual fund is 2.02 percent.

CHAPTER 9: PENSION FUNDS

NUMERICAL PROBLEMS

1. Solution

Annual benefit = Rs. 2,500 per year; Annual benefit payment $=$?
(i) Annual benefit payment = Annual benefit \times Years of service $=$ Rs. $2,500 \times 25=$ Rs. 62,500
(ii) Annual benefit payment = Annual benefit \times Years of service $=$ Rs. $2,500 \times 28=$ Rs. 70,000
(ii) Annual benefit payment = Annual benefit \times Years of service $=$ Rs. $2,500 \times 30=$ Rs. 75,000
2. Solution

We have,
Annual pension $=$ Career average salary \times years worked \times annual retirement payout
For 30 years worked: Annual pension $=60,000 \times 30 \times 0.05=$ Rs 90,000
For 33 years worked:Annual pension $=62,500 \times 33 \times 0.05=$ Rs 103,125
For 35 years worked:Annual pension $=65,000 \times 35 \times 0.05=$ Rs 113,750
3. Solution

We have,
Annual pension $=$ Career average salary \times years worked \times annual retirement payout
For 20 years worked:Annual pension $=50,000 \times 20 \times 0.05=$ Rs 50,000
In 2 years Annual pension $=51,005 \times 22 \times 0.05=$ Rs $56,105.5$
In 5 years Annual pension $=52,551 \times 25 \times 0.05=$ Rs $65,688.75$
In 8 years Annual pension $=54,143 \times 28 \times 0.05=$ Rs $75,800.2$
In 10 years Annual pension $=55,231 \times 30 \times 0.05=$ Rs $82,846.5$
4. Solution

Final pay formula
Pension $=$ Average salary \times years worked \times annual payout
Now: Pension $=\$ 50,000 \times 20 \times 0.04=$ Rs 40,000
In 2 years: Pension $=\$ 51,005 \times 22 \times 0.04=$ Rs 44.884
In 5 years: Pension $=52,551 \times 25 \times 0.04=$ Rs 60,640
In 10 years; Pension $=55,231 \times 30 \times 0.04=$ Rs 66,277
5. Solution

Annual pension $=$ Career average salary \times years worked \times annual retirement payout $=(4,000 \times 12) \times 30 \times 0.04=$ Rs 57,600
b. (i) Annual pension $=$ [Career average salary + flat benefit $] \times$ years worked \times annual retirement payout
$=[(4,000 \times 12)+2,000] \times 35 \times 0.04=$ Rs 70,000
(ii) Annual pension $==[(4,000 \times 12)+2,000] \times 40 \times 0.04=$ Rs 80,000
6. Solution
a. Final pay formula

Pension $=$ Average salary \times years worked \times annual payout
For 17 years: Pension $=\$ 40,000 \times 17 \times 0.03=\$ 20,400$
For 20 years : Pension $=\$ 47,000 \times 20 \times 0.03=\$ 28,200$
For 22 years : Pension $=\$ 50,000 \times 22 \times 0.03=\$ 33,000$
b. Flat benefit $=\$ 3,000$

For 17 years : Pension $=(\$ 40,000+\$ 3,000) \times 17 \times 0.03=\$ 22,950$
For 20 years : Pension $=(\$ 47,000+\$ 3,000) \times 20 \times 0.03=\$ 30,000$
For 22 years : Pension $=(\$ 50,000+\$ 3,000) \times 22 \times 0.03=\$ 34,980$
7. Solution
a. Annual pension benefit using flat benefit formula

We have,
Retirement benefit = Annual benefit \times Years of service $=$ Rs $1,000 \times 33=$ Rs 33,000
b. Annual pension benefit using carrier average formula

We have
Retirement benefit =Annual benefit payout \times Career average salary \times Years worked
$=0.038 \times$ Rs $25,600 \times 33=$ Rs 32,102.4
c. Annual pension benefit using final pay formula

Retirement benefit = Annual benefit payout \times Last four years average salary \times Years worked $=0.023 \times \operatorname{Rs} 43,500 \times 33=$ Rs $33,016.50$
Working notes:
Last four years average salary $=\frac{\operatorname{Rs} 41,200+\operatorname{Rs} 43,800+\operatorname{Rs} 45,500}{3}=\operatorname{Rs} 43,500$
8. Solution
a. Your annual investment is

Employee's contribution $=$ Rs $60,000 \times 12=\quad$ Rs 7,200
Tax Savings $=$ Rs $7,200 \times 31=$
Rs 2,232

Employee's cost
Rs 4,968
Employer's match $=$ Rs $60,000 \times 0.50 \times 0.05=\quad$ Rs 1,500
Total 401(k) investment at year start Rs 8,700
Your one-year return is
1 -year earnings $=$ Rs $8,700 \times 0.10=\quad \underline{\text { Rs } 870}$

Total 401(k) investment at year-end Rs 9,570
Employee $=$ s 1-year return $=($ Rs $9,570-$ Rs 4,968$) /$ Rs $4,968=92.63 \%$
b. Assuming the employee $=$ s salary, tax rate, and $401(\mathrm{k})$ yield remains constant over a 25 -year career, when the employee retires the $401(\mathrm{k})$ will be worth
Value of fund $=$ Rs $8,700 \times$ FVIFA $_{10 \%, 25}=$ Rs $8,700 \times 98.3471=$ Rs $855,619.77$
9. Solution

Option 1:
FV $\quad=12,000 \times 0.60 \times$ FVIFA $_{10,30}+12,000 \times 0.40 \times$ FVIFA $_{6,30}$
$=7,200 \times 164.4940+4,800 \times 79.0582$
= Rs 1,563,836.16
Option 2:
FV $\quad=12,000 \times 0.50 \times$ FVIFA $_{10,30}+12,000 \times 0.30 \times$ FVIFA $_{6,30}+12,000 \times 0.20 \times$ FVIFA $_{4,30}$
$=6,000 \times 164.4940+3,600 \times 79.0582+2,400 \times 56.0849$
$=$ Rs 1,406,177.28
Option 3:
FV $\quad=12,000 \times 0.40 \times$ FVIFA $_{10,30}+12,000 \times 0.50 \times$ FVIFA $_{6,30}+12,000 \times 0.10 \times$ FVIFA $_{4,30}$
$=4,800 \times 164.4940+6,000 \times 79.0582+1,200 \times 56.0849$
= Rs 1,331,222.28
Option 1 produces large terminal value because it includes the largest investment in equities.
10. Solution
a. Gross contribution $=$ Rs $75,000 \times 0.10=$ Rs 7,500
b. Tax savings $=$ Rs $7,500 \times 0.31=$ Rs 2,325
c. Net of tax contribution = Rs 7,500 - Rs $2,325=$ Rs 5,175
d. Employer's contribution $=$ Rs $75,000 \times 0.40 \times 0.06=$ Rs 1,800
e. Total investment at start $=7,500+1,800=9,300$
f. Total investment at end $=7,500+1,800+744$ (i.e. $9,300 \times 0.08$) $=$ Rs 10,044
g. One year earnings $=$ Rs $9,300 \times 0.08=$ Rs 744
h. One year return $=(10,044-5,175) / 5,175=0.9409 \mathrm{Or}, 94.09 \%$
i. Value of contribution $=9,300 \times$ FVIFA $_{8,20}=$ Rs 425,586

Employee's net of tax contribution $=$ Rs $5,175 \times 20=$ Rs 103,500
11. Solution
a. Monthly pension benefit for civil servant Pension $=\frac{20 \times \text { Rs 30,000 }}{50}=$ Rs 12,000
b. Monthly pension benefit for a professor Pension $=\frac{20 \times \text { Rs } 30,000}{50}=$ Rs 12,000
c. Monthly pension benefit for Lt. Colonel Pension $=\frac{20 \times \text { Rs } 30,000}{50}=$ Rs 12,000
d. Monthly pension benefit for SP: Pension $=\frac{20 \times \text { Rs 30,000 }}{50}=$ Rs 12,000
12. Solution

Here given:
Annual payment $($ PMT $)=$ Rs. 15,000; Number of years $(n)=10$ years
a. Deposit made at the beginning of the year, interest rate $(\mathrm{k})=10 \%$; Value of retirement fund at the end of 10 years $\left(\mathrm{FVA}_{\text {DUE }}\right)=$?
We have,
$\mathrm{FVA}_{\text {DUE }}=\mathrm{PMT} \times \mathrm{FVIFA}_{k, n} \times(1+\mathrm{k})=$ Rs. $15,000 \times$ FVIFA $_{10 \%, 10} \times(1+\mathrm{k})=$ Rs. $15,000 \times 15.9374 \times(1+0.10)$
$=$ Rs. 262,967.10
b. Here given:

PVA = Rs. 262,967.10; Number of years (n) = 20 years; Interest rate $(\mathrm{k})=10 \%$
We have,
PVA $=$ PMT \times PVIFAk, $n \times(1+k)$
Or, Rs. $262,967.10=$ PMT \times PVIFA $_{10 \%} \% 20 \times(1+0.10)$
Or, Rs. $262,967.10=$ PMT $\times 8.5136 \times 1.10$
Or, Rs. $262,967.10=$ PMT $\times 9.3650$
$\therefore \mathrm{PMT}=$ Rs. $262,967.10 / 9.3650=$ Rs. $28,079.7758$
c. If the interest rate is higher then the pension benefit also higher and vice versa.
13. Solution

Given,
Contribution by company $=$ Rs 5,000 per year; contribution by herself $=$ Rs 1,000 per year; Total contribution $=$ Rs 6,000 per year;
Contribution year $(\mathrm{n})=10$ years; Annual rate of return $(\mathrm{r})=7 \%$;
Future value of this year's contribution in 10 years
$\mathrm{FV}_{10}=$ Rs $6,000(1+0.07)^{10}=$ Rs $6,000 \times 1.9672=$ Rs $11,803.2$
Calculation of total funds available at retirement
We have,
Total funds available at retirement
$=$ PMT \times FVIFA $_{r, n} \times(1+r)=$ Rs $6,000 \times$ FVIFA $_{7 \%, 10} \times(1+0.07)=$ Rs $6,000 \times 13.8164 \times 1.07=$ Rs $88,701.288$
Calculation of expected annual retirement income
We have,
Expected annual retirement income

$$
=\text { Annual annuity rate } \times \text { Total funds available to employee at retirement } \times \text { Vesting ratio }
$$

$=0.06 \times$ Rs $88,701.288 \times 1.0=$ Rs 5,322.08
14. Solution

Accumulated savings at retirement $=$ Rs 205,800; Vesting ratio $=80 \%$ or 0.80 ; Annual annuity rate $=3.5 \%$; Annual expected retirement income $=$?
We have,
Expected annual retirement income
$=$ Annual annuity rate \times Total funds available to employee at retirement \times Vesting ratio
$=0.035 \times$ Rs $205,800 \times 0.80=$ Rs 5,762.40
15. Solution

Current fund assets $=[\$ 12$ million $\times \operatorname{PVIFA}(5.75 \%, 15 \mathrm{yrs})]+[\$ 22$ million \times PVIFA $(5.75 \%, 10 \mathrm{yrs}) \times$ PVIF $(5.75 \%$, $15 \mathrm{yrs})]=\$ 189,311,572$
16. Solution

Future value $=6,400 \times$ FVIFA $_{8.50,20}=6,400 \times 48.3770=$ Rs 309,612.80
Working notes: Total amount received $=(4,500+1,900)=6,400$ per year
Employee's contribution $=$ Rs 75,000 $\times 0.06=$ Rs 4,500
17. Solution

FV $\quad=11,000 \times 0.65 \times$ FVIFA $_{10,30}+11,000 \times 0.30 \times$ FVIFA $_{5,30}+11,000 \times 0.05 \times$ FVIFA $_{3,30}$

```
= 117,613.21 + 21924.80 +2616.65
= Rs 142,154.66
```

18. Solution

Rs 1,200,000 $=$ PMT \times FVIFA 9,25
Or PMT = 14,167.50
and $\mathrm{PMT}=14,167.50 \times(1-0.04)=$ Rs $13,600.80$
19. Solution

Gross contribution $=$ Rs $90,000 \times 0.09=$ Rs 8,100
Tax savings $=$ Rs $8,100 \times 0.28=$ Rs 2,268
Net of tax contribution $=$ Rs $8,100-$ Rs $2,268=$ Rs 5,832
Employer's contribution $=$ Rs $90,000 \times 0.40 \times 0.06=$ Rs 2,160
Total investment at start $=8,100+2,160=10,260$
Total investment at end $=8,100+2,160+1,026$ (i.e. $10,260 \times 0.10$) $=$ Rs 11,286
One year return $=(11,286-5,832) / 5,832=0.9352$ Or, 93.52%
20. Solution

PVA = Rs 15,000,000 \times PVIFA5.5, $15=$ Rs 25,000,000 $\times 10.0376=$ Rs 250,940,000
21. Solution

We have,
Flat benefit formula $=$ Career average formula
Or, $4000 \times 40=$ Pension benefit $\times 0.0350 \times 40$
Or, Pension benefit $=$ Rs 114,285.7143

