
By: Abhimanu Yadav

1

 Introduction of Database

Data:
Data is commonly defined as raw facts or observation, typically about physical phenomena or

business transactions. For example of data would be the marks obtained by students in

different subjects. Data can be in any form-numerical, textual, graphical, image, sound, video

etc.

 The following figure shows the hierarchy of data storage.

 Fig:- Data storage hierarchy

Information:
Information is defined as refined or processed data that has been transformed into

meaningful and useful form for specific users. For example, after processing the marks

obtained by student it transformed into information, which is meaningful and from which

we can decide which student stood first, second and so forth. Information comes from data

and takes the form of table, graphs, diagrams etc.

 Bit

 Character

 Field

 Record

 File

 Database

 U Unit 1

 Purpose of database system

 View of data

 Database languages

 Transaction management

 Database administrator

 System structure

By: Abhimanu Yadav

2

Database:
A database is an organized collection of data and contains information relevant to an

enterprise. The database is also called the repository or container for a collection of data files.

For example, university database for maintaining information about students, courses and

grades in university.

Characteristics of data in database:
The data in a database should have the following features:

 Shared: Data should be sharable among different users and applications.

 Persistence: Data should exist permanently in the database. Changes in the database

must not be lost because of any failure.

 Validity/Integrity/Correctness: It should maintain the integrity so that there is always

correct data in the database.

 Security: Data should be protected from unauthorized access.

 Non-redundancy: Data should not be repeated.

 Consistency: A consistent state of the database satisfies all the constraints specified in

the database. Data in a database is consistent if any changes in the database take the

database from one consistent state to another.

 Independence: The three levels in the schema should be independent of each other so

that the changes in the schema in one level should not affect the other levels.

Database Management System:
A Database Management System (DBMS) is a collection of interrelated data and the set of

programs to access those data. The primary goal of a DBMS is to provide a way to store and

retrieve database information that is both convenient and efficient.

For example, in a computer system, the checking account processing system, the auto loan

system and the saving accounts would have a common database. This database based

approach to data processing is shown in fig below:

 Fig: Database approach to data processing

Ss Organizational

database

Database Management

system (DBMS)

 A Checking Account

Program

 A Auto Loan Program

 F Saving Account

Program

By: Abhimanu Yadav

3

Objective of DBMS

The DBMS is able

 To provide large space or storage for relevant data.

 To provide easy access to the data for the users.

 To provide quick response to user request for any data.

 To remove duplicate (redundant) data.

 To update the database latest modification immediately.

 To allow the multiple users to be active at one time.

 As the organization grows, DBMS allows the growth of the database system.

 To provide maximum protection to data from any physical damage and unauthorized

access.

Database system:
A database system consists of database, database Management system, and application

program. A database system is just a computerized record keeping system. Database is a

repository for a collection of computerized data files. Users of database system can perform a

variety of operation on such file.

Some common examples of the DBMS software are Oracle, Sybase, Microsoft SQL Server,

DB2, MySQL, Postgres, Dbase, Ms-Access etc.

Applications of DBMS:
Databases form an essential part of almost all enterprises. Some database applications are

given below:

 Banking: For customer information and all transactions

 Airlines: For reservations and schedules information

 Universities: For the student information , course registration and grades

 Credit and transaction: For purchase credit cards and generates monthly statement

 Telecommunication: Keeping records of all the telephone calls, generating monthly

bills etc.

 Finance: For storing financial information

 Sales :For customers, products and purchases information

 Manufacturing: For tacking production, inventory, orders, supply chain management

 Human resources: For storing the information about employee records, salaries, tax

deductions

Flat-file Systems:
A flat file system stores data in a plain text file. A flat file is a file that contains records, and in

which each record is specified in a single line. Fields from each record may simply have a fixed

width with padding, or may be delimited by whitespace, tabs, commas or other characters.

Extra formatting may be needed to avoid delimiter collision. There are no structural

By: Abhimanu Yadav

4

relationships. The data are "flat" as in a sheet of paper, in contrast to more complex models such

as a relational database.

For example, in a computer system, the checking account processing system would have its own

data files. This file based approach to data processing is shown in fig below:

 Fig: File-based approach to data processing

Limitations of Flat File System:
Keeping organizational information in a file-processing system has a number of major

disadvantages:

 Data redundancy: The address and telephone number of a particular customer may

appear in a file that consists of savings-account records and in a file that consists of

checking-account records. This redundancy leads to higher storage and access cost.

 Data inconsistency: The various copies of the same data may no longer agree. For

example, a changed customer address may be reflected in savings-account records but

not elsewhere in the system.

 Difficulty in accessing data: Conventional file-processing environments do not

allow needed data to be retrieved in a convenient and efficient manner.

 Data isolation: Because data are scattered in various files, and files may be in

different formats, writing new application programs to retrieve the appropriate data is

difficult.

 Integrity problems: The problem of integrity is the problem of ensuring that the data

in database is correct after and before the transaction. For example, the balance of a

bank account may never fall below a prescribed amount (say, $25). When new

constraints are added, we have to change the programs to enforce them.

 Atomicity problems: Execution of transactions must be atomic. This means

transactions must execute at its entirety or not at all. Consider a program to transfer

$50 from account A to account B. If a system failure occurs during the execution of

the program, it is possible that the $50 was removed from account A but was not

credited to account B, resulting in an inconsistent database state. It is difficult to

ensure atomicity in a conventional file-processing system.

 Concurrent-access anomalies: Concurrent updates may result in inconsistent data.

Consider bank account A, containing $500. If two customers withdraw funds (say $50

and $100 respectively) from account A at about the same time, the result of the

concurrent executions may leave the account in an incorrect (or inconsistent) state, if

the programs executing on behalf of each withdrawal read the old balance

 Security problems: Not every user of the database system should be able to access

all the data. For example, in a banking system, payroll personnel need to see only that

part of the database that has information about the various bank employees. They do

 SfChecking Account

Data Files

 Checking Account Programs

By: Abhimanu Yadav

5

not need access to information about customer accounts. But, since application

programs are added to the system in an ad hoc manner, enforcing such security

constraints is difficult in flat file system.

Purpose of DBMS (Functions of DBMS):
The benefits of using DBMS are:

 To reduce redundancy: Repeating of the same information in database is called

redundancy of data which leads to several problems such as wastage of space,

duplication effort for entering data and inconsistency. When DBMS is used and

database is created, redundancy is minimized.

 To avoid inconsistency: The database is said to be inconsistent if various copies of

the same data may no longer agree. For example, a changed customer address may be

reflected in saving account but not elsewhere in the system. By using DBMS we can

avoid inconsistency.

 To share data: The data in the database can be shared among many users and

applications. The data requirements of new applications may be satisfied without

having to create any new stored files.

 To provide support for transactions: A transaction is a sequence of database

operations that represents a logical unit of work. It accesses a database and transforms

it from one state to another. A transaction can update a record, delete one, modify a

set of records etc. when the DBMS does a ‘commit’, the changes made by the

transaction are made permanent. We can roll back the transaction to undo the effects

of transaction.

 To maintain integrity: Most database applications have certain integrity constraints

that must hold for the data. A DBMS provides capabilities for defining and enforcing

these constraints. For example, the value of roll number field of each student in

student database should be unique for each student. It is a type of rule. Such a rule is

enforced using constraint at the time of creation of database.

 To enforce security: Not every user of the database system should be able to access

all data. Different checks can be established for each type of access (retrieve, modify,

delete, etc) to each piece of information in the database.

 To provide efficient backup and recovery: Provide facilities for recovering from

software and hardware failures to restore database to previous consistent state.

 To Concurrent Access Database: Concurrent access means access to the same data

simultaneously by more than one user. The same data may be used by many users for

the purpose reading at the same time. But when a user tries to modify a data, there

should be a concurrency control mechanism to avoid the inconsistency of data. A

DBMS provides facilities for these operations.

 Disadvantages of DBMS

 Problem associated with centralization: Centralization increases the security problems.

 Cost of software: Today’s there are several softwares which are very costly. Hence from

economic point of view it is the drawback.

By: Abhimanu Yadav

6

 Cost of hardware: To support various software some upgraded hardware components

are needed. Hence from economic point of view it is the drawback.

 Complexity of backup and recovery: DBMS provides the centralization of the data,

which requires the adequate backups of data.

 Overhead for providing generality, security, recovery, integrity, and concurrency

control.

 If the database and applications are simple, well defined, and not expected to change.

 If there are stringent real-time requirements that may not be met because of DBMS

overhead.

Differences betn DBMS and file processing system:

 DBMS File processing system

1. A Database Management System

(DBMS) is a collection of interrelated

data and the set of programs to access

those data.

2. Data redundancy problem is not found.

3. Data inconsistency does not exist.

4. Accessing data from database is easier.

5. The problem of data isolations is not

found.

6. Atomicity and integrating problems

are not found.

7. Data are more secure.

8. Concurrent access and crash recovery.

1. A flat file system stores data in a plain

text file. A flat file is a file that contains

records, and in which each record is

specified in a single line.

2. Data redundancy problem exist.

3. Data inconsistency may exist.

4. Accessing data from database is

comparatively difficult.

5. Here data are scattered in various files

and formats so data isolation problem

exist.

6. Here these problems are found.

7. Data are less secure.

8. Here there is no concurrent access and

no recovery.

Views of Data/ Data abstraction:
The system hides certain details of how the data are stored and maintained and such view

is an abstract view.
 The Database System provides users with an abstract view of the data.

Data Abstraction:- The database designers use the complex data structure to represent the

data in the database and developer hides the complexity from user from several level of

abstraction such as physical level, logical level, and view level. This process is called data

abstraction.

By: Abhimanu Yadav

7

Levels of Data Abstraction:
The three levels of data abstraction can be shown as follows:

Physical level
 It is the lowest level of abstractions describes how the data are actually stored.

 The physical level describes complex low level data structure in details.

 At this level records such as customer, account can be described as a block of consecutive

storage location (e.g. byte, word)

 The database system hides many of the lowest level storage details from database

programmer. Database administrator may be aware of certain details of the physical

organization of the data.

Logical level
 It is the next higher level of data abstraction which describes what data are stored in the

database, and what relationships exist among those data.
 At the logical level , each record is described by a type definition

 Programmers and database administrator works at this level of abstraction.

View level
 It is the highest level of abstraction describes only a part of the database and hides some

information to the user.

 At view level, computer users see a set of application programs that hide details of data

types. Similarly at the view level several views of the database are defined and database

user see only these views.

 Views also provides the security mechanism to prevent users from accessing certain parts

of the database (that is views can also hide information (such as an employee‘s salary) for

security purposes.)

 View level

 Fig: Three levels of data abstraction

Logical Level

Physical Level

Stored database

External view

Conceptual Level

Internal Level

View 1

View 2

View n

By: Abhimanu Yadav

8

Instances and Schemas
Instance (Database State):
The collection of information stored in the database at a particular moment is called an

instance of the database. It is the actual content of the database at a particular point in time

 The term instance is also applied to individual database components, e.g. record instance, table

instance, entity instance.

Initial Database State
 Refers to the database state when it is initially loaded into the system.

Valid State
A state that satisfies the structure and constraints of the database.

Schema:
The overall design of the database which is not expected to change frequently is called

database schema. Simply, the database schema is the logical structure of the database.

 The concept of database schema and instances can be understood by analogy to a

program written in a programming language

 A database schema corresponds to the variable declaration and the values of the variables

in a program at a point in time correspond to an instance of a database.

 The database systems have several schemas and partitioned according to the level of

abstraction such as physical and logical schema.

STUDENT

Name Student-number Class Major
 Fig: Schema diagram for Student

Data Independence:
The three schema architecture further explains the concept of data independence, the capacity to

change the schema at one level without having to change the schema at the next higher level.

 Logical Data Independence

 Physical Data Independence

Logical Data Independence:
The capacity to change the conceptual schema without having to change the external schemas

and their associated application programs is called logical data independence. When

modification is done to the conceptual schema (i.e tables) the mapping called “external mapping”

is changes automatically by DBMS.

Note:

 The database schema changes very infrequently.

 The database state changes every time the database is updated.

By: Abhimanu Yadav

9

Physical Data Independence:
The capacity to change the internal schema without having to change the conceptual schema is

called physical data independence. When a schema at a lower level is changed, only the

mappings between this schema and higher-level schemas need to be changed in a DBMS. This

mapping is called “logical mapping”.
For example, the internal schema may be changed when certain file structures are reorganized or new

indexes are created to improve database performance.

Database Languages:
DBMS provides two languages: Data-Definition Language (DDL) and Data-Manipulation

Language (DML).

Data Definition Language (DDL):
Data definition language is the specification notation for defining the database schema.

 Used by the DBA and database designers to specify the conceptual schema of a database.

 In many DBMSs, the DDL is also used to define internal and external schemas (views).

Example:

CREATE TABLE account

 (

account-number CHAR(10),

 balance INTEGER

)

 Execution of the above DDL statement creates the account table.

 It updates a special set of tables called the data dictionary.

Data dictionary: DDL compiler generates a set of tables stored in a data dictionary. Simply,

Data dictionary is a special set of tables that contain the information about tables. Data

dictionary contains metadata (i.e., data about data)

• Metadata: data that describes the database or one of its parts is called metadata. The

schema of a table is an example of metadata

The DDL provides the facilities to define:

 Database scheme

 Database tables

 Integrity constraints
• Domain constraints

• Referential integrity (references constraint in SQL)

• Assertions

• Triggers

• Views

 Security and Authorization

 Modify the Scheme

The common DDL Commands are: CREATE, ALTER, DROP

By: Abhimanu Yadav

10

Data Manipulation Language (DML):
A Data-manipulation language (DML) is a language that enables users to access or manipulate

data organized by the appropriate data model.DML also known as query language.

Ex. SELECT *

FROM account

WHERE balance <1000

Execution of this statement retrieves the records of all accounts in which balance is below 1000.
There are basically two classes of DML:

Procedural DMLs (or Low-level DML):

In procedural DMLs, a user specifies what data are required and how to get those data.

Declarative (or nonprocedural or high-level) DMLs:

In declarative DMLs a user specifies what data are needed without specifying how to get those data

The data manipulation is:
 The retrieval of information stored in the database

 The insertion of new information into the database

 The deletion of information from the database

 The modification of information stored in the database

The common DML commands: SELECT, INSERT, UPDATE, DELETE

Query: A query is a statement requesting the retrieval of information. SQL is the most widely

used query language Select, insert, update, delete etc are the SQL DML statement

Data Manipulation Language:

By Data Manipulation, we mean

 The retrieval of information stored in the database.

 The insertion of new information into the database.

 The deletion of information from the database.

 The modification of information stored in the database.

There are basically two types of DML:

 Procedural DMLs: require the user to specify what data are needed and how to get

those data.

 Non-Procedural DMLs: require a user to specify what data are needed without

specifying how to get those data.

Transaction Management:
Collections of operations that form a single logical unit of work are called transactions. For

example, a transfer of funds from a checking account to a savings account is a single

operation from the customer’s standpoint; within the database system, however, it consists of

several operations. A database system must ensure proper execution of transactions despite

failures—either the entire transaction executes, or none of it does.

Consider the transaction,

By: Abhimanu Yadav

11

 A = A – 50;

 Write (A);

 Read (B);

 B = B+50;

 Write (B);

To ensure integrity of the data, we require that the database system maintain the following

properties of the transactions:

 Atomicity: Either all operations of the transaction are reflected properly in the database

or none are. Suppose during the execution of above transaction a failure occurred after

the write (A) operation but before write (B) operation. Then the values of amount

reflected in database will be 950 and 2000. The system destroyed 50 as a result of failure.

 Consistency: Database must be in correct state before and after execution of the

transaction. The consistency requirement here is that sum of A and B be unchanged by

the execution of transaction. Without the consistency requirement, money could be

created or destroyed by a transaction.

 Isolation: Even though multiple transactions may execute concurrently, the system

guarantees that, for every pair of transactions Ti and Tj it appears to Ti that either Tj

finished execution before Ti started, or Tj started execution after Ti finished. Thus, each

transaction is unaware of other transactions executing concurrently in the system.

 Durability: After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

These properties are called ACID properties, with acronym derived from the first letters of

the above four properties.

Transactions access data using two operations:

 Read(x): Which transfers the data item x from the database to a local buffer belonging to

the transaction that executed the read operation.

 Write(x): Which transfers the data item x from the local buffer of the transaction that

executed to the database.

Database users and administrators

Database users:

Users are differentiated by the way they expect to interact with the system. There are four

different types of database-system users:

 Naive Users: They are unsophisticated users who interact with the system by invoking

one of the application programs that have been written previously. For example: a

bank teller who needs to transfer $50 from account A to account B invokes a program

called transfer.

By: Abhimanu Yadav

12

 Application programmers: They are computer professionals who write application

programs. Application programmers can choose any tools to develop user interface.

 Sophisticated users: They interact with the system without writing programs. They

form their requests in a database query language.

 Specialized users: They are sophisticated users who write specialized database

applications that do not fit into the traditional data-processing framework. Among

these applications are computer-aided design systems, knowledge base and expert

systems, systems that store data with complex data types (graphics data and audio

data), and environment-modeling systems.

Database Administrator:
The person who has such central control over the system is called the database administrator

(DBA). The function of the DBA includes the following:

 Schema definition: The DBA creates the original database schema by writing a set of

definitions that is translated by the DDL compiler to a set of tables that is stored

permanently in the data dictionary.

 Schema and physical-organization modification: The DBA carries out changes to

the schema and physical organization to reflect the changing needs to the organization,

or to alter the physical organization to improve performance.

 Granting the authorization of data access: The granting of different types of

privileges to the database users so that all the users are not able to all data.

 Integrity-constraint specifications: The data values stored in the database must

satisfy certain consistency constraints. The database administrator must specify such a

constraint explicitly.

 Routine maintenance: Routine maintenance includes periodic backing up the

database, either onto tapes or onto remote servers, to prevent loss of data in case of

disasters such as flooding, Ensuring that enough free disk space is available for normal

operations, and upgrading disk space as required etc.

Database Models:

Data model is a collection of tools for describing data, data relationships, data semantics and data

constraints. The database model refers the way for organizing and structuring the data in the

database. Traditionally, there are different database models which are used to design and develop

the database of the organization.

1. Entity- Relationship Model

2. Object oriented Model

3. Relational Model

4. Hierarchical model Record based data models

5. Network Model

6. Object Relational Data Model

O Object based data model

By: Abhimanu Yadav

13

1. Entity- Relationship Model:
The E-R data models is based on a perception of real world that consist of a collection of basic

objects called entities and relationship among these objects. In an E-R model a database can be

modeled as a collection of entities, and relationship among entities.

Overall logical structure of a database can be expressed graphically by E-R diagram. The basic

components of this diagram are:

 Rectangles (represent entity sets)

 Ellipses (represent attributes)

 Diamonds (represent relationship sets among entity sets)

 Lines (link attributes to entity sets and entity sets to relationship sets)

2. Relational Model:
It is the current favorite model. The relational model is a lower level model that uses a collection

of tables to represent both data and relationships among those data. Each table has multiple

columns, and each column has a unique name. Each table corresponds to an entity set or

relationship set, and each row represents an instance of that entity set or relationship set.

Structured query language (SQL) is used to manipulate data stored in tables.

Customer

Depositor (Relationship table) Account

Customer_id Customer_name Customer_street Customer_city

1 Bhupi Chandani Kanchanpur

2 Arjun Balkhu Kathmandu

3 Abin Pulchoak Lalitpur

Customer_id Account_no

1 Ac-33

2 Ac-12

3 Ac-65

3 Ac-77

2 Ac-33

Account_no Balance

Ac-33 10000

Ac-65 20000

Ac-12 70000

Ac-77 9000

By: Abhimanu Yadav

14

3. Object oriented data model:
The object oriented data model is based on object-oriented programming paradigm. It is based on

the concept of encapsulating the data and the functions that operate on those data in a single unit

called an object. The internal parts of objects are not visible externally.

Here one object communicates with other objects by sending message.

 Fig: Object oriented data model

4. Hierarchical data model:
In a hierarchical data model, the data elements are linked in the form of an inverted tree structure

with the root at the top and the branches formed below. Below the single root data element are

subordinate elements, each of which, in turn, has one or more other elements. There is a parent

child relationship among the data elements of a hierarchical database. There may be many child

elements under each parent element, but there can be only one parent element for any child

element. The branches in the tree are not connected.

Organization

Personnel
Department

Technical
Department

Manager

s

 Support staff Support staff Technician Engineers Managers

A parent segment

Fig: An example of hierarchical database model

By: Abhimanu Yadav

15

The main limitation of this structure is that it does not support flexible data access, because data

can be accessed only by following the path down the tree structure.

Advantages of hierarchical database model

 It is the easiest model of database.

 It is secure model as nobody can modify the child without consulting to its parent.

 Searching is fast.

 Very efficient in handling one- to- many relationship.

Disadvantages hierarchical database model

 It is old fashion, outdated database model

 Modification and addition of child without consulting its parent is impossible.

 Cannot handle many- to- many relationships.

 Increase redundancy.

 It does not support flexible data access, because data can be accessed only by

following the path down the tree structure.

5. Network Data Model:

A network data model is an extension of the hierarchical database structure. In this model also,

the data elements of a database are organized in the form of parent-child relationships and all

types of relationships among the data elements must be determined when the database is first

designed. In a network database, a child data element can have more than one parent element or

no parent at all. Moreover, in this type of database, the database management system permits the

extraction of the needed information from any data element in the database structure, instead of

s3tarting from the root data element.

Advantages of network database model

 More flexible than hierarchical database because it accept many to many relationship.

 Searching is faster because of multidirectional pointers.

College

English Dept Math Dept Computer Dept

 Abin

Account Dept

 Aayan Kamala Umesh Bhupi

Fig: An example of a network database

By: Abhimanu Yadav

16

 Promotes database integrity

 Data independence

Disadvantages of network database model

 Less secure than hierarchical as it is open to all.

 Need long program to handle the relationship.

 Pointer is used in this database and that increased the overhead of storages

 Lack of structural independence

Database System Structure:
The functional components of a database system can be broadly divided into the storage

manager and the query processor components.

By: Abhimanu Yadav

17

Storage Manager:
The storage manager translates the various DML statements into low-level file-system

commands. Storage manager is responsible for storing, retrieving, and updating data in the

database. The storage manager components include:

 Authorization and integrity manager: tests for the satisfaction of integrity

constraints and checks the authority of users to access data.

 Transaction manager: ensures that the database remains in a consistent state despite

system failures, and the concurrent transaction executions proceed without

conflicting.

 File manager: manages the allocation of space on disk storage and the data structures

used to represent information stored on disk.

 Buffer manager: responsible for fetching data from disk storage into main memory,

and deciding what data to cache in main memory. The buffer manager is a critical

part of the database system, since it enables the database to handle data sizes that are

much larger than the size of main memory.

Disk Storage:

 Data files: which store the database itself.

 Data dictionary: which stores metadata about the structure of the database, in

particular the schema of the database.

 Indices: which provides fast access to data items that hold particular values.

The Query Processor:
The query processor components are:

 DDL interpreter: interprets DDL statements and records the definitions in the data

dictionary.

 DML compiler: translates DML statements in a query language into an evaluation plan

consisting of low-level instructions that the query evaluation engine understands.

 Query evaluation engine: which executes low-level instructions generated by the DML

compiler.

By: Abhimanu Yadav

18

 Entity-Relationship Model

The E-R data models is based on a perception of real world that consist of a collection of

basic objects called entities and relationship among these objects. In an E-R model a database

can be modeled as a collection of entities, and relationship among entities.

Notation of E-R diagram:

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Lines link attributes to entity sets and entity sets to relationship sets.

 Ellipses represent attributes

 Double ellipses represent multivalued attributes.

 Dashed ellipses denote derived attributes.

 Underline indicates primary key attributes

 Double Lines indicate total participation of an entity set in a relationship set.

 Double Rectangles represent weak entity sets.

 Double Diamonds represent identifying relationship set for weak entity set.

 F Unit 2

 Basic concepts

 Mapping constraints

 Key

 Entity-relationship diagram

 Weak entity set

 Extended E-R features

 Reduction of an E-R schema to tables

By: Abhimanu Yadav

19

Entity:

An entity is an object that exists and is distinguishable from other objects. An entity may be has

a set of properties and the values for some set of properties may uniquely identifies an entity.

For example: specific person, specific company, event, a particular plant etc. The entities have

attributes, for example people have names and addresses.

Eg:

Entity Set:
An entity set is a set of entities of the same type that share the same properties or attributes. For

example: set of all persons who are customers at a particular Bank can be defined as the entity

set customer.

Eg:

Customer

Entity

Customer_id Customer_name Customer_street Customer_city

1 Bhupi Chandani Kanchanpur

2 Arjun Balkhu Kathmandu

3 Abin Pulchoak Lalitpur

 A particular person

 Entity set

By: Abhimanu Yadav

20

Attributes:
The properties or characteristics of an entity are called attributes. For example, a customer

entity can have customer-id, customer-name, customer-street, and customer-city as attributes.

 Fig: Entity with attributes

Attribute Types
An Attribute, as used in E-R model, can be characterized by the following attributes types:

Simple and composite attribute:
 Simple: The attributes that cannot be divided into subparts (ie. Into attributes) are

called simple attributes. For example roll-number attribute of a student cannot be

further divided into sub parts thus roll-number attribute of a student entity acts as a

simple attribute.

 Composite: The attributes that can be divided into subparts (ie into attributes) are

called composite attributes. For example name attribute of a particular student can be

further vided into subparts first-name, middle-name, and last-name thus name

attribute acts as a composite

 .

 Fig:- Simple and composite attributes of Student entity

Single-valued and multi-valued attributes:
 Single-valued: The attributes which has a single value for a particular entity is called single-

valued attributes. For example almost of our example has the single value attributes; loan-

number specifies loan entity refers only one lone number.

 Name Address
 Code

 Customer

 First-name middle-name last-name

 Name

 Student

 Roll-No

 Address

 City

 State

Street

By: Abhimanu Yadav

21

 Multi-valued: If an attribute has a set of value for a specific entity is called multi-valued

attributes. For example: multi-valued attribute: ‘phone_number’ of an employee may have

zero, one or several phone numbers.

 Derived attributes:
The attribute whose value derived from the values of other related attributes or entities is

called derived attribute. For example: age, given date_of_birth.

Example: E-R diagram showing all types of attribute

 Name
 Code

 Customer

;[Phone_No

 Name Address
 Date-of-birth

 Customer
 Age

 Note: All attributes take a null value when an entity does not have a value for it. The null

value may indicate “not applicable”, that is, the value does not exist for the entity.

By: Abhimanu Yadav

22

Relationship and Relationship sets:
A relationship is an association among two or more entities.

For example we may define a relationship which associates the teacher “Bhupi” with a student of

name “Anisha”. This specifies that Bhupi is a teacher who teaches a student of name “Anisha”.

A relationship set is a set of relationships of the same type.

Formally, it is a mathematical relation on n 2 entity sets. If E1, E2,…, En are entity sets, then a

relationship set R is a subset of {(e1, e2,…, en)|e1E1, e2E2,…, enEn}, where (e1, e2,….., en) is

a relationship.

For example: Teacher teaches students

A relationship set may also have attributes called descriptive attributes. For example, the teach

relationship set between entity sets teacher and students may have the attribute teaches-date.

Teacher Teaches Students

 Fig: Showing relationships with descriptive attributes

 Bhupi Teaches Anisha

 Teacher Teaches Students

 T-Name
 T-address

 Salary

 Roll-No S-Name

 Address

 Arjun

 Bhupendra

 Deepak

 Kumar

 Dilli

 R-11

 R-33

 R-45

 R-42

 R-121

F 2070-01-01

 2070-01-04

 2069-09-22

 2070-01-22

 2070-02-02

 2069-05-23

By: Abhimanu Yadav

23

Degree of a relationship:
Degree of a relationship set refers to the number of entity sets that participate in a relationship

set. Relationship sets that involve two entity sets are called binary relationship sets. Most

relationship sets in a database system are binary.

Relationship sets may involve more than two entity sets called n-ary relationship sets but

are rarer. For example, suppose employees of a bank may have jobs (responsibilities) at multiple

branches, with different jobs at different branches. Then there is a ternary relationship set

between entity sets employee, job and branch.

When the entity sets of a relationship set are not distinct (ie. The same entity set participates in a

relationship set more than once, in different roles). This type of relationship set is sometimes

called a recursive relationship set.

Constraints:
An entity relationship model may define certain constraints to which the contents of a database

must conform. The most important constraints are: mapping cardinalities and participation

constraints.

1. Mapping Cardinality Constraints:

Mapping cardinality or cardinality ratio express the number of entities to which another entity

can be associated via a relationship set. The mapping cardinality is most useful in describing

binary relationship sets. (mapping cardinality also used for other relationship that is ternary etc.)

For a binary relationship set the mapping cardinality must be one of the following types:

 One-to- one

 One-to- many

 Many-to-one

 Many-to-many

By: Abhimanu Yadav

24

One-to-One:
 An entity in A is associated with at most one entity in B, and an entity in B is associated with at

most one entity in A. The following fig shows one to one mapping cardinality of entity sets A

and B.

 Fig: One-to-One

One-to-Many:

An entity in A is associated with any number (zero or more) of entities in B. An entity in B

however can be associated with at most one entity in A. The following fig shows one-to-many

mapping cardinality of entity sets A and B.

 Fig: One-to-Many

Many-to-One:

An entity in A is associated with at most one entity in B. An entity in B, however, can be

associated with any number (zero or more) of entities in A. The following fig clearly shows the

many to one cardinality between entity sets A and B.

 R-22

R-53

 R-92

 Pawan

Raju

 Susma

 Student Roll No.

 Pawan

 Susma

 Person Phone No

 9841144856

 9803348976

 9851663244

 014330227

By: Abhimanu Yadav

25

Fig: Many-to-One

Many-to-Many:

An entity in A is associated with any number (zero or more) of entities in B, and an entity in B is

associated with any number (zero or more) of entities in A. The following fig clearly shows the

many-to-many cardinality between entity sets A and B.

 Fig: Many-to-Many

2. Participation Constraints:
The participation constraint specifies whether the existence of an entity depends on its being

related to another entity via the relationship type.

There are two types of participation constraints:

I. Total Participation Constraints

II. Partial Participation Constraints

Total Participation Constraints:
The participation of an entity set A in a relationship set R is said to be total if every entity in A

participates in at least one relationship in R. For example, consider customer and account entity

sets in a banking system, and a relationship set depositor between them indicating that each

 Ram

 Shyam

 Hari

 Gopal

 Rita

 Son Son Father

 Mr. Khan

 Mr. Ajaya

 Mr. Bijaya

 Combined Account

 Ram

 Shyam

 Hari

 Gopal

 Bank

 NIBL

 NCC

 SBI

By: Abhimanu Yadav

26

customer must have an account. Then there is total participation of entity set account in the

relationship set depositor.

Partial Participation Constraints:

If only some entities in A participate in relationships in R, the participation of entity set A in

relationship set R is said to be partial. For example, consider customer and loan entity sets in a

banking system, and a relationship set borrower between them indicating that some customers

have loans. Then there is partial participation of entity set customer in the relationship set

borrower.

Keys:
Keys are used to distinguish the entities within a given entity set. Keys also help to uniquely

identify relationships.

There are different types of keys which are as

 Super key

 Candidate key

 Primary key

 Foreign key

Super Key:
A super key of an entity set is a set of one or more attributes whose values uniquely determine

each entity in the entity set. If K is a super key and any superset of K is also super key, thus the

concept of superset is not sufficient for our purpose.

 For example Roll-No attribute of the entity set student is sufficient to distinguish one student

entity from another. Thus the Roll-No is a super key. Similarly the combination of Roll-No and

Name is a super key of the entity set student.

Candidate Key:
A candidate key of an entity set is a minimal super key. That is a super key which does not

have any proper subset is called candidate key. For example customer-id is candidate key of

 Customer Account Depositor

 Note: Double lines are used to indicate that the participation of an entity set in a

relationship set is total. And single lines are used to indicate that the participation of an

entity set in a relationship set is partial.

 Customer Loan Borrower

By: Abhimanu Yadav

27

customer, suppose the combination of customer-name and customer-street is also sufficient to

distinguish among members of customer entity set. Then, both {customer-id} and {customer-

name, customer-street} are candidate key.

Primary key:
A primary key is a candidate key that is chosen by the database designer as the principle

means of uniquely identifying entities within an entity set. There may exist several candidate

keys, one of the candidate keys is selected to be the primary key.

Any two individual entities in the set are prohibited from having the same value on the key

attributes at the same time (i. e values of key attributes must be unique)

For examples- the candidate key { RollNumber} can be considered to be a primary key for the

entity set student. The candidate key {Customer-id} can be considered to be a primary key of

customer entity set.

Foreign key:
A foreign key (FK) is an attribute or combination of attributes that is used to establish and

enforce a link between the data in two tables. You can create a foreign key by defining a

FOREIGN KEY constraint when you create or modify a table.

In a foreign key reference, a link is created between two tables when the column or columns that

hold the primary key value for one table are referenced by the column or columns in another

table. This column becomes a foreign key in the second table.

Student

Course-ID Course-Name

S-12 C++

S-14 DBMS

S-51 Account

S-11 Banking

 Fig: Primary key and foreign key

S-ID Name Address Course-ID

S-12 Pawan Joshi C002

S-14 Yamman Karki C021

S-51 Abin Saud C321

S-11 Binak Singh C112

 Relationships

 Note: If a primary key contains more than one attribute then it is called composite Key

 Course

Foreign Keys

 Primary Keys

 Note: A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

 Note: Any candidate keys other than the one chosen as a primary key is known as alternate key.

By: Abhimanu Yadav

28

Weak entity set:
An entity set may not have sufficient attributes to form a primary key. Such an entity set is

termed as a weak entity set. An entity set that has a primary key is termed as a strong entity set.

For a weak entity set to be meaningful, it must be associated with another entity set, called the

identifying or owner entity set, using one of the key attribute of owner entity set. The

relationship associating the weak entity set with the identifying entity set is called the identifying

relationship. An attribute of weak entity set that is use in combination with primary key of the

strong entity set to identify the weak entity set uniquely is called discriminator (partial key).

In the above figure, payment-number is partial key and (loan-number, payment-number) is

primary key for payment entity set.

Example: E-R diagram for hospital with a set of patients and medical doctors.

 P-No
 P-Age P-Name Last

 First
 Middle

 Patient

 Phone-No

 Admit-

in

 Hospital

 H-Name
 H-Address

 Doctors

 have

 Treats

 D-Name

 Specialization

 D-ID

By: Abhimanu Yadav

29

Extended E-R model (EER model):
The EER model includes all of the concepts introduced by the ER model. Additionally it

includes the concepts of a subclass and super class, along with the concepts of specialization and

generalization.

There are basically four concepts of EER-Model:

 Attribute Inheritance (subclass / superclass relationship)

 Specialization

 Generalization

 Categories

 Aggregation

Subclass and superclass:
The class that is derived from another class is called a subclass. The class from which a subclass

derives is called the superclass. The following figure illustrates these two types of classes:

 An entity type may have additional meaningful sub-groupings of its entities. Example:

EMPLOYEE may be further grouped into {SECRETARY, ENGINEER, TECHNICIAN,

MANAGER, MANAGER, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE …}

 EER diagrams extend ER diagrams to represent these additional sub-groupings, called

subclasses or subtypes. Each of these subgroups is called a subclass of the EMPLOYEE

entity type.

 The EMPLOYEE entity type is called the superclass of each of these subclasses.

 The relationship between a superclass and any one of its subclasses is called a

superclass/subclass or class/subclass or IS-A (IS-AN) relationship (e.g. EMPLOYEE/

SECRETARY EMPLOYEE/MANAGER).

 Subclass entities have their own specific attributes. They also inherit all attributes and

relationships of its superclass (subclasses can be considered as separate entity types).

 Fig: superclass/subclass relationship

Ss superclass: EMPLOYEE

Susubclasses: SECRETARY, ENGINEER,

 TECHNICIAN,

 SALARIED_EMPLOYEE,

 HOURLY_EMPLOYEE

http://en.wikipedia.org/wiki/Subclass_(computer_science)
http://en.wikipedia.org/wiki/Superclass_(computer_science)
http://en.wikipedia.org/wiki/Inheritance_(computer_science)#Specialization
http://en.wikipedia.org/wiki/Generalization

By: Abhimanu Yadav

30

Specialization:
The process of defining a set of subclasses from a superclass is known as specialization.
The set of subclasses is based upon some distinguishing characteristics of the entities in the

superclass. It is a top-down design process.

Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE

based upon job type.

Generalization:
It is a bottom-up design process. Here, we combine a number of entity sets that share the

same features into a higher-level entity set. The original classes become the subclass of the

newly formed generalized superclass. The reason, a designer applies generalization is to

emphasize the similarities among the entity sets and hide their differences. Specialization and

generalization are simple inversions of each other; they are represented in an E-R diagram in the

same way. The terms specialization and generalization are used interchangeably.

Fig: ER diagram with specialization and generalization

 Note: There may have several specializations of the same superclass.

 ISA

 P-name P-address Phone-no

 Person

 Employee Customer

 Salary

 Credit-rating

 ISA

 Officer Teller Secretary

 Office-No Hours-worked

 Hours-worked Station-No

Specialization

S Sswdfde

Generalization

S Sswdfde

By: Abhimanu Yadav

31

Constraints on Specialization and Generalization:

Two basic constraints can apply to a specialization/generalization:

 Disjointness Constraint:

 Completeness Constraint:

Disjointness/Overlapping Constraints:
It specifies that the subclasses of the specialization must be disjoint. Here an entity can be

a member of at most one of the subclasses of the specialization and it is represented by d in EER

diagram.

If not disjoint, specialization is overlapping. That is the same entity may be a member of more

than one subclass of the specialization and it is represented by o in EER diagram.

Completeness Constraint:
Total participation constraint specifies that every entity in the superclass must be a

member of some subclass in the specialization/generalization. It is represented by double line in

EER diagram.

Partial participation constraint allows an entity not to belong to any of the subclasses and

shown in EER diagrams by a single line.

Aggregation:
One of the limitations of E-R model is that it cannot express relationship among

relationships. One of the solutions in such a situation is using aggregation. Aggregation is an

abstraction in which relationship sets (along with their associated entity sets) are treated as

higher-level entity sets and can participate in relationships.

Fig: E-R Diagram with Aggregation

Note:

 In EER disjoint-constraint is illustrated by placing the letter d inside the circle

 In case overlap between subclasses is allowed, we place the letter o inside the circle.

By: Abhimanu Yadav

32

Reduction of E-R Schema to tables:
To reduce given ER diagram into table simply we create a table for each entity set and for

each relationship sets. And that assigned the name of the corresponding entity set or relationship

set as table name. Generally the number of attributes of an entity set or relationship set equal to

the degree of a corresponding table (fields of a table).

To reduce given ER diagram into tables normally we divide ER diagram into three sections:

 Strong entity sets

 Weak entity sets and

 Relation sets

Reducing strong entity sets into tables:
Consider an E-R diagram as given below

The tabular representation of the entity set loan of the given E-R diagram, This entity has two

attributes loan-number and amount. We represent this entity set by a table called loan, with two

columns named loan-number and amount as below:

Loan

Reducing weak entity sets into tables:
To illustrates this consider the entity set payment in the following E-R diagram

By: Abhimanu Yadav

33

The table of entity ‘payment’ consist the column names loan-number, payment-number,

payment-data, and payment-amount as below:

 Payment

Loan-No Payment-No Payment-Date Payment-amount

L-11 L-11 2069-02-22 50,000

L-22 L-22 2069-04-28 70,000

L-07 L-07 2069-01-19 45,000

L-32 L-32 2070-02-02 98,000

Reducing Relationship sets into tables:
To explain this, consider a relationship set borrower in E-R diagram and this relationship set

involves the following entity sets:

 Customer with the primary key customer-id

 Loan with the primary key loan-number.

This relationship set does not have any its own descriptive attributes, so the borrower table has

two columns labeled as customer-id and loan-number.

Borrower

Customer-id Loan-number

 019-29-3746 L-11

 019-28-3123 L-17

 019-24-3144 L-76

By: Abhimanu Yadav

34

E-R Diagram for a Banking Enterprise

The E-R diagram for the banking enterprise is given below.

By: Abhimanu Yadav

35

Example: ER diagram for Company database system

By: Abhimanu Yadav

36

Example 3: Construct an E-R diagram for a hospital with a set of patients and a set of medical

doctors. Associate with each patient a log of the various tests and examinations conducted.

 Or

patients (patient-id, name, insurance, date-admitted, date-checked-out)

doctors (doctor-id, name, specialization)

test (testid, testname, date, time, result)

doctor-patient (patient-id, doctor-id)

test-log (testid, patient-id) performed-by (testid, doctor-id)

Example 4 Construct an E-R diagram for a car-insurance company whose customers own one or

more cars each. Each car has associated with it zero to any number of recorded accidents.

By: Abhimanu Yadav

37

 Relational Model

Relational Model:
The First database systems were based on the network and hierarchical models. The relational

model was first proposed by E.F. Codd in 1970 and the first such system (notably INGRES and

System/R) was developed in 1970s. The relational model is now the dominant model for

commercial data processing applications.

Structure of relational databases:
A relational database consists of a collection of tables, each having a unique name. A row in a

table represents a relationship among a set of values. Since a table is a collection of such

relationships, there is a close correspondence between the concept of a table and the

mathematical concept of a relation.

Basic Structure

Figure shows the deposit and customer tables for banking example.

Deposit Customer

b-name account# cname balance

Ktm- branch 101 Bipin 500

Lalitpur-branch 215 Anisha 700

Kirtipur-branch 102 Abin 400

Pokhara-branch 304 Binita 1300

 Relation deposit has four attributes.

 For each attribute, there is a permitted set of values, called the domain of that

attribute. E.g. the domain of b-name is the set of all branch names (ie Ktm-branch,

Lalitpur-branch, Kirtipur-branch, pokhara-branch).

 Let D1 denote the domain of bname, and D2, D3 and D4 the remaining attributes'

domains respectively.

Then, any row of deposit consists of a four-tuple (V1,V2,V3,V4) where

 {V1D1, V2D2, V3D3, V4D4}

 In general, deposit contains a subset of the set of all possible rows.

cname street ccity

Arjun Pender Vancouver

Bhupi kumariclub Burnaby

Ajaya newroad kathmandu

Rahul No.3 Road Richmond

Umesh Chandani Mahendranagar

 F Unit 3

 Structure of a relational database

 The Relational Algebra

 Select, Project, Product, Union, Difference, Rename, Intersection,

Division, Assignment, natural Join, Outer Join, Aggregate functions,

generalized projection.

 Database Manipulation: Insertion, deletion, updates.

 Key

 Entity-relationship diagram

 Weak entity set

 Extended E-R features

 Reduction of an E-R schema to tables

 Figure: The deposit and customer relations.

By: Abhimanu Yadav

38

That is, deposit is a subset of
 D1 X D2 X D3 X D4

Query languages:
 A query language is a language in which a user requests information from the database.

Query languages can be categorized as either procedural or non-procedural. In a procedural

language the user instructs the system to perform a sequence of operations on the database to

compute the desired result. Example: Relational algebra.

 In a non-procedural language, the user describes the desired information desired without

giving a specific procedure for obtaining that information. Example: tuple relational calculus,

domain relational calculus, SQL etc.

 Relational database management system:
A relational database management system (RDBMS) is a database management

system (DBMS) that is based on the relational model. An important feature of

relational systems is that a single database can be spread across several tables. This differs

from flat-file databases, in which each database is self-contained in a single table.

The Relational algebra:
A relational algebra is a collection of formal operations acting on relations and producing

relations as result. It is one of the procedural query language in which a user requests

information from a database. The main operations of the relational algebra are the set operations

(such as union, intersection and Cartesian product), selection (keeping only some lines of a table)

and the projection (keeping only some columns).

Operations in Relational Algebra:

1. Fundamental operations:

 Select operation

 Project operation

 Union operation

 Set difference operation

 Cartesian product operation

 Rename operation

2. Additional operations:

 Set-intersection operation

 Natural-join operation

 Division operation

 Assignment operation

3. Extended Relational Algebra Operations

 Generalized projection

 Aggregate functions

 Outer join

 Null values

1. Fundamental operations:

http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Relational_model
http://www.webopedia.com/TERM/S/system.html
http://www.webopedia.com/TERM/F/flat_file_database.html
http://dictionary.reference.com/browse/set
http://dictionary.reference.com/browse/union
http://dictionary.reference.com/browse/intersection

By: Abhimanu Yadav

39

1.1 Select operation:
The selection operation is used to extract tuples (rows) from a relation that satisfy a given

predicate. It is denoted by sigma symbol ().

Syntax: - <condition> (Relation)

Selection Example:

Assume the following relation Employee has the following tuples:

Employee

Name Office Dept Rank

Bipin 400 Computer Assistant

Niky 220 Economics Adjunct

Rahul 160 Economics Assistant

Binita 420 Computer Associate

Solu 500 Finance Associate

 Select only those Employees who involve in the Computer department:

Dept = 'Computer' (Employee)

Result:

Name Office Dept Rank

Bipin 400 CS Assistant

Binita 420 CS Associate

 Select only those Employees with first name Solu who are associate professors:

Name = 'Solu' ˄ Rank = 'Assistant' (Employee)

Result:

Name Office Dept Rank

Solu 400 Finance Associate

 Select only those Employees who are either Assistant Professors or in the Economics

department:

Result:

Name Office Dept Rank

Bipin 400 Computer Assistant

Rahul 160 Economics Assistant

Niky 220 Economics Adjunct

 Select only those Employees who are not in the Computer department or Adjuncts:

 (Rank = ‘Adjunct’ ˄ Dept = 'Computer') (Employee)

Rank = 'Assistant' DeDept = 'Economics' (Employee)

By: Abhimanu Yadav

40

Result:

Name Office Dept Rank

Rahul 160 Economics Assistant

Solu 500 Finance Associate

Exercises
Evaluate the following expressions:

1. (Rank = 'Adjunct' ˄Dept = 'Computer') (Employee)

2. Rank = 'Associate' (Dept = 'Computer' (Employee))

3. Dept = 'Computer' (Rank = 'Associate' Employee)

4. Rank = 'Associate' ˄Dept = 'Computer' (Employee)

5. Age > 26 (R U S)

1.2 Project operation:
Projection operation is used to extracts specified columns (arity) of a relation. With the help of

this operation, any number of columns can be omitted from a table or columns of table can

rearrange.

Syntax: - π<attribute-list> (Relation)

Projection Examples:

Assume the same Employee relation above is used.

 Project only the names and departments of the employees:

 π name, dept (Employee)

Results:

Name Dept

Bipin Computer

Niky Economics

Rahul Economics

Binita Computer

Solu Finance

Combining Selection and Projection Operations:

 The selection and projection operators can be combined to perform both operations.

 Show the names of all employees working in the ‘Computer’ department:

π name (Dept = 'Computer' (Employee))

Results:

Name

Bipin

Binita

By: Abhimanu Yadav

41

 Show the name and rank of those Employees who are not in the ‘Computer’ department

or Adjuncts:

π name, rank ((Rank = 'Adjunct' Dept = 'Computer') (Employee))

Result:

Name Rank

Rahul Assistant

Solu Associate

Exercises
Evaluate the following expressions:

1. π name, rank ((Rank = 'Adjunct' Dept = 'Computer') (Employee))

2. π fname, age (Age > 22 (R U S))

1.3 Union Operation ():
Consider the following relations R and S. The union of relations R and S is denoted by R U S

and it is the set of tuples that are either in R or in S or in both. It returns the union (set union) of

two compatible relations. For a union operation to be legal, we require that invoked relations

must have the same number of attributes and corresponding attributes have same type.

R S

First Last Age

Bill Smith 22

Kamala dhami 21

Maya Singh 23

Anisha Jha 22

Result: Relation with tuples from R and S with duplicates removed.

First Last Age

Bill Smith 22

kamala dhami 21

Maya singh 23

Anisha Jha 22

Pinky Ojha 36

Anisha KC 22

First Last Age

Pinky ojha 36

Maya singh 23

Anisha KC 22

By: Abhimanu Yadav

42

1.4 Set Difference Operation (-):

Set difference is denoted by the minus sign (-). It finds tuples that are in one relation, but not in

another. Thus results in a relation containing tuples that are in R but not in S.

Result: Result: Relation with tuples from R but not from S

R - S

First Last Age

Bill Smith 22

Maya Singh 23

Anisha Jha 22

1.5 Cartesian product(X):
The Cartesian product operation does not require relations to union-compatible i.e. the involved

relations may have different schemas. The Cartesian product of two relations R and S is

denoted by R X S, is the set of all possible combinations of tuples of the two relations.

Example:

 R S

Result: Produce all combinations of tuples from two relations.

R X S

First Last Age Dinner Dessert

Kamala Ojha 22 Steak Ice Cream

Kamala Ojha 22 Lobster Cheesecake

Pawan Bhatt 23 Steak Ice Cream

Pawan Bhatt 23 Lobster Cheesecake

Anisha KC 32 Steak Ice Cream

Anisha CK 32 Lobster Cheesecake

First Last Age

Kamala Ojha 22

Pawan Bhatt 23

Anisha KC 32

Dinner Dessert

Steak Ice Cream

Lobster Cheesecake

Key points to remember to Union Compatible Relations:

Two relations R and S are union compatible if and only if they have the same degree and

the domains of the corresponding attributes are the same.

 Attributes of relations need not be identical to perform union, intersection and

difference operations.

 However, they must have the same number of attributes or arity and the domains

for corresponding attributes must be identical.

 Domain is the data type and size of an attribute.

 The degree of relation R is the number of attributes it contains.

By: Abhimanu Yadav

43

1.6 Rename Operation:

The rename operator is denoted by rho ().
It can be used in two ways:

 𝜌𝑥(𝐸) return the result of expression E in the table named x.

 𝜌𝑥(𝐴1,𝐴2,…,𝐴𝑛)(𝐸) return the result of expression E in the table named x with the

attributes renamed to A1, A2,…, An.

It is mainly used in the situation where we need to find the Cartesian product of a relation with

itself i.e. Account × Account.

 For that we should rename one of the account tables by some other name to avoid the confusion.

Example: 𝝆𝐸𝑚𝑝(𝑁𝑎𝑚𝑒1,𝐷𝑒𝑝𝑡1)(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒)

Employee Emp

After rename

2. Additional operations:

2.1 Set Intersection Operation ():

Set intersection is denoted by symbol and it returns a relation that contains tuples that are in

both of its argument relations.

Result: Relation with tuples that appear in both R and S.

First Last Age

Maya singh 23

2.2 Join operations:

 Natural join ()

 Theta join (θ)

 Outer Join

 Left outer join()

 Right outer join()

 Full outer join()

The Join operation is used to combine related tuples from two relations into single tuples.

Natural join operation ():
The natural join is a binary operation that allows us to combine certain selections and a

Cartesian product into one operation. It is denoted by the join symbol . The natural join

operation performs the Cartesian product of given relations together with remove the duplicate

attributes. The natural join thus performs a join by equating the attributes with the same name

and then eliminates the replicated attributes.

In brief the result of the natural join of two relations R and S is the set of all combinations of

tuples in R and S that are equal on their common attribute names.

Name Department

Bhupi IT

Arjun CSC

Aayan IT

Name1 Dept1

Bhupi IT

Arjun CSC

Aayan IT

R S

By: Abhimanu Yadav

44

Formal definition of natural join:

 Let R and S be any two relations and {A1, A2, A3,,An}are n attributes of given

relations then their natural join is denoted by R S and is defined as follow:

 R S = π R U S (R.A1 = S.A1 ˄ R.A2 = S.A2 ˄ R.A3 = S.A3......... ˄ R.An = S.An R X S)

Where R S = {A1, A2, A3.....An}
For example consider the tables Employee and Dept and their natural join:

Employee Department

Employee Department (this is equivalent to Employee Emp.Dept=Depart.Dept Department)

Note:- The natural join is also called equijoin.

Theta join operation:
The theta join operation is an extension to the natural join operation that allows us to specify the

join condition. The theta condition consists one of the comparison operators {=, <, <=, >, >=, <

>}. When join condition is = i.e. θ is =, the operation is called an equijoin.

Example:

Employee Department

Then Employee e-id > Dept-id Department is

e-id e-name Dept

11 Bhupi Computer

13 Anju Finance

43 Manju Computer

54 Nisha Finance

Dept Manager

Computer Anisha

Finance Manisha

Production Umesh

e-id e-name Dept manager

11 Bhupi Computer Anisha

13 Anju Finance Manisha

43 Manju Computer Anisha

54 Nisha Finance Manisha

e-id e-name salary

11 Bhupi 3000

13 Anju 4000

43 Manju 5000

54 Nisha 6000

Dept-id Manager

09 Anisha

22 Manisha

59 Umesh

e-id e-name salary Dept-id Manager

11 Bhupi 3000 09 Anisha

13 Anju 4000 09 Anisha

43 Manju 5000 09 Anisha

43 Manju 5000 22 Manisha

54 Nisha 6000 09 Anisha

54 Nisha 6000 22 Manisha

By: Abhimanu Yadav

45

2.3 Division operation ():

It is denoted by symbol and is suited to queries that include the phrase “for all”. It takes

two relations and builds another relation, consisting of values of an attribute of one

relation that match all the values in the other relation.

Examples of Division AB

Example 2: let’s take two relations Depositor and Branch as below:

Depositor Branch

Account

customer-name account-number

 Pukar A-101

Shikha A-102

Anisha A-201

Gaurab A-209

Bikky A-233

Binek A-409

Kamala A-511

branch-name branch-city Assets

Newroad-branch Kathmandu 7000

Pokhara-branch Pokhara 3000

Kirtipur-branch Kirtipur 9000

Dodhara-branch Lalitpur 6000

Kalanki-branch Kathmandu 7200

Balkhu-ranch Kathmandu 2200

Banepa-branch Banepa 4000

Account-number branch-name Balance

A-101 Newroad-branch 50000

A-102 Kirtipur-branch 60000

A-201 Balkhu-branch 90000

A-206 Pokhara-branch 20000

A-301 Kalanki-branch 12000

A-401 Banepa-branch 22000

A-503 Dodhara-branch 41000

By: Abhimanu Yadav

46

Suppose we want to find all the customers who have an account at all branches located in

Kathmandu.

Strategy: think of it as three steps.

We can obtain the names of all branches located in Kathmandu by

 r1= bname(bcity=”Kathmandu” (branch))

We can also find all cname, bname pairs for which the customer has an account by

 r2=cname, bname(depositor account)

Now we need to find all customers who have an account at all branches located in Kathmandu.

The divide operation provides exactly those customers:

 cname, bname(depositor account) bname(bcity=”Kathmandu” (branch))

2.4 The Assignment Operation:

The assignment operation () provides a convenient way to express complex queries. It helps

human beings with writing out complex relational expressions in steps so that they can be more

easily understood.

The assignment operation denoted by and works like assignment in a programming language.

Example:

Variable E, Where E is any relational algebra expression.

3. Extended Relational Algebra Operations

3.1 Outer join operation:
The Outer join operation is an extension of the join operation to deal with missing information.

Three types of outer joins:

branch-name

Newroad-branch

Kalanki-branch

Balkhu-ranch

customer-name branch-name

 Pukar Newroad-branch

Shikha Kirtipur-branch

Anisha Balkhu-branch

customer-name

 Pukar

Shikha

Anisha

By: Abhimanu Yadav

47

3.1.1 Left outer join operation ():
It includes all tuples in the left hand relation and includes only those matching tuples

from the right hand relation.

Example:

Assume we have two relations: PEOPLE and MENU:

PEOPLE:

Name Age Food

Alice 21 Hamburger

Bill 24 Pizza

Carl 23 Beer

Dina 19 Shrimp

MENU:

Food Day

Pizza Monday

Hamburger Tuesday

Chicken Wednesday

Pasta Thursday

Tacos Friday

Then PEOPLE MENU is

Name Age people.Food menu.Food Day

Alice 21 Hamburger Hamburger Tuesday

Bill 24 Pizza Pizza Monday

Carl 23 Beer NULL NULL

Dina 19 Shrimp NULL NULL

3.1.2 Right outer join ():
It includes all tuples in the right hand relation and includes only those matching tuples

from the left hand relation.

Example:

Assume we have two relations: PEOPLE and MENU as above:

Then PEOPLE MENU is

Name Age people.Food menu.Food Day

Bill 24 Pizza Pizza Monday

Alice 21 Hamburger Hamburger Tuesday

NULL NULL NULL Chicken Wednesday

NULL NULL NULL Pasta Thursday

NULL NULL NULL Tacos Friday

3.1.3 Full outer join ():
It includes all tuples in the left hand relation and from the right hand relation.

Example:

Assume we have two relations: PEOPLE and MENU as above:

Then PEOPLE MENU is

Name Age people.Food menu.Food Day

Alice 21 Hamburger Hamburger Tuesday

Bill 24 Pizza Pizza Monday

Carl 23 Beer NULL NULL

Dina 19 Shrimp NULL NULL

NULL NULL NULL Chicken Wednesday

NULL NULL NULL Pasta Thursday

NULL NULL NULL Tacos Friday

By: Abhimanu Yadav

48

3.2 Null values:
It is possible for tuples to have a null value, denoted by null, for some of their attributes

 null signifies an unknown value or that a value does not exist.

 The result of any arithmetic expression involving null is null.

 Aggregate functions simply ignore null values (as in SQL)

 iFor duplicate elimination and grouping, null is treated like any other value, and two nulls

are assumed to be the same (as in SQL)

3.3 Generalized projection:
It extends the projection operation by allowing arithmetic functions to be used in the projection

list. The generalized projection operation has the form:

 F1, F2,….., Fn (E)

Where E is any relational-algebra expression, and each of F1, F2, …, Fn are arithmetic

expressions involving constants and attributes in the schema of E.

Example: Given relation instructor(ID, name, dept_name, salary)

Where salary is annual salary, get the same information but with monthly salary we use

following projection operation called generalized projection.

 ID, name, dept_name, salary/12 (instructor)

3.4 Aggregate Functions

Aggregate functions are functions that take a collection of values and return a single

value as a result. It is denoted by symbol(𝒢) read it as “calligraphic G”.

Some aggregate functions are: sum, avg, count, max, min.

Example: let’s take a relation “Fulltime-works” with a number of tuples as below:

Fulltime-works

Problem: “Suppose we want to find the total salary of all the full time employees in branch

wise”

 branch-name 𝒢sum(salary)
(Fulltime-works)

 The result of aggregate function with grouping specified above will be:

Problem: Find the minimum Salary:

 𝒢min(salary)
(Fulltime-works)

employee-name branch-name Salary

Ram Patan-branch 30000

Shyam Tokha-branch 20000

Rehman Palpa-branch 40000

Ram Patan-branch 25000

branch-name sum of salary

Patan-branch 55000

Tokha-branch 20000

Palpa-branch 40000

Group2: branch name = sanjay

place

Group3: branch name =

Dayalbagh

By: Abhimanu Yadav

49

Results:

Problem: Count the number of employees in the Patan-branch:

 𝒢count(employee−name)
(branch − 𝑛𝑎𝑚𝑒 = Patan-branch) (Fulltime-works)

Results:

Database Manipulation:
Until now we only did the extraction of information from the database. In this section we will

perform some modification on the database. We will namely use three types of operations for the

modification of the database; they are insertion, deletion and modification.

All these operations can be expressed using the assignment operator.

Insertion operation:
To insert data into a relation, we specify a tuple to be inserted.

Syntax: RR U E

Where R is a relation and E is a relational algebra expression.

Example: suppose we have a relation employee

Employee (Name, Salary, Address)

Suppose we wish to insert an employee “Bhupi” of salary 50,000 and live in Kathmandu then we

write,

 EmployeeEmployee U {“Bhupi”, 50000, Kathmandu}

Deletion operation:
 We can remove the selected tuples from the database. We cannot delete values of only

particular attributes.

Syntax: RR-E

Where R is a relation and E is a relational algebra expression.

Example: Delete all of Anju information from Employee relation

 Employee

Employee Employee - e-name=”Anju” (Employee)

 Result:

 Employee

MIN(salary)

20000

COUNT(employee-name)

 2

e-id e-name Salary

11 Bhupi 3000

13 Anju 4000

43 Manju 5000

54 Nisha 6000

33 Anju 3400
e-id e-name Salary

11 Bhupi 3000

43 Manju 5000

54 Nisha 6000

By: Abhimanu Yadav

50

Updating Operation:
In some situation we may wish to change a value in tuple without changing all values in the

tuple. We can use the generalized-projection operator to do this task.

Syntax: <A1, A2,…..An> (Relation)

Where {A1, A2,........,An} are attributes.

Example: All employees working in department “Computer” has increased their salary by 15%.

Employee

Employee(e-id, e-name, department, salary + salary*0.15 (department=”Computer” (Employee)) U

e-id, e-name, department, salary (department ≠”Computer” (Employee)))

Result: Employee

e-id e-name department salary

11 Bhupi Computer 3000

13 Anju Math 4000

43 Manju Physics 5000

54 Nisha Computer 6000

33 Anisha Math 6400

e-id e-name department salary

11 Bhupi Computer 3450

13 Anju Math 4000

43 Manju Physics 5000

54 Nisha Computer 6900

33 Anisha Math 6400

By: Abhimanu Yadav

51

Relational Algebra Examples:

Example 1: Consider the relational database:

employee (person-name, street, city)

works (person-name, company-name, salary)

company (company-name, city)

manages (person-name, manager-name)

Give an expression in relational algebra for each of following requests:

1. Find the name of all employees who works for “NIBL Bank “.

 person-name (company-name=”NIBL Bank” (works))

2. Find the names and cities of residence of all employees who work for “NIBL Bank”.

 person-name, city (company-name=”NIBL Bank” (employee works))

3. Find the names, street address, and cities of residence of all employees who works for

“Software Company” and earn more than 50000 per month.

 person-name, street, city (company-name=”Software company” ˄ salary > 50000(employee works))

4. Find the name of all employees in the database who live in the same city as the company for

which they work.

 person-name (employee works company))

5. Find the name of all employees in the database who do not work for “SBI Bank”.

 person-name (company-name ≠ ”SBI Bank”(works))

6. Find the names of all employees who earn more than every employee of “SBI bank”.

 Temp 𝒢max(salary)
(company-name=”SBI Bank” (works))

 person-name (salary > Temp (works))

7. Assume the company may be located in several cities. Find all companies located in every city

in which “SBI Bank” is located.

 company-name, city (company) city (company-name =”SBI Bank”(company))

8. Give all employees of “SBI Bank” a 15% salary rise.

 Works person-name, company-name, salary +salary*0.15 (company-name=”SBI Bank” (works))

9. Delete all tuples in the employee relation where employee’s city is “Kathmandu”.

 employee employee - (city=”Kathmandu” (employee))

By: Abhimanu Yadav

52

Example 2: Consider the relational database:

By: Abhimanu Yadav

53

 Structured Query Language (SQL)

Introduction:
SQL is a computer language for organizing, managing, and retrieving data stored by a computer

database. In fact, SQL works with one specific type of database, called a relational database.

The name "SQL" is the short form for Structured Query Language.

SQL is used to control all of the functions that a DBMS provides for its users, including:
1. Data definition: SQL lets a user define the structure and organization of the stored data

and relationships among the stored data items.

2. Data retrieval: SQL allows a user or an application program to retrieve stored data from

the database and use it.

3. Data manipulation: SQL allows a user or an application program to update the database

by adding new data, removing old data, and modifying previously stored data.

4. Access control: SQL can be used to restrict a user's ability to retrieve, add, and modify

data, protecting stored data against unauthorized access.

5. Data sharing: SQL is used to coordinate data sharing by concurrent users, ensuring that

they do not interfere with one another.

6. Data integrity: SQL defines integrity constraints in the database, protecting it from

corruption due to inconsistent updates or system failures.

What Can SQL do?
 SQL can execute queries against a database

 SQL can retrieve data from a database

 SQL can insert records in a database

 SQL can update records in a database

 SQL can delete records from a database

 SQL can create new databases

 SQL can create new tables in a database

 F Unit 4

 Basic structure

 Set operation

 Aggregate functions

 NULL values

 Nested sub queries

 Views

 Modification of database

 joined relations

 Data definition languages (DDL)

 Other SQL features:

Dynamic and Embedded SQL

By: Abhimanu Yadav

54

SQL DML and DDL:
SQL can be divided into two parts: The Data Manipulation Language (DML) and the Data

Definition Language (DDL).

The query and update commands form the DML part of SQL:

 SELECT: - extracts data from a database

 UPDATE: - updates data in a database

 DELETE:- deletes data from a database

 INSERT INTO: - inserts new data into a database

The DDL part of SQL permits database tables to be created or deleted. It also defines indexes

(keys), specify links between tables, and impose constraints between tables.

The most important DDL statements in SQL are:

 CREATE DATABASE- creates a new database

 ALTER DATABASE- modifies a database

 CREATE TABLE- creates a new table

 ALTER TABLE- modifies a table

 DROP TABLE- deletes a table

 CREATE INDEX- creates an index (search key)

 DROP INDEX- deletes an index

Basic structure:
 The basic structure of an SQL expression consists of three clauses: SELECT, FROM

and WHERE.

 The SELECT clause corresponds to the projection operation of relational algebra. It is

used to list the attributes desired in the result of a query.

 The FROM clause corresponds to the Cartesian product operation of relational algebra. It

is used to list the relations to be used in the evaluation of the expression.

 The WHERE clause corresponds to the selection predicate of relational algebra. It

consists of a predicate in the attributes of the relations that appear in the FROM clause.

A typical SQL query has the form

 SELECT A1, A2, …..,An

 FROM R1, R2, …… ,Rn

 WHERE P

Where each Ai represents an attribute, each Ri is a relation and P is a predicate.

Its equivalent relational algebra expression is:

 A1, A2, …..,An (p (R1 X R2 X ……X Rn))

The SQL SELECT Statement:
The SELECT statement is used to select data from a database. The result is stored in a result

table, called the result-set.

SQL SELECT Syntax:
SELECT column_name(s) FROM table_name

and

SELECT * FROM table_name

Note: SQL is not case sensitive. SELECT is the same as select.

By: Abhimanu Yadav

55

An SQL SELECT Example:

Sailors (sid: integer, sname: string, rating: integer, age: real)

Boats (bid: integer, bname: string, color: string)

Reserves (sid: integer, bid: integer, day: date

Sailors Boats Reserves

Now we want to select the content of the columns named "sname" and "age" from the table

Sailors. We use the following SELECT statement:

SELECT sname, age

FROM Sailors;

The result-set will look like this:

Sname Age

Ajaya 33

Robin 43

Ganga 28

Manoj 31

Rahul 22

Sanjaya 42

Raju 19

SELECT * Example
Now we want to select all the columns from the “Sailors " table. We use the following SELECT

statement:

SELECT * FROM Sailors

The result-set will look like this:

Sid bid Day

1 24 2068-08-11

1 11 2068-08-11

1 41 2068-08-22

2 33 2068-11-08

2 11 2068-08-19

11 41 2068-09-23

9 24 2068-08-10

9 11 2069-08-15

9 33 2068-05-21

Bid Bname color

11 Marine Red

24 Clipper Blue

33 Wooden Black

41 Marine Green

Sid sname Rating age

1 Ajaya 12 33

2 Robin 11 43

3 Ganga 32 28

4 Manoj 9 31

7 Rahul 7 22

9 Sanjaya 9 42

11 Raju 4 19

Sid sname Rating age
1 Ajaya 12 33

2 Robin 11 43

3 Ganga 32 28

4 Manoj 9 31

7 Rahul 7 22

9 Sanjaya 9 42

11 Raju 4 19

 Tip: The asterisk (*) is a quick way of selecting all columns!

By: Abhimanu Yadav

56

The SQL SELECT DISTINCT Statement:
In a table, some of the columns may contain duplicate values. This is not a problem; however,

sometimes you will want to list only the different (distinct) values in a table. The DISTINCT

keyword can be used to return only distinct (different) values.

SQL SELECT DISTINCT Syntax:
SELECT DISTINCT column_name(s)

FROM table_name

SELECT DISTINCT Example:

 Now we want to select only the distinct values from the column named "bname" from the

table “Boats”. We use the following SELECT statement:

SELECT DISTINCT bname FROM Boats

The result-set will look like this:

Bname

Marine

Clipper

Wooden

The WHERE Clause:
The WHERE clause is used to extract only those records that fulfill a specified criterion.

SQL WHERE Syntax:
SELECT column_name(s)

FROM table_name

WHERE column_name operator value

WHERE Clause Example:
Now we want to select only those Sailors whose age is less than 30 from the table Sailors above.

We use the following SELECT statement:

SELECT *

FROM Sailors

WHERE age < 30;

 The result-set will look like this:

Quotes around Text Fields:
SQL uses single quotes around text values (most database systems will also accept double

quotes). Although, numeric values should not be enclosed in quotes.

For text values:

This is correct: SELECT *

Sid sname Rating age

3 Ganga 32 28

7 Rahul 7 22

11 Raju 4 19

By: Abhimanu Yadav

57

 FROM Sailors

 WHERE sname='Ajaya';

This is wrong: SELECT *

 FROM Sailors

 WHERE sname=Ajaya;

For Numeric values:

This is correct: SELECT *

 FROM Sailors

 WHERE age=32

This is wrong: SELECT *

 FROM Sailors

 WHERE age='32'

Operators Allowed in the WHERE Clause:
With the WHERE clause, the following operators can be used:

Operator Description

= Equal

< > Not equal

 > Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

 LIKE Search for a pattern

 IN If you know the exact value you want

to return for at least one of the columns.

AND And

OR Or

The AND & OR Operators:

The AND & OR operators are used to filter records based on more than one condition.
 The AND operator displays a record if both the first condition and the second condition is

true.

 The OR operator displays a record if either the first condition or the second condition is

true.

AND Operator Example:

Suppose we want to select only the Sailors with the name equal to "Ajaya" AND the age equal to

33: We use the following SELECT statement:

SELECT *

FROM Sailors

WHERE sname='Ajaya' AND age=33;

Note: In some versions of SQL the <> operator may be written as !=

By: Abhimanu Yadav

58

The result-set will look like this:

Example 2: Find the sids of sailors who have reserved a red boat.

SELECT R.sid

FROM Boats B, Reserves R

WHERE B.bid = R.bid AND B.color = `red'

The result-set will look like this:

OR Operator Example:
Now we want to select only the Sailors with the first name equal to "Rahul" OR the rating equal

to 9: We use the following SELECT statement:

SELECT *

FROM Sailors

WHERE sname='Rahul' OR rating=9;

The result-set will look like this:

Combining AND & OR:
We can also combine AND and OR (use parenthesis to form complex expressions).

Now we want to select only the Sailors of rating equal to 9 AND the age equal to 31 OR to 42:

We use the following SELECT statement:

SELECT *

FROM Sailors

WHERE rating=9 AND (age=31 OR age=42)

The result-set will look like this:

The ORDER BY Keyword:
The ORDER BY keyword is used to sort the result-set by a specified column. The ORDER BY

keyword sorts the records in ascending order by default. If you want to sort the records in a

descending order, you can use the DESC keyword.

SQL ORDER BY Syntax:

Sid sname rating age

1 Ajaya 12 33

Sid

1

2

9

sid Sname Rating Age

4 Manoj 9 31

7 Rahul 7 22

9 Sanjaya 9 42

sid Sname Rating Age

4 Manoj 9 31

9 Sanjaya 9 42

By: Abhimanu Yadav

59

SELECT column_name(s)

FROM table_name

ORDER BY column_name(s) ASC | DESC

ORDER BY Example:
 Now we want to select all the Sailors from the table above, however, we want to sort the

Sailors by their name. We use the following SELECT statement:

SELECT *

 FROM Sailors

ORDER BY sname;

The result-set will look like this:

ORDER BY DESC Example:
Now we want to select all the Sailors from the table above, however, we want to sort the

Sailors descending by their name. We use the following SELECT statement:

SELECT *

FROM Sailors

ORDER BY sname DESC

The result-set will look like this:

The SQL BETWEEN Operator:

The BETWEEN operator is used to select values within a range. The values can be numbers,

text, or dates.

 SQL BETWEEN Syntax:

SELECT column_name(s)

FROM table_name

WHERE column_name BETWEEN value1 AND value2;

BETWEEN Operator Example:

The following SQL statement selects all Sailors with age BETWEEN 20 and 40:

Sid Sname Rating Age

1 Ajaya 12 33

3 Ganga 32 28

4 Manoj 9 31

7 Rahul 7 22

11 Raju 4 19

2 Robin 11 43

9 Sanjaya 9 42

Sid Sname Rating Age

9 Sanjaya 9 42

2 Robin 11 43

11 Raju 4 19

7 Rahul 7 22

4 Manoj 9 31

3 Ganga 32 28

1 Ajaya 12 33

By: Abhimanu Yadav

60

SELECT *

FROM Sailors

WHERE age BETWEEN 20 AND 40;

The result-set will look like this:

NOT BETWEEN Operator Example:

To display the Sailors outside the range of the previous example, use NOT BETWEEN:

SELECT *

FROM Sailors

WHERE age NOT BETWEEN 20 AND 40;

The result-set will look like this:

SQL IN Operator:

The IN operator allows us to specify multiple values in a WHERE clause.

SQL IN Syntax:

SELECT column_name(s)

FROM table_name

WHERE column_name IN (value1, value2...);

IN Operator Example:

The following SQL statement selects all Sailors with a rating of 9 or 11:

SELECT *

FROM Sailors

WHERE Rating IN (9, 11);

The result-set will look like this:

NOT IN Operator Example:

The following SQL statement selects all Sailors with age not 11 or 9:
SELECT *

FROM Sailors

WHERE rating NOT IN (11, 9);

Sid Sname Rating Age

7 Rahul 7 22

4 Manoj 9 31

3 Ganga 32 28

1 Ajaya 12 33

Sid Sname Rating Age

9 Sanjaya 9 42

2 Robin 11 43

11 Raju 4 19

Sid sname Rating Age

2 Robin 11 43

4 Manoj 9 31

9 Sanjaya 9 42

 Its equivalent query by using OR
operator is as below:

 SELECT *

 FROM Sailors
 WHERE Rating=9 OR Rating=11;

By: Abhimanu Yadav

61

The result-set will look like this:

String operations:
SQL specifies strings by enclosing them in single quotes, for example ‘Pokhara’. The most

commonly used operation on strings is pattern matching. It uses the operator LIKE. We describe

the patterns by using two special characters:

 Percent (%): The % character matches any substring, even the empty string.

 Underscore (_): The underscore stands for exactly one character. It matches any

character.

To illustrate pattern matching, we consider the following examples:

 ‘A_Z’: All string that starts with ‘A’, another character and end with ‘Z’. For example,

‘ABZ’ and ‘A2Z’ both satisfy this condition but ‘ABHZ’ does not because between A

and Z there are two characters are present instead of one.

 ‘ABC%’: All strings that start with ‘ABC’.

 ‘%ABC’: All strings that ends with ‘ABC’.

 ‘%AN%’: All strings that contains the pattern ‘AN’ anywhere. For example, ‘ANGELS’

,’SAN’, ‘FRANCISCO’ etc.

 ‘_ _ _’: matches any strings of exactly three characters.

 ‘_ _ _%’: matches any strings of at least three characters.

Example:

 SELECT *

 FROM Sailors

 WHERE sname LIKE ‘%ya’;

This SQL statement will match any Sailors first names that end with ‘ya’.

The result-set will look like this:

Set Operations:
Some time it is useful to combine query results from two or more queries into a single result.

SQL supports three set operators which are:

 SQL Union

 SQL Intersection and

 SQL Except (Minus)

These operators have the pattern:

 <query1> <set operator> <query2>

Sid sname Rating age

1 Ajaya 12 33

3 Ganga 32 28

7 Rahul 7 22

11 Raju 4 19

Sid sname Rating age

1 Ajaya 12 33

9 Sanjaya 9 42

By: Abhimanu Yadav

62

SQL Union Operation:
In SQL the UNION clause combines the results of two SQL queries into a single table of all

matching rows. The two queries must result in the same number of columns and compatible data

types in order to unite. Any duplicate records are automatically removed unless UNION ALL is

used.

Example: Find the names of sailors who have reserved a red or a green boat.

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid

AND (B.color = `red' OR B.color = `green')

This query is difficult to understand (and also quite inefficient to execute, as it turns out). A

better solution for this query is to use UNION as follows:

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = `red'

UNION

SELECT S2.sname

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = `green'

The result-set will look like this:

UNION ALL gives different results, because it will not eliminate duplicates. Executing this

statement:

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = `red'

UNION ALL

SELECT S2.sname

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = `green'

The result-set will look like this:

INTERSECT Operation:
The SQL INTERSECT operator takes the results of two queries and returns only rows that

appear in both result sets. The INTERSECT operator removes duplicate rows from the final

result set. The INTERSECT ALL operator does not remove duplicate rows from the final result

set.

Sname

Sanjaya

Robin

Raju

Ajaya

Sname

Sanjaya

Robin

Raju

Ajaya

Ajaya

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Table_(database)
http://en.wikipedia.org/wiki/Row_(database)
http://en.wikipedia.org/wiki/Column_(database)
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Data_type

By: Abhimanu Yadav

63

Example: Find the names of sailors who have reserved a red and a green boat.

SELECT S.sname

FROM Sailors S, Reserves R1, Boats B1, Reserves R2, Boats B2

WHERE S.sid = R1.sid AND R1.bid = B1.bid AND S.sid = R2.sid AND R2.bid = B2.bid

AND B.color = `red' AND B.color = `green';

This query is difficult to understand (and also quite inefficient to execute, as it turns out). A

better solution for this query is to use INTERSECT as follows:

The result-set will look like this:

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = `red'

INTERSECT

SELECT S2.sname

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = `green';

The result-set will look like this:

Except Operation:
The SQL EXCEPT operator takes the distinct rows of one query and returns the rows that do not

appear in a second result set.

Example: Find the names of sailors who have reserved a red boats but not a green boat.

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = `red'

EXCEPT

SELECT S2.sname

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid = R2.sid AND R2.bid = B2.bid AND B2.color = `green'

The EXCEPT operation automatically eliminate duplicates. If we want to retain all duplicates,

we must write EXCEPT ALL in place of EXCEPT.

SQL Aggregate Functions:
Aggregate functions are functions that take a collection of values as input and return a single

value.

Useful aggregate functions are:

 SUM() - Returns the sum

 AVG() - Returns the average value

 COUNT() - Returns the number of rows

 MAX() - Returns the largest value

 MIN() - Returns the smallest value

 FIRST() - Returns the first value

 LAST() - Returns the last value

Example 1: find sum of rating of all sailors.

Sname

Ajaya

By: Abhimanu Yadav

64

 SELECT SUM (rating)

 FROM Sailors;

The result-set will look like this:

Example 2: find average age of all sailors.

 SELECT AVG (age)

 FROM Sailors;

The result-set will look like this:

Example 3: find average age of all sailors with a rating of 9.

 SELECT AVG (age)

 FROM Sailors

 WHERE rating=9;

The result-set will look like this:

Example 4: find name and age of oldest sailor.

 SELECT sname, age

 FROM Sailors

 WHERE age = (SELECT MAX(age)

 FROM Sailors);

The result-set will look like this:

Example 5: count number of sailors.

 SELECT COUNT(*)

 FROM Sailors;

The result-set will look like this:

Example 6: Find the names of sailors who are older than the oldest sailor with a rating of 9.

SELECT S.sname

FROM Sailors S

WHERE S.age > (SELECT MAX (S2.age)

FROM Sailors S2

WHERE S2.rating =9);

The result-set will look like this:

Example 7: find the maximum and minimum aged sailors name.

 SELECT sname

 FROM Sailors

 WHERE age=(SELECT max(age) FROM Sailors)

Sum(rating)

 85

Avg(age)

 29.7143

Avg(age)

 31.5000

Sname max(age)

Robin 43

count(*)

 7

Sname

Robin

By: Abhimanu Yadav

65

 UNION

 SELECT S1.sname

 FROM Sailors S1

 WHERE S1.age=(SELECT min(age) FROM Sailors);

The result-set will look like this:

GROUP BY Clause:

The SQL GROUP BY clause is use to divide the rows in a table into groups. The GROUP BY

statement is used along with the SQL aggregate functions. In GROUP BY clause, the tuples with

same values are placed in one group.

Example: Find the age of the youngest sailor for each rating level.

 SELECT rating, MIN(age)

 FROM Sailors

 GROUP BY rating;

The result-set will look like this:

This table display the minimum age of each group according to their rating.

SQL HAVING Clause:

The SQL HAVING clause allows us to specify conditions on the rows for each group. It is used

instead of the WHERE clause when Aggregate Functions are used. HAVING clause should

follow the GROUP BY clause if we are using it.

Example: let’s take an instance S3 of Sailors,

S3

Example: Find the age of the youngest sailor who is eligible to vote (i.e., is at least 18 years

old) for each rating level with at least two such sailors.

Sname

Robin

Raju

Rating Min(age)

4 19

7 22

9 31

11 43

12 33

32 28

Sid sname Rating age

1 Ajaya 12 33

2 Robin 11 43

3 Ganga 32 28

4 Manoj 9 31

7 Rahul 7 22

9 Sanjaya 9 42

11 Raju 4 19

22 Robin 11 54

32 Anish 7 21

By: Abhimanu Yadav

66

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

The result-set will look like this:

Example 2: Find the average age of sailors who are of voting age (i.e., at least 18 years old)

for each rating level that has at least two sailors.

SELECT S.rating, AVG (S.age)

FROM Sailors S

WHERE S. age >= 18

GROUP BY S.rating

HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2

WHERE S.rating = S2.rating);

NULL Values:
SQL allows the use of NULL values to indicate absence of information about the value of an

attribute. It has a special meaning in the database- the value of the column is not currently known

but its value may be known at a later time.

A special comparison operator IS NULL is used to test a column value for NULL. It has

following general format:

 Value1 IS [NOT] NULL;

This comparison operator return true if value contains NULL, otherwise return false. The

optional NOT reverses the result.

Following syntax is illegal in SQL:

 WHERE attribute=NULL;

Example: let’s take an instance S4 of Sailors,

S4

Find all sailors that appear in S4 relation with NULL values for rating and age:

Rating Minage

7 21

9 31

11 43

sid sname Rating Age

1 Ajaya 12 33

2 Robin 11 43

3 Ganga 32 28

4 Manoj 9 31

7 Rahul 7 22

9 Sanjaya NULL NULL

11 Raju 4 19

22 Robin NULL NULL

32 Anish NULL NULL

By: Abhimanu Yadav

67

 SELECT sname

 FROM S4

 WHERE rating IS NULL AND age IS NULL;
The result-set will look like this:

Nested Sub-queries:
A nested query is a query that has another query embedded within it; the embedded query is

called a sub-query. The result of sub query is used by the main query (outer query). We can place

the sub-query in a number of SQL clauses including:

 The WHERE clause

 The HAVING clause

 The FROM clause

A common use of sub-queries is to perform tasks for set membership and make set comparison.

Set Membership:

The IN connective is used to test a set membership, where set is a collection of values produced

by SELECT clause in sub-query. The NOT IN connective is used to test for absence of set

membership.

Example1: Find the names of sailors who have reserved boat 41.

 SELECT sname

 FROM Sailors

 WHERE sid IN (SELECT sid

 FROM Reserves

 WHERE bid=41);

The result-set will look like this:

Example 2: Find the names of sailors who have reserved a red boat.

 SELECT sname

 FROM sailors

 WHERE sid IN (SELECT sid

 FROM Reservs

 WHERE bid IN (SELECT bid

 FROM Boats

 WHERE color=’Red’));

The result-set will look like this:

sname

Sanjaya

Robin

Anish

Sname

Ajaya

Raju

sname

Ajaya

Robin

Sanjaya

By: Abhimanu Yadav

68

Example 3: Find the names of sailors who have not reserved a red boat.

 SELECT sname

 FROM sailors

 WHERE sid NOT IN (SELECT sid

 FROM Reservs

 WHERE bid IN (SELECT bid

 FROM Boats

 WHERE color=’Red’));

The result-set will look like this:

Set Comparison:

The comparison operators are used to compare sets in nested sub-query. SQL allows following

set comparisons:

< SOME, <= SOME, > SOME, >= SOME, = SOME, < > SOME

<ALL, <=ALL, >ALL, >=ALL, = ALL, < >ALL

The keyword ANY is synonymous to SOME in SQL.

Example 1: let’s take an instance S4 of Sailors as:

 S4

Find the id and names of sailors whose rating is better than some sailor called “Rahul”.

SELECT sid, sname

FROM S4

WHERE rating >ANY (SELECT rating

 FROM S4

 WHERE sname=’Rahul’);

The result-set will look like this:

Sname

Ganga

Manoj

Rahul

Raju

Sid Sname Rating Age

1 Ajaya 12 33

2 Robin 11 43

3 Ganga 32 28

4 Manoj 9 31

7 Rahul 7 22

9 Sanjaya 9 42

11 Raju 4 19

8 Rahul 6 76

Sid Sname

1 Ajaya

2 Robin

3 Ganga

4 Manoj

7 Rahul

9 Sanjaya

By: Abhimanu Yadav

69

Example 2: Find the id and names of sailors whose rating is better than every sailor called

“Rahul”.

 SELECT sid, sname

FROM S4

WHERE rating >ALL (SELECT rating

 FROM S4

 WHERE sname=’Rahul’);

The result-set will look like this:

Example 3: Find the id and name of sailor with height rating.

 SELECT sid, sname

FROM S4

WHERE rating >=ALL (SELECT rating

 FROM S4);

The result-set will look like this:

Views:
A database view is a logical table. It does not physically store data like tables but

represent data stored in underlying tables in different formats. A view does not require desk

space and we can use view in most places where a table can be used.

Since the views are derived from other tables thus when the data in its source tables are updated,

the view reflects the updates as well. They also can be used by DBA to enforce database

security.

Advantages of Views:

 Database security: view allows users to access only those sections of database that

directly concerns them.

 View provides data independence.

 Easier querying

 Shielding from change

 Views provide group of users to access the data according to their criteria.

 Vies allow the same data to be seen by different users in different ways at the same time.

Sid Sname

1 Ajaya

2 Robin

3 Ganga

4 Manoj

9 Sanjaya

Sid Sname

3 Ganga

 Note: IN and NOT IN are equivalent to =ANY and < > respectively.

By: Abhimanu Yadav

70

Syntax for creating view is: Optional

 CREATE VIEW <view name> <columns> AS <query expression>

Where, <query expression> is any legal query expression.

Example: Following view contains the id, name, rating+5 and age of those Sailors whose age is

greater than 30:

 CREATE VIEW Sailor_view AS

 SELECT sid, sname, rating+5, age

 FROM Sailors

 WHERE age>30;

Now by executing this query we get following view (logical table);

 Sailor_view

Now any valid database operations can be performed in this view like in that of general table.

Modification of the database:

Until now we only study about how information can be extract from the database. Now,

we show how to add, remove, or change information with SQL.

To modify database, there are mainly three operations are used:

 Insertion

 Deletion and

 Updates

1.Insertion:
To insert data into a relation, we either specify a tuple to be inserted or write a query

whose result is a set of tuples to be inserted.

Example 1: suppose we need to insert a new record of Sailors of id is11, name is “Rahul”, rating

is 9 and of age is 29 then we write following SQL query,

 INSERT INTO Sailors

 VALUES (11,’Rahul’, 9, 29);

 OR

 INSERT INTO Sailors (sid, sname, rating, age)

 VALUES (11,’Rahul’, 9, 29);

More generally, we might want to insert tuples on the basis of the result of query.

Example 2: suppose we have already some tuples on the relation ‘Sailores’. Suppose we need to

insert those tuples of sailors into their own relation whose rating is less than 7, this can be write

as,

 INSERT INTO Sailors

 SELECT *

 FROM Sailors

Sid sname Rating+5 age

1 Ajaya 17 33

2 Robin 16 43

9 Sanjaya 14 42

8 Rahul 11 76

By: Abhimanu Yadav

71

 WHERE rating<7;

2. Deletion:
It is used to remove whole records or rows from the table.

Syntax:

DELETE FROM table_name

 WHERE <predicate>

Example 1: suppose we need to remove all tuples of Sailors whose age is 32,

 DELETE FROM Sailors

 WHERE age=32;

Example 2: Remove all tuples of Sailors whose age is less than 30 and rating greater than 7,

 DELETE FROM Sailors

 WHERE age<32 AND rating>7;

3. Updates:
If we need to change a particular value in a tuple without changing all values in the tuple, then

for this purpose we use update operation.

Syntax:

 UPDATE table_name

 SET <column i> = <expression i>;

Example: suppose we need to increase the rating of those sailors whose age is greater than 40 by

20%, this can be write as,

 UPDATE sailors

 SET rating=rating + rating*0.2

 WHERE age>40;

Joined relations:
An SQL JOIN clause is used to combine rows from two or more tables, based on a common field

between them.

The types the different SQL JOINs are:

 INNER JOIN

 LEFT OUTER JOIN

 RIGHT OUTER JOIN

 FULL OUTER JOIN

INNER JOIN:

It is most common type of join. An SQL INNER JOIN return all rows from multiple tables

where the join condition is met.

SQL INNER JOIN Syntax:

SELECT column_name(s)

FROM table1

INNER JOIN table2

ON table1.column_name=table2.column_name;

Note: INNER JOIN is the same as JOIN.

By: Abhimanu Yadav

72

Example 1: Find the sailor id, boat id, boat name, boat color of those sailors who have

reserved a red boat.

 SELECT sailors.sid, boats.bid, boats.bid, boats.bname, boats.color

 FROM sailors INNER JOIN reserver INNER JOIN boats

 WHERE sailors.sid=reserver.sid AND reserver.bid=boats.bid;

The result-set will look like this:

Example 2: Find the name and age of those sailors who have reserved a Marine boat.

 SELECT sailors.sname, sailors.age

 FROM sailors INNER JOIN reserver INNER JOIN boats

 WHERE sailors.sid=reserver.sid AND reserver.bid=boats.bid;

The result-set will look like this:

LEFT OUTER JOIN:

The LEFT JOIN keyword returns all rows from the left table (table1), with the matching rows in

the right table (table2). The result is NULL in the right side when there is no match.

SQL LEFT JOIN Syntax:

SELECT column_name(s)

FROM table1

LEFT OUTER JOIN table2

ON table1.column_name=table2.column_name;

RIGHT OUTER JOIN:

The RIGHT JOIN keyword returns all rows from the right table (table2), with the matching rows

in the left table (table1). The result is NULL in the left side when there is no match.

SQL RIGHT JOIN Syntax:

SELECT column_name(s)

FROM table1

RIGHT OUTER JOIN table2

ON table1.column_name=table2.column_name;

By: Abhimanu Yadav

73

FULL OUTER JOIN:

The FULL OUTER JOIN keyword returns all rows from the left table (table1) and from the right

table (table2). The FULL OUTER JOIN keyword combines the result of both LEFT and RIGHT

joins.

SQL FULL OUTER JOIN Syntax:

SELECT column_name(s)

FROM table1

FULL OUTER JOIN table2

ON table1.column_name=table2.column_name;

Data definition languages:
The DDL part of SQL permits database tables to be created or deleted. It also defines indexes

(keys), specify links between tables, and impose constraints between tables.

The most important DDL statements in SQL are:

 CREATE DATABASE- creates a new database

 ALTER DATABASE- modifies a database

 CREATE TABLE- creates a new table

 ALTER TABLE- modifies a table

 DROP TABLE- deletes a table

 CREATE INDEX- creates an index (search key)

 DROP INDEX- deletes an index

Domain type (data type) in SQL:
When we create a table each column of the table must be specified by their domain or data type.

Due to e it helps us what type of data will be stored in the field.

The SQL standard supports a variety of build-in domain types which are:

 Char (n): A fixed length character data (string). Also we can use full form character.

 Varchar(n): A variable character string.

 Int: used to represent whole number. Also we can use it’s full form integer.

 Numeric(p, d): A fixed point number with user-specified precision. The number consists

of p digits (plus a sign), and d represent the number of digits to right of decimal point.

 Real, double precision: floating point numbers with machine dependent precisions.

 Float(n): floating point number with precision of at least n digits.

 Date: A calendar date containing a four digit year, month and day. Eg ‘2006-04-22’

 Time: The time of day, in hours, minutes, and seconds.eg ’09:34:23’

 Timestamp: combination of date and time.eg ‘2008-05-21 11:23:08’

CREATE DATABASE:
The CREATE DATABASE statement is used to create a database.

Syntax:

CREATE DATABASE dbname;

Example:

By: Abhimanu Yadav

74

CREATE DATABASE my_db;

After creating database ‘my_db’ we need to connect it as;

 CONNECT my_db;

ALTER DATABASE:
Allow us to modify existing database name.

Syntax:

CREATE TABLE:

Allow us to create a new table within given database.

Syntax:

 CREATE TABLE <table_name>

 (

 <column1> <data type> [not null] [unique][<integrity constraint>],

 <column2> <data type> [not null] [unique][<integrity constraint>],

 ……………….

 ………………

 <column n> <data type> [not null] [unique][<integrity constraint>]

)

Note: []: optional

Example:

CREATE TABLE Sailors

(

 Sid INTEGER NOT NULL,

 Sname VARCHAR(12),

 Rating INTEGER,

 Age INTEGER,

 PRIMARY KEY (sid)

)

ALTER TABLE:

Allow us to modify a given table.

The structure of given table can be changed either of the following:

 By adding new column in existing table

 By deleting some columns from an existing table and

 By modifying some columns of given table

A new column can be added to the table as follows:

Syntax:

 ALTER TABLE <table name>

 ADD (<column_name> <datatype>);

Example: suppose we want to add a new column ‘addresses’ to an existing table Sailors,

ALTER TABLE Sailors

By: Abhimanu Yadav

75

ADD (addresses varchar(15));

An existing column can be removed from the table as,

 ALTER TABLE <table_name>

 DROP (column_name);

Example: suppose we want to remove an existing column ‘addresses’ from the table sailors as,

 ALTER TABLE Sailors

 DROP (addresses);

An existing column can be modified as,

 ALTER TABLE <table_name>

 MODIFY (<column name> <data type>);

Example: modify sailors relation by changing the range of the name of sailors by 20,

 ALTER TABLE sailors

 MODIFY (sname varchar(20));

DROP TABLE
It allows us to remove an existing table from the database.

Syntax:

 DROP TABLE <table name>

Example: if we want to remove a table ‘Sailors’ from the database my_db as,

 DROP TABLE Sailors;

Embedded SQL:
The programming language in which SQL queries are embedded is called host language.

And the SQL structures permitted in the host language is called embedded SQL. They are

compiled by the embedded SQL processor.

Writing queries in SQL is usually much easier than coding same query in a programming

language. However, a programmer must access to a database from a general purpose

programming language for following two reasons:

 Not all queries can be expressed in SQL

 Non-declarative actions such as printing a report, interacting with user, or sending the

result of query to a graphical user interface etc. cannot be done from the SQL.

Dynamic SQL:
The dynamic SQL component of SQL allows programs to construct and submit SQL

queries at run time. In contrast, embedded SQL statements must be completely present at

compile time; they are compiled by the embedded SQL preprocessor.

By: Abhimanu Yadav

76

Exercise 1: Consider the following relations:

Student (snum: integer, sname: string, major: string, level: string, age: integer)

Class (cname: string, meets-at: time, room: string, fid: integer)

Enrolled (snum: integer, cname: string)

Faculty (fid: integer, fname: string, deptid: integer)

1. Find the names of all Juniors (Level = JR) who are enrolled in a class taught by I. Teach.

2. Find the age of the oldest student who is either a History major or is enrolled in a course

taught by I. Teach.

3. Find the names of all classes that either meet in room R128 or have five or more students

enrolled.

4. Find the names of all students who are enrolled in two classes that meet at the same

time.

5. Find the names of faculty members who teach in every room in which some class is

taught.

6. Find the names of faculty members for whom the combined enrollment of the courses

that they teach is less than _ve.

7. Print the Level and the average age of students for that Level, for each Level.

8. Print the Level and the average age of students for that Level, for all Levels except JR.

9. Find the names of students who are enrolled in the maximum number of classes.

10. Find the names of students who are not enrolled in any class.

Exercise 2 Consider the following schema:

Suppliers (sid: integer, sname: string, address: string)

Parts (pid: integer, pname: string, color: string)

Catalog (sid: integer, pid: integer, cost: real)

Write the following queries in SQL:

1. Find the pnames of parts for which there is some supplier.

2. Find the snames of suppliers who supply every part.

3. Find the snames of suppliers who supply every red part.

4. Find the pnames of parts supplied by Acme Widget Suppliers and by no one else.

5. Find the sids of suppliers who charge more for some part than the average cost of that

 part (averaged over all the suppliers who supply that part).

7. Find the sids of suppliers who supply only red parts.

8. Find the sids of suppliers who supply a red part and a green part.

9. Find the sids of suppliers who supply a red part or a green part.

Exercise 3 Consider the following schema of the relational database

Books (Bid,Btitle, Bauthor, Bpublisher, Bprice)

Members (Member_id, Name, Designation, Age)

Reserve (Member_id, Bid, Date)

1. Create the tables using Books, Members and Reserve by specifying the Primary key,

Not NULL , Foreign key Constraints DDL Statement in MySQL database

By: Abhimanu Yadav

77

2. Write SQL DML statement to insert any five tuples (Five records) in each relation(table)

3. Find the Books of Database System title and price above 500.

4. List the books published by TaTa McGraw Hill publication

5. Find the Name of the member who made reserve book in 12-10-2011

Exercise 4 Consider the following schema of the relational database

Department (dept_no,d_name, city)

Employee (emp_Id, e_name, salary)

Works (dept_no, emp_Id)

1. Create the above tables by specifying the Primary key, Not NULL , Foreign key

Constraints DDL Statement in MySQL database

2. Write DML Statement to Insert any five records in each tables

3. Display the name of the employees.

4. Find the name of the employees whose salary is greater than 10000.

5. Find the department (d_name) of the employee ‘Binek’.

Exercise 5: Consider the following insurance database, where primary keys are underlined:

Teacher (Tid, Tname, Address, Age)

Student (Sid,Sname, Age, sex)

Takes (sid, course-id)

Course (course-id,course_name, text_book)

Teaches(Tid, Cousrse-id)

Taught-by{Sid, Tid}

Construct the following RA expressions for this relational database

a. Fine name, age and sex of all students who takes course “DBMS”

b. Find total number of students who are taught by the teacher “T01”

c. List all course names text books taught by teaher “T16”

d. Find average age of teachers for each course.

e. Insert the record of new teacher “T06” named “Bhupi” of age 27 into database

who lives in “Balkhu” and takes course “DBMS”

Exercise 6: Consider the following employee database, where primary keys are underlined.

employee (employee-name, street, city, salary)

works (employee-name, company-name,)

company (company-name, city)

manages (employee-name, manager-name)

Give an expression in SQL for each of the following queries.

a. Find the names of all employees who work for Second Bank Corporation.

b. Find the names, street and cities of residence of all employees whose salary is

more than average salary.

c. Find the names, street addresses, and cities of residence of all employees to

whom company is not assigned yet.

d. Find the names of all employees who work under the manager “Devi Prasad”.

e. Increase the salary of employees by 10% if their salary is less than 10,000 and

by 8% otherwise.

By: Abhimanu Yadav

78

 Introduction of Database

Integrity constraints ensure that changes made to the database by authorized users do not result

in a loss of data consistency. Thus, integrity constraints guard against accidental damage to the

database.

 E-R model ensure two types of integrity constraints:

– Key declaration: Primary and candidate

– Form of relationship: many to many, one to many, one to one

Types of constraints:

Domain constraint:
Domain is a pool of values of the same type from which one or more attributes in one or

more tables take their values.

 D1 D2 Dn

Student

A1 A2 …………………. An

In the above student table, the attribute A1 draws value from domain D1, A2 from D2 and so on.

Domain integrity means the definition of a valid set of values for an attribute. You define

 data type

 Length or size

 Is null value allowed

 Is the value unique or not for an attribute.

Domain constraints are the most elementary form of integrity constraint. They are tested

essentially by the system whenever a new data item is entered into the database.

It is possible for several attributes to have the same domain.

 For example, the attributes customer-name and employee-name might have the same

domain: the set of all person names.

 U Unit 5

 Domain constraints

 Referential constraints

 Triggers

 Assertion

By: Abhimanu Yadav

79

 However, the domains of balance and branch-name certainly ought to be distinct.

 It is perhaps less clear whether customer-name and branch-name should have the same

domain.

At the implementation level, both customer names and branch names are character strings.

However, we would normally not consider the query “Find all customers who have the same

name as a branch” to be a meaningful query. Thus, if we view the database at the conceptual,

rather than the physical, level, customer-name and branch-name should have distinct domains.

The CREATE DOMAIN clause can be used to define new domains. For example, to ensure that

rating must be an integer in the range 1 to 10, we could use:

CREATE DOMAIN RATINGVAL INTEGER DEFAULT 0

CHECK (VALUE >= 1 AND VALUE <= 10)

Entity Integrity
The entity integrity constraint ensures that the primary key of a relation must be unique and not

null.

Example: Employee

cid Cname caddress cphone

1 Abin Kathmandu 9849248488

2 Anish Lalitpur 9849245544

? Binek Kirtipur 9813334849

 Entity integrity violation

 Referential Integrity
Referential integrity ensures that a value that appears in one relation for a given set of attributes

also appears for a certain set of attributes in another relation to establish the relationship between

tables.

For referential integrity to hold in a relational database, any field in a table that is declared a

foreign key can contain either a null value, or only values from a parent table's primary key. For

instance, deleting a record that contains a value referred to by a foreign key in another table

would break referential integrity.
In relational model we often store data in different tables and put them together to get complete

example. For example, in PAYMENTS table we have only ROLLNO of the student. To get

remaining information about the student we have to use STUDENTS table.

STUDENTS

 PAYMENTS

RollNO Date Amount

1 12-03-2010 10000

3 06-08-2011 5000

2 02-07-2012 9000

4 14-03-2013 15000

RollNO Name Address

1 Anisha Ktm

2 Bibek Pokhara

3 Nikey Lalitpur

 4 Rashmi Bhaktapur

 Foreign Key

http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/Foreign_key
http://en.wikipedia.org/wiki/Primary_key

By: Abhimanu Yadav

80

Thus for referential integrity a foreign key can have only two possible values- either the relevant

primary key or a null value. No other values are allowed.

Referential Integrity in SQL
Primary and candidate keys and foreign keys can be specified as parts of the SQL create table

statement:

Example:

 CREATE TABLE Sailors
 (

 sid integer not null,

 sname varchar(20),

 rating integer,

 age integer,

 primary key (sid)

)

 CREATE TABLE Reserve

 (

 sid integer,

 bid integer,

 rdate date,

 foreign key (sid) references Sailors,

 foreign key (bid) references Boats,

)

CHECK Constraints:
CHECK constraints allow users to prohibit an operation on a table that would violate the

constraint. It is a local constraint.

Example: To ensure that rating must be an integer in the range 1 to 10, we could use:

In sailors table if we are trying to insert a new record as

 INSERT INTO Sailors

 VALUES (5, “Bhupi”, 15, 27.4);

We get insertion is rejected message since value of rating attribute violated the check condition.

Assertions:
Table constraints are associated with a single table, although the conditional expression in the

CHECK clause can refer to other tables. Table constraints are required to hold only if the

 CREATE TABLE Boats

 (

 bid integer not null,

 bname varchar(20),

 color varchar(10),

 primary key (bid)

)

By: Abhimanu Yadav

81

associated table is nonempty. Thus, when a constraint involves two or more tables, the table

constraint mechanism is sometimes cumbersome and not quite what is desired. To cover such

situations, SQL supports the creation of assertions, which are constraints, not associated with

any one table.

Assertion in the SQL takes the form

 CREATE ASSERTION <assertion_name> CHECK<predicate>

Example, suppose that we wish to enforce the constraint that the number of boats plus the

number of sailors should be less than 100.
CREATE ASSERTION SailorCheck

CHECK ((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B) < 100);

Trigger:
A trigger is a procedure (statement) that is automatically invoked by the DBMS in response to

specified changes to the database, and is typically specified by the DBA. A database that has a

set of associated triggers is called an active database. To design a trigger mechanism, we must

meet following three requirements:

1. Event: A change to the database that activates the trigger.

2. Condition: A query or test that is run when the trigger is activated.

3. Action: A procedure that is executed when the trigger is activated and its condition is true.

Need for Triggers:
Triggers are useful mechanisms for alerting humans or for starting certain tasks automatically

when certain conditions are met. As an illustration, suppose that, instead of allowing negative

account balances, the bank deals with overdrafts by setting the account balance to zero, and

creating a loan in the amount of the overdraft. The bank gives this loan a loan number identical

to the account number of the overdrawn account. For this example, the condition for executing

the trigger is an update to the account relation that results in a negative balance value. Suppose

that Jones’ withdrawal of some money from an account made the account balance negative. Let t

denote the account tuple with a negative balance value. The actions to be taken are:

