
Knowledge Representation 

Knowledge:  

Knowledge is a theoretical or practical understanding of a subject or a domain. Knowledge is 

also the sum of what is currently known. 

Knowledge is ―the sum of what is known: the body of truth, information, and principles acquired 

by mankind.‖  Or, "Knowledge is what I know, Information is what we know." 

There are many other definitions such as: 

- Knowledge is "information combined with experience, context, interpretation, and reflection. It 

is a high-value form of information that is ready to apply to decisions and actions." (T. 

Davenport et al., 1998) 

- Knowledge is ―human expertise stored in a person‘s mind, gained through experience, and 

interaction with the person‘s environment." (Sunasee and Sewery, 2002) 

- Knowledge is ―information evaluated and organized by the human mind so that it can be used 

purposefully, e.g., conclusions or explanations." (Rousa, 2002) 

Knowledge consists of information that has been: 

– interpreted,  

– categorised,  

– applied, experienced and revised. 

In general, knowledge is more than just data, it consist of: facts, ideas, beliefs, heuristics, 

associations, rules, abstractions, relationships, customs. 

Research literature classifies knowledge as follows:  

Classification-based Knowledge » Ability to classify information 

Decision-oriented Knowledge » Choosing the best option 

Descriptive knowledge » State of some world (heuristic) 

Procedural knowledge » How to do something  

Reasoning knowledge » What conclusion is valid in what situation? 

Assimilative knowledge » What its impact is? 



 

Knowledge Representation 

Knowledge representation (KR) is the study of how knowledge about the world can be 

represented and what kinds of reasoning can be done with that knowledge. Knowledge 

Representation is the method used to encode knowledge in Intelligent Systems.  

Since knowledge is used to achieve intelligent behavior, the fundamental goal of knowledge 

representation is to represent knowledge in a manner as to facilitate inferencing (i.e. drawing 

conclusions) from knowledge. A successful representation of some knowledge must, then, be in 

a form that is understandable by humans, and must cause the system using the knowledge to 

behave as if it knows it. 

Some issues that arise in knowledge representation from an AI perspective are: 

 How do people represent knowledge? 

 What is the nature of knowledge and how do we represent it? 

 Should a representation scheme deal with a particular domain or should it be general 

purpose? 

 How expressive is a representation scheme or formal language? 

 Should the scheme be declarative or procedural? 

 

 

 

 

 

 

 

 Fig: Two entities in Knowledge Representaion 

For example: English or natural language is an obvious way of representing and handling facts. 

Logic enables us to consider the following fact: spot is a dog as dog(spot) We could then infer 

that all dogs have tails with: : dog(x) hasatail(x) We can then deduce:  

hasatail(Spot)  

Using an appropriate backward mapping function the English sentence Spot has a tail can be 

generated.  



Properties for Knowledge Representation Systems 

The following properties should be possessed by a knowledge representation system.  

Representational Adequacy  

- the ability to represent the required knowledge;  

 

Inferential Adequacy  

- the ability to manipulate the knowledge represented to produce new knowledge 

corresponding to that inferred from the original;  

 

Inferential Efficiency  

- the ability to direct the inferential mechanisms into the most productive directions 

by storing appropriate guides;  

 

Acquisitional Efficiency  

-  the ability to acquire new knowledge using automatic methods wherever possible 

rather than reliance on human intervention.  

 

Formal logic-connectives:  

In logic, a logical connective (also called a logical operator) is a symbol or word used to 

connect two or more sentences (of either a formal or a natural language) in a grammatically valid 

way, such that the compound sentence produced has a truth value dependent on the respective 

truth values of the original sentences. 

Each logical connective can be expressed as a function, called a truth function. For this reason, 

logical connectives are sometimes called truth-functional connectives.  

Commonly used logical connectives include: 

 Negation (not) (¬ or ~) 

 Conjunction (and) ( , &, or · ) 

 Disjunction (or) (  or ∨ ) 

 Material implication (if...then) ( , or ) 

 Biconditional (if and only if) (iff) (xnor) ( , , or = ) 

For example, the meaning of the statements it is raining and I am indoors is transformed when 

the two are combined with logical connectives: 



 It is raining and I am indoors (P Q) 

 If it is raining, then I am indoors (P Q) 

 It is raining if I am indoors (Q P) 

 It is raining if and only if I am indoors (P Q) 

 It is not raining (¬P) 

For statement P = It is raining and Q = I am indoors. 

Truth Table: 

A proposition in general contains a number of variables. For example (P Q) contains variables 

P and Q each of which represents an arbitrary proposition. Thus a proposition takes different 

values depending on the values of the constituent variables. This relationship of the value of a 

proposition and those of its constituent variables can be represented by a table. It tabulates the 

value of a proposition for all possible values of its variables and it is called a truth table. 

For example the following table shows the relationship between the values of P, Q and P Q:  

 

 

 

 

 

 

 

 

 

 

Logic: 

Logic is a formal language for representing knowledge such that conclusions can be drawn. 

Logic makes statements about the world which are true (or false) if the state of affairs it 

represents is the case (or not the case). Compared to natural languages (expressive but context 

sensitive) and programming languages (good for concrete data structures but not expressive) 

logic combines the advantages of natural languages and formal languages. Logic is concise, 

unambiguous, expressive, context insensitive, effective for inferences. 

It has syntax, semantics, and proof theory. 

Syntax: Describe possible configurations that constitute sentences.  

OR 

P  Q (P Q)  

F  F F  

F  T T  

T  F T  

T  T T  



Semantics: Determines what fact in the world, the sentence refers to i.e. the interpretation. Each 

sentence make claim about the world (meaning of sentence).Semantic property include truth and 

falsity. 

Syntax is concerned with the rules used for constructing, or transforming the symbols and words 

of a language, as contrasted with the semantics of a language which is concerned with its 

meaning. 

Proof theory (Inference method):  set of rules for generating new sentences that are necessarily 

true given that the old sentences are true.  

We will consider two kinds of logic: propositional logic and first-order logic or more precisely 

first-order predicate calculus.  

Propositional logic is of limited expressiveness but is useful to introduce many of the concepts of 

logic's syntax, semantics and inference procedures. 

Entailment: 

Entailment means that one thing follows from another: 

KB |= α 

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true 

E.g., x + y =4 entails 4=x + y 

Entailment is a relationship between sentences (i.e., syntax) that is based on semantics. 

We can determine whether S |= P by finding Truth Table for S and P, if any row of Truth Table 

where all formulae in S is true. 

Example:  

 

 

 

Therefore {P, P→Q} |= Q. Here, only row where both P and P→Q are True, Q is also True. 

Here, S= (P, P→Q} and P= {Q}. 

Models 

Logicians typically think in terms of models, in place of ―possible world‖, which are formally 

structured worlds with respect to which truth can be evaluated. 



m is a model of a sentence   if   is true in m. 

  M() is the set of all models of . 

   

 

Tautology: 

A formula of propositional logic is a tautology if the formula itself is always true regardless of 

which valuation is used for the propositional variables. 

There are infinitely many tautologies. Examples include: 

 ("A or not A"), the law of the excluded middle. This formula has only one 

propositional variable, A. Any valuation for this formula must, by definition, assign A one 

of the truth values true or false, and assign A the other truth value. 

 ("if A implies B then not-B implies not-A", and vice 

versa), which expresses the law of contraposition. 

 ("if A implies B and B implies C, then A 

implies C"), which is the principle known as syllogism. 

The definition of tautology can be extended to sentences in predicate logic, which may contain 

quantifiers, unlike sentences of propositional logic. In propositional logic, there is no distinction 

between a tautology and a logically valid formula. In the context of predicate logic, many 

authors define a tautology to be a sentence that can be obtained by taking a tautology of 

propositional logic and uniformly replacing each propositional variable by a first-order formula 

(one formula per propositional variable). The set of such formulas is a proper subset of the set of 

logically valid sentences of predicate logic (which are the sentences that are true in every model). 

There are also propositions that are always false such as (P P). Such a proposition is called a 

contradiction.  

A proposition that is neither a tautology nor a contradiction is called a contingency.  

For example (P Q) is a contingency. 

Validity: 

The term validity in logic (also logical validity) is largely synonymous with logical truth, 

however the term is used in different contexts. Validity is a property of formulae, statements and 

arguments. A logically valid argument is one where the conclusion follows from the 

premises. An invalid argument is where the conclusion does not follow from the premises. 

A formula of a formal language is a valid formula if and only if it is true under every possible 

interpretation of the language. 



Saying that an argument is valid is equivalent to saying that it is logically impossible that the 

premises of the argument are true and the conclusion false. A less precise but intuitively clear 

way of putting this is to say that in a valid argument IF the premises are true, then the conclusion 

must be true.  

An argument that is not valid is said to be ―invalid‖. 

An example of a valid argument is given by the following well-known syllogism: 

All men are mortal. 

Socrates is a man. 

Therefore, Socrates is mortal. 

What makes this a valid argument is not that it has true premises and a true conclusion, but the 

logical necessity of the conclusion, given the two premises. 

The following argument is of the same logical form but with false premises and a false 

conclusion, and it is equally valid:  

All women are cats.  

All cats are men.  

Therefore, all women are men.  

This argument has false premises and a false conclusion. This brings out the hypothetical 

character of validity. What the validity of these arguments amounts to, is that it assures us the 

conclusion must be true IF the premises are true. 

Thus, an argument is valid if the premises and conclusion follow a logical form. This essentially 

means that the conclusion logically follows from the premises. An argument is valid if and only 

if the truth of its premises entails the truth of its conclusion. It would be self-contradictory to 

affirm the premises and deny the conclusion 

Deductive Reasoning: 

Deductive reasoning, also called Deductive logic, is reasoning which constructs or evaluates 

deductive arguments. Deductive arguments are attempts to show that a conclusion necessarily 

follows from a set of premises. A deductive argument is valid if the conclusion does follow 

necessarily from the premises, i.e., if the conclusion must be true provided that the 

premises are true. A deductive argument is sound if it is valid AND its premises are true. 

Deductive arguments are valid or invalid, sound or unsound, but are never false or true. 

An example of a deductive argument: 

1. All men are mortal 



2. Socrates is a man 

3. Therefore, Socrates is mortal 

The first premise states that all objects classified as 'men' have the attribute 'mortal'. The second 

premise states that 'Socrates' is classified as a man- a member of the set 'men'. The conclusion 

states that 'Socrates' must be mortal because he inherits this attribute from his classification as a 

man.  

Deductive arguments are generally evaluated in terms of their validity and soundness. An 

argument is valid if it is impossible both for its premises to be true and its conclusion to be false. 

An argument can be valid even though the premises are false. 

This is an example of a valid argument. The first premise is false, yet the conclusion is still valid. 

All fire-breathing rabbits live on Mars 

All humans are fire-breathing rabbits 

Therefore, all humans live on Mars 

This argument is valid but not sound In order for a deductive argument to be sound, the 

deduction must be valid and the premise must all be true. 

Let‘s take one of the above examples. 

1. All monkeys are primates 

2. All primates are mammals 

3. All monkeys are mammals 

This is a sound argument because it is actually true in the real world. The premises are true and 

so is the conclusion. They logically follow from one another to form a concrete argument that 

can‘t be denied. Where validity doesn‘t have to do with the actual truthfulness of an argument, 

soundness does. 

A theory of deductive reasoning known as categorical or term logic was developed by Aristotle, 

but was superseded by propositional (sentential) logic and predicate logic. 

Deductive reasoning can be contrasted with inductive reasoning. In cases of inductive reasoning, 

it is possible for the conclusion to be false even though the premises are true and the argument's 

form is cogent. 

Well Formed Formula: (wff) 

It is a syntactic object that can be given a semantic meaning. A formal language can be 

considered to be identical to the set containing all and only its wffs. 



A key use of wffs is in propositional logic and predicate logics such as first-order logic. In those 

contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", once any 

free variables in φ have been instantiated. In formal logic, proofs can be represented by 

sequences of wffs with certain properties, and the final wff in the sequence is what is proven. 

The well-formed formulas of propositional calculus are expressions such as 

Their definition begins with the arbitrary choice of a set V of propositional variables. The 

alphabet consists of the letters in V along with the symbols for the propositional connectives and 

parentheses "(" and ")", all of which are assumed to not be in V. The wffs will be certain 

expressions (that is, strings of symbols) over this alphabet. 

The well-formed formulas are inductively defined as follows: 

 Each propositional variable is, on its own, a wff. 

 If φ is a wff, then φ is a wff. 

 If φ and ψ are wffs, and • is any binary connective, then ( φ • ψ) is a wff. Here • could be 

∨, ∧, →, or ↔. 

The WFF for predicate calculus is defined to be the smallest set containing the set of atomic 

WFFs such that the following holds: 

1. is a WFF when is a WFF 

2. and are WFFs when and are WFFs; 

3. is a WFF when x is a variable and is a WFF; 

4. is a WFF when is a variable and is a WFF (alternatively, could be 

defined as an abbreviation for ). 

If a formula has no occurrences of or , for any variable , then it is called quantifier-free. 

An existential formula is a string of existential quantification followed by a quantifier-free 

formula. 

Propositional Logic: 

Propositional logic represents knowledge/ information in terms of propositions. Prepositions are 

facts and non-facts that can be true or false. Propositions are expressed using ordinary 

declarative sentences. Propositional logic is the simplest logic.  

Syntax: 

The syntax of propositional logic defines the allowable sentences. The atomic sentences- the 

indivisible syntactic elements- consist of single proposition symbol. Each such symbol stands for 

a proposition that can be true or false. We use the symbols like P1, P2 to represent sentences.  



The complex sentences are constructed from simpler sentences using logical connectives. There 

are five connectives in common use: 

 (negation), ^ (conjunction),  (disjunction),  (implication),  (biconditional) 

The order of precedence in propositional logic is from (highest to lowest):  , ^ , , ,  .  

Propositional logic is defined as: 

If S is a sentence, S is a sentence (negation) 

If S1 and S2 are sentences, S1 ^ S2 is a sentence (conjunction) 

If S1 and S2 are sentences, S1  S2 is a sentence (disjunction) 

If S1 and S2 are sentences, S1  S2 is a sentence (implication) 

If S1 and S2 are sentences, S1  S2 is a sentence (biconditional) 

Formal grammar for propositional logic can be given as below: 

Sentence    AutomicSentence | ComplexSentence 

AutomicSentence  True | False | Symbol 

Symbol   P | Q | R ………… 

ComplexSentence  Sentence 

             | (Sentence ^ Sentence) 

            | (Sentence  Sentence)  

          | (Sentence  Sentence) 

        | (Sentence  Sentence) 

Semantics: 

Each model specifies true/false for each proposition symbol 

Rules for evaluating truth with respect to a model: 

S is true if, S is false 

S1 ^ S2 is true if, S1 is true and S2 is true 

S1  S2 is true if, S1 is true or S2 is true 



S1  S2 is true if, S1 is false or S2 is true 

S1  S2 is true if, S1  S2 is true and S2  S1 is true 

Truth Table showing the evaluation of semantics of complex sentences: 

P Q P PQ PQ PQ PQ 

false false true false false true true 

false true true false true true false 

true false false false true false false 

true true false true true true true 

 

Logical equivalence: 

Two sentences   and ß are logically equivalent (  ß)  iff true they are true inn same set of 

models  or Two sentences   and ß are logically equivalent (  ß)  iff  |= ß and ß |= . 

 

Validity:   

A sentence is valid if it is true in all models, 

  e.g., True, AA, A  A, (A  (A  B))  B 

Valid sentences are also known as tautologies. Every valid sentence is logically equivalent to 

True 

Satisfiability: 



A sentence is satisfiable if it is true in some model 

– e.g., A  B, C 

A sentence is unsatisfiable if it is true in no models 

– e.g., AA 

Validity and satisfiablity are related concepts 

–  is valid iff  is unsatisfiable 

–  is satisfiable iff  is not valid 

Satisfiability is connected to inference via the following: 

– KB |=  if and only if (KB   ) is unsatisfiable 

 

Inference rules in Propositional Logic 

Inference rules are the standard patterns of inference that can be applied to derive conclusions 

from given facts. 

Modus Ponens 

 

 

And-elimination 

 

 

Monotonicity: the set of entailed sentences can only increase as information is added to the 

knowledge base. 

For any sentence  and  if KB |=  then KB   |=  . 

 

Resolution 

Unit resolution rule: 

Unit resolution rule takes a clause – a disjunction of literals – and a literal  and produces a new 

clause. Single literal is also called unit clause. 

 



 

Where li and m are complementary literals 

Generalized resolution rule: 

Generalized resolution rule takes two clauses of any length and produces a new clause as below. 

 

   

    For example: 

 

 

Resolution Uses CNF (Conjunctive normal form) 

conjunctive normal form (CNF) or clausal normal form is a statement if it is a conjunction of 

one or more clauses, where a clause is a disjunction of literals; otherwise put, it is an AND of 

ORs. 

i.e Conjunction of disjunctions of literals (clauses) 

 

All of the following formulas in the variables A, B, C, D, E, and F are in conjunctive normal 

form: 

 

 (A ˅ B ˅ C) ^ (D ˅ E ˅ F) 

 (A ˅ B)  ^ C 

 A ˅ B 

 A 

The following formulas are not in conjunctive normal form 

 (B ˅ C) since an OR is nested within a NOT 

 (A ˅ B ˅ C) ^ (D ˅ (E ^ F)) since an AND is nested within an OR 

 

The resolution rule is sound: Only entailed sentences are derived. Resolution is complete in the 

sense that it can always be used to either confirm or refute a sentence (it cannot be used to 

enumerate true sentences.) 

A disjunctive normal form (DNF) is a standardization (or normalization) of a logical formula 

which is a disjunction of conjunctive clauses; it can also be described as an OR of ANDs. A 

logical formula is considered to be in DNF if and only if it is a disjunction of one or 

more conjunctions of one or more literals.  

For example, all of the following formulas are in DNF: 

https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Clause_(logic)
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Literal_(mathematical_logic)
https://en.wikipedia.org/wiki/Clause_(logic)
https://en.wikipedia.org/wiki/Iff
https://en.wikipedia.org/wiki/Logical_disjunction
https://en.wikipedia.org/wiki/Logical_conjunction
https://en.wikipedia.org/wiki/Literal_(mathematical_logic)


 (A ^ B) ˅ (C ^ D) 

 A ^ B 

 (A ^ B) ˅ C 

 A 

  



Conversion to CNF: 

A sentence that is expressed as a conjunction of disjunctions of literals is said to be in 

conjunctive normal form (CNF). A sentence in CNF that contains only k literals per clause is 

said to be in k-CNF.  

Algorithm: 

Eliminate ↔rewriting P↔Q as (P→Q)  (Q→P) 

Eliminate →rewriting P→Q as PQ 

Use De Morgan‘s laws to push ￢ inwards: 

- rewrite  (PQ) as PQ 

- rewrite  (PQ) as PQ 

Eliminate double negations: rewrite P as P 

Use the distributive laws to get CNF: 

- rewrite (PQ) R as (PR)  (QR) 

 Flatten nested clauses: 

- (PQ)  R as PQ  R 

- (PQ) R as PQR 

Example: Let‘s illustrate the conversion to CNF by using an example. 

B   (A  C) 

• Eliminate , replacing   ß with (  ß)(ß  ). 

– (B  (A  C))  ((A  C)  B) 

 Eliminate , replacing   ß with    ß. 

– (B  A  C)  ((A  C)  B) 

 Move  inwards using de Morgan's rules and double-negation: 

– (B  A  C)  ((A  C)  B) 

 Apply distributivity law ( over ) and flatten: 

– (B  A  C)  (A  B)  (C  B) 

Resolution algorithm 

– Convert KB into CNF 

– Add negation of sentence to be entailed into KB i.e. (KB  ) 

User
Highlight



– Then apply resolution rule to resulting clauses. 

– The process continues until: 

– There are no new clauses that can be added 

  Hence KB does not entail  

– Two clauses resolve to entail the empty clause. 

  Hence KB does entail  

 

Example: Consider the knowledge base given as: KB = (B  (A C))  B   

  Prove that A can be inferred from above KB by using resolution. 

Solution: 

   At first, convert KB into CNF 

B  (A  C))  ((A  C)  B)  B   

(B  A  C)  ((A  C)  B)  B   

(B  A  C)  ((A  C)  B)  B    

(B  A  C)  (A  B)  (C  B)  B   

Add negation of sentence to be inferred from KB into KB 

Now KB contains following sentences all in CNF 

(B  A  C) 

(A  B) 

(C  B) 

 B   

A (negation of conclusion to be proved) 

Now use Resolution algorithm 



 

Resolution: More Examples  

1. KB= {(G∨H)→(￢J ∧K), G}. Show that KB ⊢J 

    Solution: 

Clausal form of (G∨H)→(￢J ∧K) is 

{GJ, H J, GK, H K} 

1. GJ [Premise] 

2. H J [Premise] 

3. GK [Premise] 

4. H K [Premise] 

5. G [Premise] 

6. J [￢ Conclusion] 

7. G [1, 6 Resolution] 

8. _ [5, 7 Resolution]  

 

Hence KB entails J 

(B  A  C) (A  B) (C  B) B A 

(BCB) (ACA) (BAB) (ACC) A 



2. KB= {P→￢Q, ￢Q→R}. Show that KB ⊢ P→R 

  Solution: 

1. ￢P∨￢Q [Premise] 

2. Q∨R [Premise] 

3. P [￢ Conclusion] 

4. ￢R [￢ Conclusion] 

5. ￢Q [1, 3 Resolution] 

6. R [2, 5 Resolution] 

7. _ [4, 6 Resolution] 

Hence, KB ⊢ P→R 

3. ⊢ ((P∨Q)∧￢P)→Q 

Clausal form of ￢(((P∨Q)∧￢P)→Q) is {P∨Q, ￢P, ￢Q} 

1. P∨Q [￢ Conclusion] 

2. ￢P [￢ Conclusion] 

3. ￢Q [￢ Conclusion] 

4. Q [1, 2 Resolution] 

5. _ [3, 4 Resolution] 

  



Forward and backward chaining 

The completeness of resolution makes it a very important inference model. But in many practical 

situations full power of resolution is not needed. Real-world knowledge bases often contain only 

clauses of restricted kind called Horn Clause. A Horn clauses is disjunction of literals with at 

most one positive literal 

Three important properties of Horn clause are: 

 Can be written as an implication 

 Inference through forward chaining and backward chaining. 

 Deciding entailment can be done in a time linear size of the knowledge base. 

 

Forward chaining: 

Idea: fire any rule whose premises are satisfied in the KB, 

– add its conclusion to the KB, until query is found 

Prove that Q can be inferred from above KB 

Solution: 

    
 

 



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Backward chaining: 

Idea: work backwards from the query q: to prove q by BC, 

Check if q is known already, or 

Prove by BC all premises of some rule concluding q 

For example, for above KB (as in forward chaining above) 

P  Q 

L  M  P 

B  L  M 

A  P  L 



A  B  L 

A 

B 

Prove that Q can be inferred from above KB 

Solution: 

We know P  Q, try to prove P 

L  M  P 

Try to prove L and M 

B  L  M 

A  P  L 

Try to prove B, L and A and P 

A and B is already known, since A  B  L, L is also known 

Since, B  L  M, M is also known  

Since, L  M  P, p is known, hence the proved. 

 

First-Order Logic 

Pros and cons of propositional logic 

- Propositional logic is declarative 

- Propositional logic allows partial/disjunctive/negated information 

o (unlike most data structures and databases) 

- Propositional logic is compositional: 

o meaning of B  P is derived from meaning of B and of P 

- Meaning in propositional logic is context-independent 

o (unlike natural language, where meaning depends on context) 

- Propositional logic has very limited expressive power 

o (unlike natural language) 

 

Propositional logic assumes the world contains facts, whereas first-order logic (like natural 

language) assumes the world contains: 



– Objects: people, houses, numbers, colors, baseball games, wars, … 

– Relations: red, round, prime, brother of, bigger than, part of, comes between,… 

– Functions: father of, best friend, one more than, plus, … 

Logics in General 

The primary difference between PL and FOPL is their ontological commitment: 

  Ontological Commitment: What exists in the world — TRUTH 

– PL: facts hold or do not hold. 

– FL : objects with relations between them that hold or do not hold 

Another difference is: 

  Epistemological Commitment: What an agent believes about facts — BELIEF 

 

 

 

 

 

FOPL: Syntax 

 



Representing knowledge in first-order logic 

The objects from the real world are represented by constant symbols (a,b,c,...). For instance, the 

symbol ―Tom‖ may represent a certain individual called Tom. 

Properties of objects may be represented by predicates applied to those objects (P(a), ...): e.g 

"male(Tom)" represents that Tom is a male. 

Relationships between objects are represented by predicates with more arguments: "father(Tom, 

Bob)" represents the fact that Tom is the father of Bob. 

The value of a predicate is one of the boolean constants T (i.e. true) or F (i.e. false)."father(Tom, 

Bob) = T"  means that the sentence "Tom is the father of Bob" is true. "father(Tom, Bob) = F"  

means that the sentence "Tom is the father of Bob" is false. 

Besides constants, the arguments of the predicates may be functions (f,g,...) or variables (x,y,...). 

Function symbols denote mappings from elements of a domain (or tuples of elements of 

domains) to elements of a domain. For instance, weight is a function that maps objects to their 

weight: weight (Tom) = 150.Therefore the predicate greater-than (weight (Bob), 100) means that 

the weight of Bob is greater than 100. The arguments of a function may themselves be functions. 

Variable symbols represent potentially any element of a domain and allow the formulation of 

general statements about the elements of the domain. 

 

 

b)‖ means that there is x such that x is mother of Bob or, otherwise stated, Bob 

has a mother.  

 

Quantifiers 

Allows us to express properties of collections of objects instead of enumerating objects by name. 

Two quantifiers are: 

  Universal: ―for all‖  

  Existential: ―there exists‖  

Universal quantification: 

<Variables> <sentence> 

Eg: Everyone at UAB is smart: 



       x At(x,UAB)  Smart(x) 

x P is true in a model m iff P is true for all x in the model 

Roughly speaking, equivalent to the conjunction of instantiations of P 

At(KingJohn,UAB)  Smart(KingJohn)  At(Richard,UAB)  

Smart(Richard)At(UAB,UAB)  Smart(UAB) ... 

Typically,  is the main connective with  

– A universally quantifier is also equivalent to a set of implications over all objects 

Common mistake: using  as the main connective with : 

x At(x, UAB)  Smart(x) 

Means ―Everyone is at UAB and everyone is smart‖ 

Existential quantification 

<variables> <sentence> 

Someone at UAB is smart: 

x At(x, UAB)  Smart(x) 

x P is true in a model m iff P is true for at least one x in the model 

Roughly speaking, equivalent to the disjunction of instantiations of P 

At(KingJohn,UAB)  Smart(KingJohn)At(Richard,UAB)  Smart(Richard)  

At(UAB, UAB)  Smart(UAB)  ... 

Typically,  is the main connective with  

Common mistake: using  as the main connective with : 

x At(x, UAB)  Smart(x) is true even if there is anyone who is not at UAB! 

FOPL: Semantic 

An interpretation is required to give semantics to first-order logic. The interpretation is a non-

empty ―domain of discourse‖ (set of objects). The truth of any formula depends on the 

interpretation. 

The interpretation provides, for each: 



constant symbol an object in the domain 

function symbols a function from domain tuples to the domain 

predicate symbol a relation over the domain (a set of tuples) 

Then we define: 

universal quantifier ∀xP(x) is True iff P(a) is True for all assignments of domain 

elements a to x 

existential quantifier ∃xP(x) is True iff P(a) is True for at least one assignment of 

domain element a to x 

FOPL: Inference (Inference in first-order logic) 

First order inference can be done by converting the knowledge base to PL and using 

propositional inference. 

– How to convert universal quantifiers? 

– Replace variable by ground term. 

– How to convert existential quantifiers? 

– Skolemization. 

 

Universal instantiation (UI) 

Substitute ground term (term without variables) for the variables. 

For example consider the following KB 

 x King (x)  Greedy (x)  Evil(x) 

King (John) 

Greedy (John) 

Brother (Richard, John) 

It‘s UI is: 

King (John)  Greedy (John)  Evil(John) 

King (Richard)  Greedy (Richard)  Evil(Richard) 

King (John) 

Greedy (John) 



Brother (Richard, John) 

Note: Remove universally quantified sentences after universal instantiation. 

Existential instantiation (EI) 

For any sentence  and variable v in that, introduce a constant that is not in the KB (called 

skolem constant) and substitute that constant for v. 

E.g.: Consider the sentence,  x Crown(x)  OnHead(x, John) 

After EI,  

Crown(C1)  OnHead(C1, John)     where C1 is Skolem Constant. 

Towards Resolution for FOPL: 

- Based on resolution for propositional logic 

- Extended syntax: allow variables and quantifiers 

- Define ―clausal form‖ for first-order logic formulae (CNF) 

- Eliminate quantifiers from clausal forms 

- Adapt resolution procedure to cope with variables (unification) 

 

Conversion to CNF: 

1. Eliminate implications and bi-implications as in propositional case 

2. Move negations inward using De Morgan‘s laws 

plus rewriting ￢∀xP as ∃x￢P and ￢∃xP as ∀x￢P 

3. Eliminate double negations 

4. Rename bound variables if necessary so each only occurs once 

e.g. ∀xP(x)∨∃xQ(x) becomes ∀xP(x)∨∃yQ(y) 

5. Use equivalences to move quantifiers to the left 

e.g. ∀xP(x)∧Q becomes ∀x (P(x)∧Q) where x is not in Q 

e.g. ∀xP(x)∧∃yQ(y) becomes ∀x∃y(P(x)∧Q(y)) 

6. Skolemise (replace each existentially quantified variable by a new term) 

∃xP(x) becomes P(a0) using a Skolem constant a0 since ∃x occurs at the outermost level 



∀x∃yP(x, y) becomes P(x, f0(x)) using a Skolem function f0 since ∃y occurs within ∀x 

7. The formula now has only universal quantifiers and all are at the left of the formula: drop 

them 

8. Use distribution laws to get CNF and then clausal form 

Example: 

1.) ∀x [∀yP(x, y)→￢∀y(Q(x, y)→R(x, y))] 

Solution: 

1. ∀x [￢∀yP(x, y)∨￢∀y(￢Q(x, y)∨R(x, y))] 

2, 3. ∀x [∃y￢P(x, y)∨∃y(Q(x, y)∧￢R(x, y))] 

4. ∀x [∃y￢P(x, y)∨∃z (Q(x, z)∧￢R(x, z))] 

5. ∀x∃y∃z [￢P(x, y)∨(Q(x, z)∧￢R(x, z))] 

6. ∀x [￢P(x, f (x))∨(Q(x, g(x))∧￢R(x, g(x)))] 

7. ￢P(x, f (x))∨(Q(x, g(x))∧￢R(x, g(x))) 

8. (￢P(x, f (x))∨Q(x, g(x)))∧(￢P(x, f (x))∨￢R(x, g(x))) 

8. {￢P(x, f (x))∨Q(x, g(x)), ￢P(x, f (x))∨￢R(x, g(x))} 

2.) ￢∃x∀y∀z ((P(y)∨Q(z))→(P(x)∨Q(x))) 

Solution: 

1. ￢∃x∀y∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x￢∀y∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x∃y￢∀z (￢(P(y)∨Q(z))∨P(x)∨Q(x)) 

2. ∀x∃y∃z￢(￢(P(y)∨Q(z))∨P(x)∨Q(x)) 
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2. ∀x∃y∃z ((P(y)∨Q(z))∧￢(P(x)∨Q(x))) 

6. ∀x ((P( f (x))∨Q(g(x)))∧￢P(x)∧￢Q(x)) 

7. (P( f (x))∨Q(g(x))∧￢P(x)∧￢Q(x) 

8. {P( f (x))∨Q(g(x)), ￢P(x), ￢Q(x)} 

Unification: 

A unifier of two atomic formulae is a substitution of terms for variables that makes them 

identical. 

- Each variable has at most one associated term 

- Substitutions are applied simultaneously 

Unifier of P(x, f (a), z) and P(z, z, u) : {x/ f (a), z/ f (a), u/ f (a)} 

We can get the inference immediately if we can find a substitution  such that King(x) and 

Greedy(x) match King(John) and Greedy(y) 

 = {x/John,y/John} works 

Unify( ,) =  if  =   

  p    q      

  Knows(John,x)  Knows(John,Jane)   {x/Jane} 

  Knows(John,x) Knows(y,OJ)   {x/OJ,y/John} 

  Knows(John,x)  Knows(y,Mother(y)) {y/John,x/Mother(John)}} 

  Knows(John,x) Knows(x,OJ)    {fail} 

 

Last unification is failed due to overlap of variables. x can not take the values of John and OJ at 

the same time. 

We can avoid this problem by renaming to avoid the name clashes (standardizing apart) 

E.g. 

  Unify{Knows(John,x)  Knows(z,OJ) } = {x/OJ, z/John} 

Another complication: 

To unify Knows(John,x) and Knows(y,z), 



Unification of Knows(John,x) and Knows(y,z) gives  ={y/John, x/z } or ={y/John, x/John, 

z/John} 

First unifier gives the result Knows(John,z) and second unifier gives the resultKnows(John, 

John). Second can be achieved from first by substituting john in place of z. The first unifier is 

more general than the second. 

There is a single most general unifier (MGU) that is unique up to renaming of variables. 

MGU = { y/John, x/z } 

 

First-Order Resolution 

For clauses P∨Q and ￢Q′ ∨R with Q,Q′ atomic formulae 

P∨Q     ￢Q′ ∨R 

 

 

 

 

(P∨R  

 Q and Q′ 

(P∨R resolvent of the two clauses 

Applying Resolution Refutation 

 Negate query to be proven (resolution is a refutation system) 

 Convert knowledge base and negated query into CNF and extract clauses 

 Repeatedly apply resolution to clauses or copies of clauses until either the empty clause 

(contradiction) is derived or no more clauses can be derived (a copy of a clause is the 

clause with all variables renamed) 

 If the empty clause is derived, answer ‗yes‘ (query follows from knowledge base), 

otherwise answer ‗no‘ (query does not follow from knowledge base) 

 

  



Resolution: Examples 

1.) ⊢ ∃x (P(x)→∀xP(x)) 

Solution: 

 Add negation of the conclusion and convert the predicate in to CNF: 

(￢∃x(P(x)→∀xP(x))) 

1, 2. ∀x￢(￢P(x)∨∀xP(x)) 

2. ∀x (￢￢P(x)∧￢∀xP(x)) 

2, 3. ∀x (P(x)∧∃x￢P(x)) 

4. ∀x (P(x)∧∃y ￢P(y)) 

5. ∀x∃y(P(x)∧￢P(y)) 

6. ∀x (P(x)∧￢P( f (x))) 

8. P(x), ￢P( f (x)) 

_______________________ 

Now, we can use resolution as; 

1. P(x) [￢ Conclusion] 

2. ￢P( f (y)) [Copy of ￢ Conclusion] 

3. _ [1, 2 Resolution {x/ f (y)}] 

2.) ⊢ ∃x∀y∀z ((P(y)∨Q(z))→(P(x)∨Q(x))) 

Solution: 

1. P( f (x))∨Q(g(x)) [￢ Conclusion] 

2. ￢P(x) [￢ Conclusion] 



3. ￢Q(x) [￢ Conclusion] 

4. ￢P(y) [Copy of 2] 

5. Q(g(x)) [1, 4 Resolution {y/ f (x)}] 

6. ￢Q(z) [Copy of 3] 

7. _ [5, 6 Resolution {z/g(x)}] 

 



 

  



Semantic network 

A semantic net (or semantic network) is a knowledge representation technique used for 

propositional information. So it is also called a propositional net. Semantic nets convey meaning. 

They are two dimensional representations of knowledge. Mathematically a semantic net can be 

defined as a labelled directed graph. 

Semantic nets consist of nodes, links (edges) and link labels. In the semantic network diagram, 

nodes appear as circles or ellipses or rectangles to represent objects such as physical objects, 

concepts or situations. Links appear as arrows to express the relationships between objects, and 

link labels specify particular relations. Relationships provide the basic structure for 

organizing knowledge. The objects and relations involved need not be so concrete. As nodes 

are associated with other nodes semantic nets are also referred to as associative nets. 

 

Figure: A Semantic Network 

In the above figure all the objects are within ovals and connected using labelled arcs. Note that 

there is a link between Jill and FemalePersons with label MemberOf. Simlarly there is 

a MemberOf link between Jack and MalePersons and SisterOf link between Jill and Jack. 

The MemberOf link between Jill and FemalePersons indicates that Jill belongs to the category of 

female persons. 

DISADVANTAGE OF SEMANTIC NETS 

http://intelligence.worldofcomputing.net/knowledge-representation
http://intelligence.worldofcomputing.net/knowledge-representation/intelligence.worldofcomputing.net/knowledge-representation/what-is-knowledge.html
http://intelligence.worldofcomputing.net/knowledge-representation/intelligence.worldofcomputing.net/knowledge-representation/what-is-knowledge.html


One of the drawbacks of semantic network is that the links between the objects represent only 

binary relations. For example, the sentence Run(ChennaiExpress, Chennai,Bangalore,Today) 

cannot be asserted directly. 

There is no standard definition of link names. 

ADVANTAGES OF SEMANTIC NETS 

Semantic nets have the ability to represent default values for categories. In the above figure Jack 

has one leg while he is a person and all persons have two legs. So persons have two legs has only 

default status which can be overridden by a specific value. 

They convey some meaning in a transparent manner. 

They nets are simple and easy to understand. 

They are easy to translate into PROLOG. 

 

 

 

 

 

 

 

 

 

 

 

 


