Chapter 3 — Basic Computer Organization and Design

Chapter 3
Basic Computer Organization and Design

3.1 Introduction: Description of Basic Computer
We introduce here a basic computer whose operation can be specified by the resister transfer statements.
Internal organization of the computer is defined by the sequence of microoperations it performs on data stored
in its resisters. Every different processor type has its own design (different registers, buses, microoperations,
machine instructions, etc). Modern processor is a very complex device. It contains:
— Many registers
— Multiple arithmetic units, for both integer and floating point calculations
— The ability to pipeline several consecutive instructions for execution speedup.
However, to understand how processors work, we will start with a simplified processor model. M. Morris Mano
introduces a simple processor model; he calls it a “Basic Computer”. The Basic Computer has two components,
a processor and memory.
» The memory has 4096 words in it
— 4096 = 2%, s0 it takes 12 bits to select an address in memory
» Each word is 16 bits long

Stored Program Organization
The program (instruction) as well as data (operand) is stored in the same memory. If the instruction needs data,

the data is found in the same memory and accessed. This feature is called stored program organization.
Memory
4096 x 16

_/‘__/

15 12 11 0

Opcode Address Instructions
(program)

Instruction format

15 0
= Operands
Binary operand (data)

Processor register
(accumulator or AC)

Fig: Stored Program Organization

Instruction Format
A computer instruction is often divided into two parts

— An op-code (Operation Code) that specifies the operation for that instruction

— An address that specifies the registers and/or locations in memory to use for that operation
In the Basic Computer, since the memory contains 4096 (= 2*) words, we needs 12 bit to specify the memory
address that is used by this instruction. In the Basic Computer, bit 15 of the instruction specifies the addressing
mode (0: direct addressing, 1: indirect addressing). Since the memory words, and hence the instructions, are 16

bits long, that leaves 3 bits for the instruction’s op-code.

By Deep Raj Bhujel Page 1

Chapter 3 — Basic Computer Organization and Design

15 14 12 11 0
I Opcode Address

Fig: Instruction Format

Addressing Modes
The address field of an instruction can represent either

— Direct address: the address operand field is effective address (the address of the operand).
— Indirect address: the address operand field contains the memory address of effective address.

Basic Computer Registers

Computer instructions are normally stored in the consecutive memory locations and are executed sequentially
one at a time. Thus computer needs processor registers for manipulating data and holding memory address
which are shown in the following table:

Symbol | Size Register Name Description

DR 16 Data Register Holds memory operand

AR 12 Address Register Holds address for memory
AC 16 Accumulator Processor register

IR 16 Instruction Register Holds instruction code

PC 12 Program Counter Holds address of instruction
TR 16 Temporary Register Holds temporary data

INPR 8 Input Register Holds input character
OUTR |8 Output Register Holds output character

Since the memory in the Basic Computer only has 4096 (=2'%) locations, PC and AR only needs 12 bits.
Since the word size of Basic Computer only has 16 bit, the DR, AC, IR and TR needs 16 bits. The Basic
Computer uses a very simple model of input/output (1/O) operations.

— Input devices are considered to send 8 bits of character data to the processor

— The processor can send 8 bits of character data to output devices
The Input Register (INPR) holds an 8-bit character gotten from an input device and the Output Register
(OUTR) holds an 8-bit character to be sent to an output device.

3.2 Common Bus System

— The basic computer has eight registers, a memory unit, and a control unit.

— These registers, memory and control unit are connected using a path (bus) so that information can be
transferred to each other.

— |If separate buses are used for connecting each registers, it will cost high.

— The cost and use of extra buses can be reduced using a special scheme in which many registers use a
common bus, called common bus system.

By Deep Raj Bhujel Page 2

Chapter 3 — Basic Computer Organization and Design

— Three control lines S2, S1 and SO control the register to be selected as the input by the bus.

Fig: Common Bus System

S2 | S1 | SO | Register
0 [0 |0 | X (nothing)
0 |0 |1 |AR

By Deep Raj Bhujel

Page 3

Chapter 3 — Basic Computer Organization and Design

0 |1 [0 |PC

0 |1 |1 |DR

1 /0 |0 |AC

1 |0 |1 |IR

1 |1 |0 [TR

1 |1 |1 | Memory

— The lines from the common bus are connected to the inputs of each register and the data inputs of the
memory.

— The particular register whose LD (load) input is enabled receives the data from the bus during the next clock
pulse transition.

— The memory receives the contents of the bus when its write input is activated.

— The memory places its 16 bit output onto the bus when the read input is activated and S,S:So = 111.

3.3 Instruction Formats and their Execution
— The instruction length of basic computer is 16-bit.
— 16-bit instruction of basic computer has three fields:

| Mode | Op-code] Operand (Address)

) Mode field
MSB (bit 15) of the 16-bit instruction.
Value 0 = direct addressing, value 1 = indirect addressing mode.
i) Op-code field
Defines what operation to be performed.
Contains 3 bits (bits 14-12)

iii) Operand (Address) field

— Contains 12 bits (bits 11-0)

The basic computer has 3 instruction code formats. Type of the instruction is recognized by the computer
control from 4-bit positions 12 through 15 of the instruction.

)] Memory-Reference Instructions

i) Register-Reference Instructions

iii) Input-Output Instructions

Pl

—>
—>

15 14 12 11 0
I Opcode Address (Opcode = 000 through 110)

(a) Memory - reference instruction

15 12 11 0
01 1 1 Register operation (Opcode =111, [=0)

(b) Register - reference instruction

15 12 11 0
1 1 1 1 1/0 operation (Opcode =111, I=1)

(c) Input - output instruction

By Deep Raj Bhujel Page 4

Chapter 3 — Basic Computer Organization and Design

Hexadecimal code

Symbol I=0 I=1 Description

AND Oxxx 8xx AND memory word to AC
ADD 1xxx 9xxx Add memory word to AC

LDA 2xxx Axxx Load memory word to AC

STA 3xxx Bxxx Store content of AC in memory
BUN 4xxx Cox Branch unconditionally

BSA Sxoxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero
CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC and E

CIL 7040 Circulate left AC and E

INC 7020 Increment AC

SPA 7010 Skip next instruction if AC positive
SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer

INP F800 Input character to AC

ouT F400 Output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION FO80 Interrupt on

IOF F040 Interrupt off

Below is the complete operation that takes place during the instruction:

Operation

Symbol decoder Symbolic description
AND Do AC«—AC N M[AR]

ADD D, AC«AC + M[AR], E «Coun
LDA D; AC «—M[AR]

STA D, M[AR] < AC

BUN D PC<« AR

BSA Ds M[AR]«<PC, PC«AR +1
ISZ Ds M[AR) < M[AR] + 1,

If M{AR] + 1 = 0 then PC«—PC + 1

Branch and Save Return Address (BSA)

Fig: Memory-Reference Instructions

D5T4: M[AR] <— PC, AR <— AR + 1

By Deep Raj Bhujel

Page 5

D5T5: PC<—AR, SC<—0

Memory
20 0 BSA 135
PC=2] Next instruction
AR =135
136 Subroutine
1 BUN 135

Chapter 3 — Basic Computer Organization and Design

20
21

135
PC =136

Memory

BSA 135

Next instruction

21

Subroutine

1

(a) Memory, PC, and AR at time T,

For this example:
M[135] <—21,AR<—135+1
PC <— 136

BUN 135

(b) Memory and PC after execution

D;I'T; = r (common to all register-reference instructions)
IR(i) = B, [bit in IR(0-11) that specifies the operation]

r: SC«0
CLA rB": AC <0
CLE 1By E<«0
CMA rBy: AC+AC
CME rBy: E<E
CIR 7By AC<«shr AC, AC(15)«<E, E<AC(0)
CIL rBs: AC<shl AC, AC(0)<E, E«AC(15)
INC rB;: AC<«AC +1
SPA By If (AC(15) = 0) then (PC<«PC + 1)
SNA rB;: If (AC(15) = 1) then (PC«PC + 1)
SZA rB,. If (AC =0) then PC<PC + 1)
SZE rB;: If (E =0) then (PC<PC + 1)
HLT rB,: S<0(Sis a start-stop flip-flop)

Clear SC

Clear AC

Clear E
Complement AC
Complement E
Circulate right
Circulate left
Increment AC
Skip if positive
Skip if negative
Skip if AC zero
Skip if E zero
Halt computer

Fig: Register-Reference Instructions

By Deep Raj Bhujel

Page 6

Chapter 3 — Basic Computer Organization and Design

— — —

D,IT; = p (common to all input-output instructions)
IR(i) = B; [bit in IR(6-11) that specifies the instruction]

p: SC«0 Clear SC
INP pBun: AC(0-7) «INPR, FGI<0 Input character
OUT pBi: OUTR<«<AC(0-7), FGO «0 Output character

SKI pBs: If (FGI = 1) then (PC«PC + 1) Skip on input flag

SKO pBg: If (FGO = 1) then (PC«PC + 1) Skip on output flag
ION pBs. IEN «1 Interrupt enable on
IOF pBs: IEN <0 Interrupt enable off

Fig: Input-Output Instructions

Instruction Set Completeness
An instruction set is said to be complete if it contains sufficient instructions to perform operations in following
categories:
Functional Instructions
e Arithmetic, logic, and shift instructions
e Examples: ADD, CMA, INC, CIR, CIL, AND, CLA
Transfer Instructions
e Data transfers between the main memory and the processor registers
e Examples: LDA, STA
Control Instructions
e Program sequencing and control
e Examples: BUN, BSA, ISZ
Input/output Instructions
e Input and output
e Examples: INP, OUT

Instruction set of Basic computer is complete because:

= ADD, CMA (complement), INC can be used to perform addition and subtraction and CIR (circular right
shift), CIL (circular left shift) instructions can be used to achieve any kind of shift operations. Addition,
subtraction and shifting can be used together to achieve multiplication and division. AND, CMA and
CLA (clear accumulator) can be used to achieve any logical operations.

= LDA instruction moves data from memory to register and STA instruction moves data from register to
memory.

= The branch instructions BUN, BSA and ISZ together with skip instruction provide the mechanism of
program control and sequencing.

= INP instruction is used to read data from input device and OUT instruction is used to send data from
processor to output device.

3.4 Timing and Control Unit

Control Unit

Control unit (CU) of a processor translates from machine instructions to the control signals for the
microoperations that implement them. There are two types of control organization:

Hardwired Control

» CU is made up of sequential and combinational circuits to generate the control signals.
» If logic is changed, we need to change the whole circuitry.

By Deep Raj Bhujel Page 7

Chapter 3 — Basic Computer Organization and Design

> Expensive
» Fast
Microprogrammed Control
» Acontrol memory on the processor contains microprograms that activate the necessary control signals.
» If logic is changed, we only need to change the microprogram.
» Cheap
> Slow
NOTE: Microprogrammed control unit will be discussed in next chapter.

The block diagram of a hardwired control unit is shown below. It consists of two decoders, a sequence counter,
and a number of control logic gates.

Instruction register (/R)

[1s5] e E e | 110 |
Other inputs Mechanism:
A y y -_—
s ; 1 = Aninstruction read from memory is
i S"f"‘;“.z . placed in the.instruction. resister
L’ l i # ¢ ‘ l I X (IR) wher.e it is decoded into threg
l;I] ° parts: | bit, operation code and bits
T P o Coniro 0 through ?1. N
ik j saips = The operation code bit is decoded
gates with 3 x 8 decoder producing 8
i outputs Dy through D».
: * Bit 15 of the instruction is
? ? f r - transferred to a flip-flop .
; = And operand bits are applied to
1514 2.1.0 .
4% 16 control logic gates.
g = The 16 outputs of 4-bit sequence
kK L L X counter (SC) are decoded into 16
timing signals T, through Tys.
4bit - ——— Increment (INR) This means instruction cycle of basic
counter B computer cannot take more than 16.
o) &}~——— Clock

Fig: Control unit of a basic computer
Timing signals
= Generated by 4-bit sequence counter and 4x16 decoder.
= The SC can be incremented or cleared.
= Example: To, T1, T2, T3, Ta, To, T1 . ..
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active: D3T4: SC «— 0

e £ 4 FL LS

o _ N (S
T2 \
T2 \
Ts \
Ta \

D3

cLR |\ \

SC

By Deep Raj Bhujel Page 8

Chapter 3 — Basic Computer Organization and Design

3.5 Instruction Cycle
— Processing required for complete execution of an instruction is called instruction cycle.
— In Basic Computer, a machine instruction is executed in the following cycle:
1. Fetch an instruction from memory

2. Decode the instruction
3. Read the effective address from memory if the instruction has an indirect address

4. Execute the instruction
Upon the completion of step 4, control goes back to step 1 to fetch, decode and execute the next instruction.

This process is continued indefinitely until HALT instruction is encountered.

Fetch and Decode
— Sequence of steps required for fetching instruction from memory to CPU internal register is known as fetch

cycle.

TO: AR — PC (S05152=010, T0=1)
T1: IR <MI[AR], PC <« PC+1 (S0S1S2=111, T1=1)
T2: DO, . .., D7 « Decode IR(12-14), AR « IR(0-11), | « IR(15)

— For fetching and decoding, the steps are:
) Initially, PC holds the address of next instruction to fetch. With timing signal T, address pointed by

PC is transferred to the AR.

i) The processor fetches instruction to IR from memory location referenced by AR and increment PC
for next instruction. This happens with timing signal T;.

iii) Processor interprets instruction and performs required action i.e. decoding during time period T».

By Deep Raj Bhujel Page 9

Chapter 3 — Basic Computer Organization and Design

SCe«0

AR « PC

T

IR & M[AR], PC & PC + 1

Tz

Decode operation code in /R (12 - 14)
AR «IR(0-11), 1 «IR(15)

(Register orlf0) =1 /

\ =0 (Memory-reference)

c

10) =1 =0 (register) (indirect) = | =0 (direct)
& ©
L T; T_q T: f T!
Execute Execute AR « MI[AR] Nothing
input-output register-reference
instruction instruction
SC 0 SC«0
Execute
memory-reference
instruction
SC 0
r r
Fig: Flowchart of Instruction Cycle
— Then, among decoded, D7 determines which type of instruction.
i) If D7 = 1, it will be either register-reference or input-output instruction.

a) If I =1, input-output instruction is executed during T3.
b) If 1 =0, register-reference instruction is executed during T3.

i) If D7 = 0, it will be memory-reference instruction.

a) If 1 =1, indirect addressing mode instruction during T3.
b) If 1 =0, direct addressing mode instruction during T3.

— The SC is reset after executing each instruction.

3.6 Input-Output Configuration

The terminal sends and receives serial information. Each quantity of information has 8 bits of an alphanumeric
code. The serial information from the keyboard is shifted into the input register INPR. The serial information
for the printer is stored in the output register OUTR. These two registers communicate with a communication
interface serially and with the AC in parallel. The input—output configuration is shown in figure. The
transmitter interface receives serial information from the keyboard and transmits it to INPR. The receiver
interface receives information from OUTR and sends it to the printer serially.

By Deep Raj Bhujel

Page 10

Chapter 3 — Basic Computer Organization and Design

Input - output Serial Computer
terminal communication registers and
interface flip-flops
FGO
Printer [eoctver. L OUTR |-
> interface o S
—- AC
_ | Transmitter
Keyboard e fare »{ INPR
FGI

Fig: Input-Output Configuration

Scenariol: when a key is struck in the keyboard, an 8-bit alphanumeric code is shifted into INPR and the input
flag FGI is set to 1. As long as the flag is set, the information in INPR cannot be changed by striking another
key. The control checks the flag bit, if 1, contents of INPR is transferred in parallel to AC and FGI is cleared to
0. Once the flag is cleared, new information can be shifted into INPR by striking another key.

Scenario2: OUTR works similarly but the direction of information flow is reversed. Initially FGO is set to 1.
The computer checks the flag bit; if it is 1, the information is transferred in parallel to OUTR and FGO is
cleared to 0. The output device accepts the coded information, prints the corresponding character and when
operation is completed, it sets FGO to 1.

By Deep Raj Bhujel Page 11

