
Chapter 2 – Register Transfer and Microoperations

By Deep Raj Bhujel Page 1

Chapter 2

Register Transfer and Microoperations

2.1 Register and Register Transfer Language (RTL)
Register

 Register is the storage device, inside CPU, of data on which microoperations are performed.

 The operations executed on data stored in registers are called microoperations. A microoperation is an

elementary operation performed on the information stored in one or more registers. The result of the

operation may replace the previous binary information of a register or may be transferred to another register.

Examples of microoperations are shift, count, clear and load.

 The internal hardware organization of a digital computer is best defined by specifying:

- The set of registers it contains and their function.

- The sequence of microoperations performed on the binary information stored in the registers.

- The control that initiates the sequence of microoperations.

 The language, which is basically used to express the transfer of data among the registers, is called Register

Transfer Language (RTL). It is the symbolic notation used to describe the microoperation transfers among

registers. In such transfer, one of the source or destination should be register (not necessarily both).

Register Transfer

 Computer registers are designated by capital letters.

 For example, the register that holds an address for the memory unit is usually called a memory address

register and is designated by the name MAR. Other designations for registers are PC (for program counter),

IR (for instruction register, and R1 (for processor register).

 The most common way to represent a register is by a rectangular box with the name of the register inside.

Fig (a).

 The individual flip-flops in an n-bit register are numbered in sequence from 0 through n-1, starting from 0 in

the rightmost position and increasing the numbers toward the left. For e.g. 8-bit register numbered: Fig (b).

 The numbering of bits in a 8-bit register can be marked on top of the box. Fig (c).

 A 16-bit register is partitioned into two parts in (d). Bits 0 through 7 are assigned the symbol L (for low

byte) and bits 8 through 15 are assigned the symbol H (for high byte). The name of the 16 bit register is PC.

The symbol PC(0—7) or PC(L) refers to the low order byte and PC(8—15) or PC(H) to the high order byte.

 Information transfer from one register to another is designated in symbolic form by means of a replacement

operator.

R2  R1

 If there is predetermined control condition like

If (P=1) then (R2  R1)

Chapter 2 – Register Transfer and Microoperations

By Deep Raj Bhujel Page 2

then we can write the statement as

P: R2  R1

where P is control signal usually a control function which is Boolean variable that is equal to 1 or 0.

 The n outputs of register R1 are connected to the n inputs of register R2. The letter n will be used to indicate

any number of bits for the register.

 It is assumed that all transfers occur during a clock edge transition. Even though the control condition such

as P becomes active just after time t, the actual transfer does not occur until the register is triggered by the

next positive transition of the clock at time t + 1.

 A comma is used to separate two or more operations that are executed at the same time. The statement

T: R2  R1, R1  R2

denotes an operation that exchanges the contents of two registers during one common clock pulse provided that

T = 1.

Fig: Basic Symbols for Register Transfers

 For example, RTL of fetch cycle can be written as:

T1: MARPC

T2: MBR[MAR]

T3: IRMBR

T4: unspecified; PCPC+1

The notation (T1, T2, T3, T4) represents successive time units. All three units are of equal duration. A time unit

is defined by regularly spaced clock pulses. The operations performed within this single unit of time are called

microoperations. A single time unit can contain one or more microoperations. Since each microoperation can

specifies the transfer of data into or out of a register, such type is called RTL.

Chapter 2 – Register Transfer and Microoperations

By Deep Raj Bhujel Page 3

2.2 Bus and Memory Transfer
Bus

 A typical digital computer has many registers, and paths must be provided to transfer information from one

register to another. The number of wires will be excessive if separate lines are used between each register

and all other registers in the system.

 A more efficient scheme for transferring information between registers in a multiple register configuration is

a common bus system.

 A bus structure consists of a set of common lines, one for each bit of a register, through which binary

information is transferred one at a time. Control signals determine which register is selected by the bus

during each particular register transfer.

 For example,

Fig: Bus system for four registers.

Fig: Function table for Bus

 In general, a bus system will multiplex k registers of n bits each to produce an n line common bus. The

number of multiplexers needed to construct the bus is equal to n, the number of bits in each register. The

size of each multiplexer must be k X 1 since it multiplexes k data lines.

 For example, a common bus for eight registers of 16 bits each requires 16 multiplexers, one for each line in

the bus. Each multiplexer must have eight data input lines and three selection lines to multiplex one

significant bit in the eight registers.

Chapter 2 – Register Transfer and Microoperations

By Deep Raj Bhujel Page 4

 The transfer of information from a bus into one of many destination registers can be accomplished by

connecting the bus lines to the inputs of all destination registers and activating the load control of the

particular destination register selected.

Memory Transfer

 The transfer of information from a memory word to the outside environment is called a read operation. The

transfer of new information to be stored into the memory is called a write operation.

 A memory word will be symbolized by the letter M. The particular memory word among the many available

is selected by the memory address during the transfer.

 Consider a memory unit that receives the address from a register, called the address register, symbolized by

AR. The data are transferred to another register, called the data register, symbolized by DR. The read

operation can be stated as follows:

Read: DR  M[AR]

` This causes a transfer of information into DR from the memory word M selected by the address in AR.

2.3 Microoperations

 The operations on the data in registers are called microoperations.

 Alternatively we can say that an elementary operation performed during one clock pulse on the information

stored in one or more registers is called micro-operation.

 The result of the operation may replace the previous binary information of the resister or may be transferred

to another resister.

 Register Transfer Language (RTL) can be used to describe the (sequence of) micro-operations.

 The microoperations most often encountered in digital computers are classified into 4 categories:

i) Register transfer microoperations

ii) Arithmetic microoperations

iii) Logic microoperations

iv) Shift microoperations

Register transfer microoperations

Registers are designated by capital letters, sometimes followed by numbers (e.g., A, R13, IR). Often the names

indicate function:

MAR memory address register

PC program counter

IR instruction register

Information transfer from one register to another is described in symbolic form by replacement operator. The

statement ―R2 R1‖

denotes a transfer of the content of the R1 into resister R2.

Control Function

Often actions need to only occur if a certain condition is true. In digital systems, this is often done via a control

signal, called a control function.

Example: P: R2  R1 i.e. if (P = 1) then (R2 R1)

 Which means ―if P = 1, then load the contents of register R1 into register R2‖.

If two or more operations are to occur simultaneously, they are separated with commas.

Example: P: R3  R5, MAR  IR

Arithmetic microoperations

The basic arithmetic microoperations are

– Addition

Chapter 2 – Register Transfer and Microoperations

By Deep Raj Bhujel Page 5

– Subtraction

– Increment

– Decrement

The additional arithmetic microoperations are

– Add with carry

– Subtract with borrow

– Transfer/Load

Summary of typical arithmetic microoperations

Symbolic Designation Description

R3  R1 + R2 Contents of R1 plus R2 transferred to R3

R3  R1 + R2’ + 1 Contents of R1 minus R2 transferred to R3

R1  R1 + 1 Increment the contents of R1 by one

R1  R1 - 1 Decrement the contents of R1 by one

R3  R1 + R2 + 1 Add with carry

R3  R1 + R2’ Subtract with borrow

R1  R1’ +1 2’s complement the contents of R1 (negate)

Logic microoperations

Logic microoperations are bit-wise operations, i.e., they work on the individual bits of data. Useful for bit

manipulations on binary data and for making logical decisions based on the bit value. There are, in principle, 16

different logic functions that can be defined over two binary input variables. However, most systems only

implement four of these

– AND (/\), OR (\/), XOR (⊕), Complement/NOT

The others can be created from combination of these four functions.

Microoperation Name

F  R1 /\ R2 AND

F  R1 \/ R2 OR

F  R1 ⊕ R2 XOR

F  R1’ Complement (NOT)

Hardware Implementation

Shift microoperations

The operation that changes the adjacent bit position of the binary values stored in the register is known as shift

microoperation. They are used for serial transfer of data. The shift microoperations are classified into 3 types:

Chapter 2 – Register Transfer and Microoperations

By Deep Raj Bhujel Page 6

i) Logical shift: A logical shift transfer 0 through the serial input. It can be defined in RTL by:

R←shl R shift-left register R

R←shr R shift-right register R

ii) Circular shift: A circular shift rotates the bit from one end of the register to another end of the

register. It can be defined in RTL by:

R←cil R circular shift-left register R

R←cir R circular shift-right register R

iii) Arithmetic shift: It shifts signed-binary number left or right. For shift left the content of the register

is multiplied by 2 whereas For shift right the content of the register is divided by 2. The arithmetic

shift must leave the sign bit unchanged. It can be defined in RTL by:

R←ashl R arithmetic shift-left register R

R←ashr R arithmetic shift-right register R

Overflow case during arithmetic shift-left:

If a bit in Rn-1 changes in value after the shift, sign reversal occurs in the result. This happens if the

multiplication by 2 causes an overflow.

Thus, left arithmetic shift operation must be checked for the overflow: an overflow occurs after an arithmetic

shift-left if before shift Rn-1≠Rn-2.

2.4 Arithmetic Logic Shift Unit
Arithmetic logic shift unit is a digital circuit that performs arithmetic calculations, logical manipulation and

shift operation. It is often abbreviated as ALU. The above figure shows the one stage of arithmetic logic shift

unit.

The block diagram of ALU includes one stage of arithmetic circuit, one stage of logic circuit and one 4*1

multiplexer. The subscript i designates a typical stage.

V

Before the shift, if the leftmost

two bits differ, the shift will result

in an Overflow

y

An overflow flip-flop V can be used

to detect an arithmetic shift-left

overflow.

V = Rn-1 ⊕ Rn-2

If V = 0, there is no overflow but if V

= 1, overflow is detected.

Chapter 2 – Register Transfer and Microoperations

By Deep Raj Bhujel Page 7

Fig: one stage of arithmetic logic shift unit

Inputs Ai and Bi are applied to both the arithmetic and logic units. A particular microoperation is selected with

inputs S1 and S0. A 4*1 MUX selects the final output. The two inputs of the MUX are received from the output

of the arithmetic circuit and logic circuit. The other two is Ai-1 for the shift-right operation and Ai+1 for the shift

left operation. The circuit is repeated n times for n-bit ALU. The output carry Ci+1 is connected to the input

carry Cin. In every stage the circuit specifies 8 arithmetic operations, 4 logical operations and 2 shift operations,

where each operation is selected by the five variables S3, S2, S1, S0 and Cin.

The operations of ALU can be summarized in table below:

Operation select Operation Function

S3 S2 S1 S0 Cin

0 0 0 0 0 F=A Transfer A

0 0 0 0 1 F=A+1 Increment A

0 0 0 1 0 F=A+B Addition

0 0 0 1 1 F=A+B+1 Add with carry

0 0 1 0 0 F=A+B’ Subtract with borrow

0 0 1 0 1 F= A+B’+1 Subtraction

0 0 1 1 0 F=A-1 Decrement A

0 0 1 1 1 F=A Transfer A

0 1 0 0 ╳ F=A˄B AND

0 1 0 1 ╳ F=A˅B OR

0 1 1 0 ╳ F=A⊕B XOR

0 1 1 1 ╳ F=A’ Complement A

1 0 ╳ ╳ ╳ F=shr A Shift right A into F

1 1 ╳ ╳ ╳ F= shl A Shift left A into F

