
Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 1

Chapter 11

Multiprocessor

11.1 Introduction and Characteristics of Multiprocessor
 The system in which two or more processing units (CPU or IOP) are connected to the memory and I/O

devices is known as multiprocessor system.

 Multiprocessors are classified as multiple instruction stream, multiple data stream (MIMD) systems.

 A multiprocessor system is controlled by one operating system that provides interaction between processors

and all the components of the system.

Characteristics of multiprocessors

 Multiple processing elements

 System is controlled by single operating system

 System is more reliable

The system derives its high performance from the fact that computations can proceed in parallel in one of two

ways:

 Multiple independent jobs can be made to operate in parallel.

 A single job can be partitioned into multiple parallel tasks.

Types of multiprocessor

 Multiprocessors are classified by the way their memory is organized. They are:

 Shared memory or tightly-coupled multiprocessor: the multiprocessor system in which all processing

elements share a common memory. In this type, there is no local memory with processor but they have their

own cache memory.

Fig: Shared Memory Architecture

 Distributed memory or loosely-coupled multiprocessor: the multiprocessor system in which each

processing element has its own private local memory and all the processors are tied together by a switching

mechanism to route information from one processor to another through a message passing scheme.

Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 2

Fig: Distributed Memory Architecture

11.2 Interconnection Structures
 The components that form a multiprocessor system are CPUs, IOPs connected to I/O devices, and a memory

unit that may be partitioned into a number of separate modules.

 The interconnection between the components can have different physical configurations, depending on the

number of transfer paths that are available between the processors and memory in a shared memory system

or among the processing elements in a loosely coupled system.

 There are several interconnection networks. Some of these schemes are given as:

1. Time shared common bus

2. Multiport memory

3. Crossbar switch

4. Multistage switching network

5. Hypercube system

1. Time-shared common bus

 A common bus is used for all CPU to communicate with shared memory. At any given time, only one

processor can communicate with the memory or another processor but all the processors are either busy with

their internal operation or idle waiting for the bus.

Fig: Time-shared Common Bus Organization.

 Advantages:

 Simplicity

 Flexibility

 Reliability

 Disadvantages

 Performance limited by bus cycle time

 Each processor should have local cache

 Reduce number of bus accesses

 Leads to problems with cache coherence

2. Multiport Memory

 It uses separate buses between each memory module and each CPU.

 Each processor has direct independent access of memory modules by their own bus connected to each

module.

 The modules must have internal control logic to determine which port will have access to memory at any

given time.

 Memory access conflicts are resolved by assigning fixed priorities to each memory port. CPU1 will have

priority over CPU2, CPU2 will have priority over CPU3 and CPU4 will have the lowest priority.

Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 3

Fig: Multiport memory organization.

 Advantages:

 Better performance because each processor has dedicated path to each module.

 Can configure portions of memory as private to one or more processors so increased security.

 Disadvantages:

 Requires extra control logic so more complex and increase the cost.

 Requires large connection wires.

3. Crossbar Switch

 A crossbar switch (also known as cross-point switch or matrix switch) is a switch connecting multiple inputs

to multiple outputs in a matrix manner.

 The crossbar switch organization consists of a number of cross points that are placed at interconnection

between processor bus and memory module path.

Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 4

Fig: Crossbar switch.

Fig: Block diagram of crossbar switch.

 Above figure shows a crossbar switch interconnection of four CPUs and four memory modules. The small

square in each cross point is a switch that determines the path from a processor to a memory module.

 Each switch point has control logic to set up the transfer path between a processor and memory. It examines

the address that is placed in the bus to determine whether its particular module is being addressed. It also

resolves multiple requests for access to the same memory module on a predetermined priority basis.

4. Multistage Switching Network

 Controls the communication between a number of resources and destinations.

 Basic components of a multistage switching network are two-input, two-output interchange switch.

Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 5

Fig: Operation of a 22 interchange switch.

 As shown in above figure, the 2*2 switch has two inputs labeled A and B, and two outputs 0 and 1. There

are control signals associated with the switch that establish the interconnection between the input and output

terminals.

 The switch has capacity of connecting input A to either of the outputs. Terminal B of the switch behaves in a

similar fashion. The switch also has the capability to arbitrate between conflicting requests. If inputs A and

B both request the same output terminal, only one of them will be connected, the other will be blocked.

Fig: Binary tree with 22 switches.

 Using the 2*2 switch as a building block, it is possible to build a multistage network as in figure.

5. Hypercube Interconnection

 The hypercube or binary n-cube multiprocessor structure is a loosely coupled system composed of N=2
n

processors interconnected in an n-dimensional binary cube.

 Each processor forms a node of the cube. Each processor has direct communication paths to n other

neighbor processors. These paths correspond to the edges of the cube.

Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 6

Fig: Hypercube structures for n = 1, 2, 3.

 Above figure shows the hypercube structure for n = 1, 2, and 3.

 A one-cube structure has n = 1 and 2
1
 = 2. It contains two processors interconnected by a single path.

 A two-cube structure has n = 2 and 2
2
 = 4. It contains four nodes interconnected as a square.

 A three-cube structure has eight nodes interconnected as a cube. An n-cube structure has 2
n
 nodes with a

processor residing in each node. Each node is assigned a binary address in such a way that the addresses of

two neighbors differ in exactly one bit position. For example, the three neighbors of the node with address

100 in a three cube structure are 000, 110, and 101. Each of these binary numbers differs from address 100

by one bit value.

 Routing messages through an n cube structure may take from one to n links from a source node to a

destination node. For example, in a three cube structure, node 000 can communicate directly with node 001.

It must cross at least two links to communicate with 011 (from 000 to O01 to 011 or from 000 to 010 to

011). It is necessary to go through at least three 1ines to communicate from node 000 to node 111.

 A routing procedure can be developed by computing the exclusive OR of the source node address with the

destination node address. The resulting binary value will have 1 bits corresponding to the axes on which the

two nodes differ. The message is then sent along any one of the axes. For example, in a three cube structure,

a message at 010 going to 001 produces an exclusive OR of the two addresses equal to O11. The message

can be sent along the second axis to 000 and then through the third axis to 001.

11.3 Interprocessor Arbitration
 The processors in a shared memory multiprocessor system request access to common memory or other

common resources through the system bus. If no other processor is currently utilizing the bus, the requesting

processor may be granted access immediately.

 However, the requesting processor must wait if another processor is currently utilizing the system bus.

Furthermore, other processors may request the system bus at the same time.

 Arbitration must then be performed to resolve this multiple contention for the shared resources. The

arbitration logic would be part of the system bus controller placed between the local bus and the system bus.

 Some arbitration processes are:

1. Serial Arbitration Procedure (Daisy-Chain Arbitration)

 Each processor has its bus arbiter logic with priority-in (PI) priority-out (PO) lines.

 The priority out (PO) of each arbiter is connected to the priority in (Pl) of the next lower priority arbiter. The

PI of the highest priority unit is maintained at logic 1 value.

 The highest priority unit in the system will always receive access to the system bus when it requests it.

 The PO output for a particular arbiter is equal to 1 if its PI input is equal to 1 and the processor associated

with the arbiter logic is not requesting control of the bus. This is the way that priority is passed to the next

unit in the chain. If the processor requests control of the bus and the corresponding arbiter finds its PI input

equal to 1, it sets its PO output to 0. Lower priority arbiters receive a 0 in PI and generate a O in PO. Thus

the processor whose arbiter has a PI = 1 and PO = 0 is the one that is given control of the system bus.

Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 7

Fig: Serial (daisy chain) arbitration.

2. Parallel Arbitration Process

 The parallel bus arbitration technique uses an external priority encoder and a decoder. Each bus arbiter in

the parallel scheme has a bus request output line and a bus acknowledge input line.

 The processor takes control of the bus if its acknowledged input line is enabled. The bus busy line provides

an orderly transfer of control, as in the daisy chaining case.

Fig: Parallel arbitration.

 Above figure shows the 2-bit code from the encoder output drives a 2 X 4 decoder which enables the proper

acknowledge line to grant bus access to the highest priority unit.

3. Dynamic Arbitration Algorithm

 Serial and Parallel arbitration procedures use a static priority algorithm since the priority of each device is

fixed by the way it is connected to the bus.

 In contrast, a DAA gives the system the capability for changing the priority of the devices while the system

is in operation.

 There are 5 types of DAA:

i) Time Slice: The time slice algorithm allocates a fixed length time slice of bus time that is offered

sequentially to each processor, in round robin fashion. The service given to each system component

with this scheme is independent of its location along the bus. No preference is given to any particular

device since each is allotted the same amount of time to communicate with the bus.

ii) Polling: In a bus system that uses polling, the bus grant signal is replaced by a set of lines called poll

lines which are connected to all units. These lines are used by the bus controller to define an address

for each device connected to the bus. After a number of bus cycles, the polling process continues by

Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 8

choosing a different processor. The polling sequence is normally programmable, and as a result, the

selection priority can be altered under program control.

iii) Least Recently Used (LRU): The least recently used (LRU) algorithm gives the highest priority to

the requesting device that has not used the bus for the longest interval. With this, no processor is

favored over any other since the priorities are dynamically changed to give every device an

opportunity to access the bus.

iv) First-Come, First-Serve (FIFO) scheme: In the first come, first serve scheme, requests are served

in the order received. To implement this algorithm, the bus controller establishes a queue arranged

according to the time that the bus requests arrive.

v) Rotating Daisy-Chain: The rotating daisy chain procedure is a dynamic extension of the daisy chain

algorithm. Each arbiter priority for a given bus cycle is determined by its position along the bus

priority line from the arbiter whose processor is currently controlling the bus. Once an arbiter

releases the bus, it has the lowest priority.

11.4 Interprocessor Communication and Synchronization
Interprocessor Communication

 Communication refers to the exchange of data between different processes. For example, parameters passed

to a procedure in a different processor constitute inter processor communication.

 The various processors in a multiprocessor system must be provided with a facility for communicating with

each other. A communication path can be established through common input output channels. In a shared

memory multiprocessor system, the most common procedure is to set aside a portion of memory that is

accessible to all processors.

 In addition to shared memory, a multiprocessor system may have other shared resources. For example, a

magnetic disk storage unit connected to an IOP may be available to all CPUs.

 To prevent conflicting use of shared resources by several processors there must be a provision for assigning

resources to processors. This task is given to the operating system. There are three organizations that have

been used in the design of operating system for multiprocessors: 1) master slave configuration, 2)

separate operating system, and 3) distributed operating system.

 In a master slave mode, one processor, designated the master, always executes the operating system

functions. The remaining processors, denoted as slaves, do not perform operating system functions. If a

slave processor needs an operating system service, it must request it by interrupting the master and waiting

until the current program can be interrupted.

 In the separate operating system organization, each processor can execute the operating system routines it

needs. This organization is more suitable for loosely coupled systems where every processor may have its

own copy of the entire operating system.

 In the distributed operating system organization, the operating system routines are distributed among the

available processors. However, each particular operating system function is assigned to only one processor

at a time. This type of organization is also referred to as a floating operating system since the routines float

from one processor to another and the execution of the routines may be assigned to different processors at

different times.

 In a loosely coupled multiprocessor system the memory is distributed among the processors and there is no

shared memory for passing information. The communication between processors is by means of message

passing through l/O channels.

Interprocessor Synchronization

 The instruction set of a multiprocessor contains basic instructions that are used to implement

communication and synchronization between cooperating processes.

 Synchronization refers to the special case where the data used to communicate between processors is control

information. Synchronization is needed to enforce the correct sequence of processes and to ensure mutually

exclusive access to shared writable data.

Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 9

 A number of hardware mechanisms for mutual exclusion have been developed. One of the most popular

methods is through the use of a binary semaphore.

 A properly functioning multiprocessor system must provide a mechanism that will guarantee orderly access

to shared memory and other shared resources. This is necessary to protect data from being changed

simultaneously by two or more processors. This mechanism has been termed mutual exclusion.

 Mutual exclusion must be provided in a multiprocessor system to enable one processor to exclude or lock

out access to a shared resource by other processors when it is in a critical section. A critical section is a

program sequence that, once begun, must complete execution before another processor accesses the same

shared resource.

 A binary variable called a semaphore is often used to indicate whether or not a processor is executing a

critical section. A semaphore is a software controlled flag that is stored in a memory location that all

processors can access. When the semaphore is equal to 1, it means that a processor is executing a critical

program, so that the shared memory is not available to other processors.

 When the semaphore is equal to 0, the shared memory is available to any requesting processor. Processors

that share the same memory segment agree by convention not to use the memory segment unless the

semaphore is equal to 0, indicating that memory is available.

 They also agree to set the semaphore to 1 when they are executing a critical section and to clear it to 0 when

they are finished.

 A semaphore can be initialized by means of a test and set instruction in conjunction with a hardware lock

mechanism.

 Assume that the semaphore is a bit in the least significant position of a memory word whose address is

symbolized by SEM. Let the mnemonic TSL designate the "test and set while locked" operation.

 The instruction TSL SEM will be executed in two memory cycles (the first to read and the second to write)

without interference as follows:

RM [SEM] Test semaphore

M [SEM]1 Set semaphore

11.5 Cache Coherence
 In multiprocessor system, if the update made on some data item on local cache of any processor is reflected

on other processor having the same data item, then it is said to be cache coherence. Or, if same data item

resides in cache of multiple processors and its value is same to all cache, then it is known as cache

coherence.

 Cache coherence arises when shared data is to be written as well as read. If one processor modifies a cached

value shared in cache by other processors, then all processors must eventually agree on the updated value.

 For example, the system shown on fig. 1 is coherent system because in all local cache, the value of X=52.

Fig: Cache configuration after a load on X.

 But in fig. 2, when value at X is updated on local cache of processor P1 using write through cache, then it is

not reflected to local caches of P2 and P3. Hence, it is not coherent system.

Chapter 11 - Multiprocessor

By Deep Raj Bhujel Page 10

Fig: With write-through cache policy

Fig: With write-back cache policy

 Solution to cache coherence

i) Using shared cache

 All the processors use the same global cache.

ii) Non-cacheable data

 Shared writable data are made non-cacheable.

 Non-shared and readable data are made cacheable.

iii) Two separate caches

 One global cache for writable block of data.

 Local cache for readable data.

iv) Snoopy cache controller

 It is a special hardware that monitors the write operation in any local cache.

 If the cache write is observed, then main memory is updated, and every cache controller sees. If they

have the same data, then they mark the data invalid.

