
Object Oriented Analysis and 
Design

Unit 4 :- GRASP

1www.studynotesnepal.com



GRASP

• General Responsibility Assignment Software Patterns
• Assigning responsibilities to collaborating objects
• Responsibility can be accomplished by a single object or by a group

of objects
• Patterns

– Creator
– Information Expert
– Low Coupling
– High Cohesion
– Controller
– Indirection
– Polymorphism
– Protected Variations
– Pure Fabrication

2www.studynotesnepal.com



Creator

• Who creates an Object? Or who should create
a new instance of some class?

• “Container” object creates “contained”
objects.

• Decide who can be creator based on the
objects association and their interaction

3www.studynotesnepal.com



Creator…

•Problem: Who is responsible for creating new
instances of some class?
•Solution: Assign class B the responsibility to
create an instance of class A if one or more of
the following is true:

–B aggregates A
–B contains A (composition)
– B records instances of A objects
–B uses A objects
–B has the initializing data that will be passed to A
when it is created

4www.studynotesnepal.com



Creator (Example)…

• Example for Creator

– Consider VideoStore and Video in that store.

– VideoStore has an aggregation association with
Video.

– i.e, VideoStore is the container and the Video is
the contained object.

– So, we can instantiate Video object in VideoStore
class

5www.studynotesnepal.com



Creator (Example)…

• Who should be responsible for creating a SalesLineItem instance?
• Since a Sale contains many SalesLineItem objects, the Creator

pattern suggests that Sale is a good candidate to have the
responsibility of creating SalesLineItem objects

• i.e. Sales contains / has_a (one or more) SalesLineItems
{Aggregations}

Abbreviated Sequence Diagram

6www.studynotesnepal.com



Information Expert

• Given an object o, which responsibilities can
be assigned to o?

• Expert principle says – assign those
responsibilities to o for which o has the
information to fulfill that responsibility.

• They have all the information needed to
perform operations, or in some cases they
collaborate with others to fulfill their
responsibilities

7www.studynotesnepal.com



Information Expert (Example)…

• Example for Expert

– Assume we need to get all the videos of a
VideoStore.

– Since VideoStore knows about all the videos, we
can assign this responsibility of giving all the
videos can be assigned to VideoStore class.

– VideoStore is the information expert.

8www.studynotesnepal.com



Information Expert (Example)…

• Who should be responsible for
knowing the grand total of a sale?

• i.e. ‘who’ has the information
needed to determine the total?

• Look in domain model (Sale)

• In ‘Sale’ class give the
responsibility of knowing its total,
expressed with a method named
getTotal

9www.studynotesnepal.com



Information Expert (Example)…

•What information is needed to determine the line
item subtotals?
•We need:

–SalesLineItem.quantity and ProductSpecification.price

•The SalesLineItem “knows” its quantity (is typically
an attribute) and its associated
ProductSpecification (via association);
•Therefore, by Expert, SalesLineItem should
determine the subtotal; it is the Information Expert
in this case.
•So, ‘now’ what do we have?

10www.studynotesnepal.com



Information Expert (Example)…

• To fulfill the responsibility of
knowing and answering the
subtotal, a SalesLineItem needed to
know the product price.

• The ProductSpecification is also an
information expert on answering its
price, thus we need a message sent to
ProductSpecification asking for the
price, (something like: price and
getPrice() )

11www.studynotesnepal.com



Information Expert…

• Be careful: Don’t run ‘Expert’ into the Ground

• Who should be responsible for saving Sale in a
database?

• Always want to separate I/O from computations

• Each class would have its own services to save
itself in the database.

• Sale would have to now contain logic related to
database handling, such as related to SQL and
JDBC (for J2EE) or more

12www.studynotesnepal.com



Controller Pattern

• Deals with how to delegate the request from the UI
layer objects to domain layer objects.

• When a request comes from UI layer object, Controller
pattern helps us in determining what is that first object
that receive the message from the UI layer objects.

• This object is called controller object which receives
request from UI layer object and then
controls/coordinates with other object of the domain
layer to fulfill the request.

• It delegates the work to other class and coordinates
the overall activity.

13www.studynotesnepal.com



Controller Pattern…

• Example

14www.studynotesnepal.com



Controller Pattern…

• Useful in developing web applications

• Who should be responsible for handling an input
system “event”?

• System Event – event generated by external actor
– Eg :- Clicking “End Sale” Button

• A Controller is a non-user interface object responsible
for receiving or handling a system event

• Input events might come from
–a GUI operated by a person, or
–a call from a telecommunications switch, or
–a signal from a sensor, etc

15www.studynotesnepal.com



Controller Pattern…

• Do not infer that there will be
a class named System in
Design.

• Rather, during Design, a
Controller class is assigned
the responsibilities for
system operations

16www.studynotesnepal.com



Controller Pattern…

• Do not give controllers too much
responsibility (bloated controller)

• Solution→ add more controller

• Types
– Façade controller→ represents the overall system

– Session (use case) controller → represents a use
case

• Façade Controllers are used when there are
not too many events to control

17www.studynotesnepal.com



Controller Pattern…

• Other types
– Page Controller

• Controller that uses a single Presenter which interacts with
the Model (the data for the page). When it receives a
request, the Page Controller can determine which partial
View to display within the page, and then interact with that
View following the MVP pattern

– Front Controller
• A separate controller that examines each request and

determines which page to display. Each page is a complete
implementation of MVC, with its own View, and each
Presenter interacts with the View and the Model (the data)

18www.studynotesnepal.com



Controller Pattern…

19www.studynotesnepal.com



Low Coupling

• How strongly the objects are connected to each other?
• Coupling – object depending on other object.
• When depended upon element changes, it affects the dependant

also.
• Low Coupling – How can we reduce the impact of change in

depended upon elements on dependant elements.
• Prefer low coupling – assign responsibilities so that coupling remain

low.
• Minimizes the dependency hence making system maintainable,

efficient and code reusable
• Two elements are coupled, if

– One element has aggregation/composition association with another
element.

– One element implements/extends other element.

20www.studynotesnepal.com



Low Coupling…

• Coupling is a measure of how strongly one element is
connected to another element

 Common forms of coupling
– Class A has an instance of Class B
– Class A send a message to an instance of Class B
– Class A is a subclass of Class B (inheritance)
– Class A implements interface I

• Highly coupled classes suffer from following problems
– Forced local changes because of changes in related classes
– Harder to understand in isolation

• Solution
– Assign the responsibility so that coupling remains low

21www.studynotesnepal.com



Low Coupling…

22www.studynotesnepal.com



Low Coupling…

23www.studynotesnepal.com



Low Coupling…

• Example
– In POS application, when the cashier enters a payment, payment

object needs to be created and associated with the current sale

– In real world domain, a Register records a Payment, so Register will be
creator for that responsibility

24www.studynotesnepal.com



Low Coupling…

• Example
– Since the Payment object will eventually be linked to the Sale object,

why not assign the responsibility to Sale?

Based on the coupling 
factor we prefer design B

25www.studynotesnepal.com



High Cohesion

• How are the operations of any element are functionally
related?

• Related responsibilities in to one manageable unit.
• High cohesion is when parts of a module are grouped

because they all contribute to a single well-defined task of
the module

• Prefer high cohesion
• Clearly defines the purpose of the element
• Benefits

– Easily understandable and maintainable.
– Code reuse
– Low coupling

26www.studynotesnepal.com



High Cohesion…

Low Cohesion High Cohesion

27www.studynotesnepal.com



High Cohesion…

28www.studynotesnepal.com



Polymorphism

• How to handle related but varying elements
based on element type?

• Polymorphism guides us in deciding which
object is responsible for handling those
varying elements.

• Benefits: handling new variations will become
easy.

29www.studynotesnepal.com



Polymorphism(Example)…

30www.studynotesnepal.com



Pure Fabrication

• Fabricated class/ artificial class – assign set of related
responsibilities that doesn't represent any domain
object.

• i.e. a pure fabrication is a class that does not represent
a concept in the problem domain, specially made up to
achieve low coupling and high cohesion

• Provides a highly cohesive set of activities.
• Behavioral decomposed – implements some algorithm.
• Examples: Adapter
• Benefits: High cohesion, low coupling and can reuse

this class.

31www.studynotesnepal.com



Pure Fabrication (Example)…

32www.studynotesnepal.com



Pure Fabrication (Example)…

• Suppose we Shape class, if we must store the
shape data in a database.

• If we put this responsibility in Shape class, there
will be many database related operations thus
making Shape incohesive.

• So, create a fabricated class DBStore which is
responsible to perform all database operations.

• Similarly logInterface which is responsible for
logging information is also a good example for
Pure Fabrication

33www.studynotesnepal.com



Indirection

• How can we avoid a direct coupling between
two or more elements.

• Indirection introduces an intermediate unit to
communicate between the other units, so that
the other units are not directly coupled.

• Benefits: low coupling

• Example: Adapter, Obserever

34www.studynotesnepal.com



Indirection…

35www.studynotesnepal.com



Indirection(Example)…

36www.studynotesnepal.com



Indirection(Example)…

37www.studynotesnepal.com



Protected Variation

• How to avoid impact of variations of some
elements on the other elements.

• It provides a well defined interface so that the
there will be no affect on other units.

• Provides flexibility and protection from
variations.

• Provides more structured design.

• Example: data encapsulation, interfaces

38www.studynotesnepal.com



Protected Variation…

39www.studynotesnepal.com



GoF Design Pattern

• Gang of Four (Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides)

• Adapter, Singleton, Factory, Observer

40www.studynotesnepal.com



Factory Pattern

• Problem

– Who should be responsible for creating objects
when there are special considerations such as
complex creation logic, a desire to separate
creation responsibilities for better cohesion etc

• Solution

– Create pure fabrication object called a Factory
that handles the creation

41www.studynotesnepal.com



Factory Pattern…

• In Factory pattern, we create object without exposing the creation logic to
the client and refer to newly created object using a common interface

42www.studynotesnepal.com



Factory Pattern…

43www.studynotesnepal.com



Singleton Pattern

• Problem

– Exactly one instance of a class is allowed. Objects
need a global and single point of access

• Solution

– Define a static model of the class that returns the
singleton: getInstance()

44www.studynotesnepal.com



Singleton Pattern…

• This pattern involves a single class which is responsible to create an object while
making sure that only single object gets created

45www.studynotesnepal.com



Observer Pattern

• Define a one to many dependency between
objects so that when one object changes
state, all its dependents are notified and
updated automatically

• Used in MVC framework
– Model is problem domain

– View in windowing system

– Controller is mouse/keyword control

• Listeners in Java, Thread -> notify()

46www.studynotesnepal.com



Adapter Pattern

• Problem
– How to resolve incompatible interfaces, or how to

provide a stable interface to similar components with
different interfaces

• Solution
– Convert the original interface of component into

another interface, through an intermediate adapter
object

• Example
– POS needs to adapt several kinds of external third

party services, like tax calculators, accounting systems,
inventory systems

47www.studynotesnepal.com



Adapter Pattern…

• Follows polymorphism, protected variation, 
indirection

48www.studynotesnepal.com



End of Session

49www.studynotesnepal.com


