Object Oriented Analysis and
Design

GRASP

* General Responsibility Assignment Software Patterns
* Assigning responsibilities to collaborating objects

* Responsibility can be accomplished by a single object or by a group
of objects

* Patterns
— Creator
— Information Expert
— Low Coupling
— High Cohesion
— Controller
— Indirection
— Polymorphism
— Protected Variations
— Pure Fabrication

Creator

 Who creates an Object? Or who should create
a new instance of some class?

 “Container” object creates “contained”
objects.

e Decide who can be creator based on the
objects association and their interaction

Creator...

*Problem: Who is responsible for creating new
instances of some class?

*Solution: Assign class B the responsibility to
create an instance of class A if one or more of
the following is true:

—B aggregates A

—B contains A (composition)

— B records instances of A objects
—B uses A objects

—B has the initializindq data that will be passed to A
when it is create

Creator (Example)...

e Example for Creator

— Consider VideoStore and Video in that store.

— VideoStore has an aggregation association with
Video.

—i.e, VideoStore is the container and the Video is
the contained object.

— So, we can instantiate Video object in VideoStore
CIaSS creator

VideoStore Video

l‘),title

Creator (Example)...

Sal=
datz
tima
e=tTotal()
1

Contains

craate (quantity) .| BalasLinal
Produet
SalzsLinalterm Specification|
Ll
- 1

[quantity Describad by [description
prica L

=ztSubtotal() it=mITY
eatPrica()

Abbreviated Sequence Diagram

* Who should be responsible for creating a SalesLineltem instance?

 Since a Sale contains many SalesLineltem objects, the Creator

pattern suggests that Sale is a good candidate to have the
responsibility of creating SalesLineltem objects

 j.e. Sales contains / has a (one or more) SaleslLineltems
{Aggregations}

Information Expert

* Given an object o, which responsibilities can
be assighed to 0?

e Expert principle says - assign those
responsibilities to o for which o has the
information to fulfill that responsibility.

* They have all the information needed to
perform operations, or in some cases they
collaborate with others to fulfill their
responsibilities

Information Expert (Example)...

e Example for Expert

— Assume we need to get all the videos of a
VideoStore.

— Since VideoStore knows about all the videos, we
can assign this responsibility of giving all the
videos can be assigned to VideoStore class.

— VideoStore is the information expert.

VideoStore Video
etAllVideos ftle
i) J

Information Expert (Example)...

* Who should be responsible for [=
knowing the grand total of a sale?

Contains

*i.e. ‘who’ has the information |- =
needed to determine the total? g e
* Look in domain model (Sale) l,

*In ‘Sale’ <class give the
responsibility of knowing its total, =
expressed with a method named Tt

getTotal

Information Expert (Example)...

\What information is needed to determine the line
item subtotals?

*We need:
—SaleslLineltem.quantity and ProductSpecification.price

*The SalesLineltem “knows” its quantity (is typically
an attribute) and its associated
ProductSpecification (via association);

*Therefore, by Expert, SaleslLineltem should
determine the subtotal; it is the Information Expert
in thiS case. -oalasLinaltam

*So, ‘now’ what do we have? [t

setSubtotal()

Information Expert (Example)...

* To fulfill the responsibility of
knowing and answering the
subtotal, a SalesLineltem needed to
know the product price.

* The ProductSpecification is also an
information expert on answering its
price, thus we need a message sent to
ProductSpecification asking for the
price, (something like: price and
getPrice())

Sala

data

eatTotal)

SalasLinsaltar

qQuantity

eatSubtotal()

Product

Specification

dascription
prica

itamID)
eatPrical)

Information Expert...

* Be careful: Don’t run ‘Expert’ into the Ground

* Who should be responsible for saving Sale in a
database?

* Always want to separate 1/0 from computations

e Each class would have its own services to save
itself in the database.

* Sale would have to now contain logic related to
database handling, such as related to SQL and
JDBC (for J2EE) or more

Controller Pattern

 Deals with how to delegate the request from the Ul
layer objects to domain layer objects.

 When a request comes from Ul layer object, Controller
pattern helps us in determining what is that first object
that receive the message from the Ul layer objects.

 This object is called controller object which receives
request from Ul layer object and then
controls/coordinates with other object of the domain
layer to fulfill the request.

* |t delegates the work to other class and coordinates
the overall activity.

Controller Pattern...

 Example

Ll abject

—— Click oh perfom =

Cartraller

— perfomAction]) =4

invake actiond()

\f

Chbjecth

invake

actiongy)

ChirctR

Controller Pattern...

e Useful in developing web applications

e Who should be responsible for handling an input
system “event”?

e System Event — event generated by external actor
— Eg :- Clicking “End Sale” Button

* A Controller is a non-user interface object responsible
for receiving or handling a system event

* Input events might come from
—a GUI operated by a person, or

—a call from a telecommunications switch, or
—a signal from a sensor, etc

Controller Pattern...

* Do not infer that there will be

a class named System

Design.
 Rather, during Design,

N

d

Controller class is assigned

the responsibilities
system operations

for

System

sndSalal)
antarltam()
makalNawSala()
makePavmant()

Controller Pattern...

Do not give controllers too much
responsibility (bloated controller)

Solution = add more controller
Types

— Facade controller — represents the overall system

— Session (use case) controller — represents a use
case

Facade Controllers are used when there are
not too many events to control

Controller Pattern...

e Other types

— Page Controller

* Controller that uses a single Presenter which interacts with
the Model (the data for the page). When it receives a
request, the Page Controller can determine which partial
View to display within the page, and then interact with that
View following the MVP pattern

— Front Controller

* A separate controller that examines each request and
determines which page to display. Each page is a complete
implementation of MVC, with its own View, and each
Presenter interacts with the View and the Model (the data)

Controller Pattern...

! !Request ’ !Request

Page Controller ASP.NET Page
1
L
Presenter fy - - g View ©
£
0
. » 5
. -
Y y £
View e
L

Model

Page Controller

Model

Presenter | View

l l

Presenter | View

[I

Presenter | View

(=

Front Controller

www.studynotesnepal.com

19

Low Coupling

 How strongly the objects are connected to each other?
 Coupling — object depending on other object.

* When depended upon element changes, it affects the dependant
also.

* Low Coupling — How can we reduce the impact of change in
depended upon elements on dependant elements.

* Prefer low coupling — assign responsibilities so that coupling remain
low.

* Minimizes the dependency hence making system maintainable,
efficient and code reusable
 Two elements are coupled, if

— One element has aggregation/composition association with another
element.

— One element implements/extends other element.

Low Coupling...

* Coupling is a measure of how strongly one element is
connected to another element

Common forms of coupling
Class A has an instance of Class B
Class A send a message to an instance of Class B
Class A is a subclass of Class B (inheritance)
Class A implements interface |

* Highly coupled classes suffer from following problems
— Forced local changes because of changes in related classes
— Harder to understand in isolation

e Solution
— Assign the responsibility so that coupling remains low

Low Coupling...

Example for poor coupling

EentWideo VideoStorg

getVideo(title) ———=1 @etAlidecs]) —=

Wirdea

geiftitis). \Wideo =

here class Rent knows about both VideoStore and Video
objects. Rent is depending on both the classes.

www.studynotesnepal.com 22

Low Coupling...

Example for low coupling

VideoStore and Video class are coupled, and Rent is coupled with
VideoStore. Thus providing low coupling.

RertVideo VideoStore

getVideotitie) T getdiiVideos) —=

getVidea(titie] - |4 #

f
Widen

www.studynotesnepal.com 23

Low Coupling...

e Example

— In POS application, when the cashier enters a payment, payment
object needs to be created and associated with the current sale

— In real world domain, a Register records a Payment, so Register will be
creator for that responsibility

d/ 1. makePayment()
A 000 N N 0900 O 1 SO A0 R 0L A O N Y s
1.1. Payment()
: Reqgister > p : Payment

{new}

\L 1.2. addPayment(p)

o U U A SR PRI SR U A U i p———
RN U U RS I P p——

www.studynotesnepal.com 24

Low Coupling...

e Example

— Since the Payment object will eventually be linked to the Sale object,
why not assign the responsibility to Sale?

\L 1. makePayment()

: Reqister

¢1.1. makePayment()

DESIGN A

DESIGN B

— ——————

www.studynotesnepal.com

—————

Register(\'

——————

-~
o — -

,—__'—‘~

T — -

_/Payment

—————

—————

Based on the coupling

factor we prefer design B

25

High Cohesion

e How are the operations of any element are functionally
related?

* Related responsibilities in to one manageable unit.

 High cohesion is when parts of a module are grouped
because they all contribute to a single well-defined task of
the module

* Prefer high cohesion
* Clearly defines the purpose of the element

* Benefits
— Easily understandable and maintainable.
— Code reuse
— Low coupling

High Cohesion...

Student | :Etu::lent | | Hl: I
5 | : I
<& gerstugentDetars() *— 9'5"5[“"-;%”‘:59’:5“"
| |
i l E— ——————————————— inser{student) -————————————=x
fl accessDEf, DEcalis() 1: |
' ! ¥ accessDB(. DBcalls()
1 i I
E——— incertDE() J: ®— nsertDB(data)
- |

Low Cohesion High Cohesion

www.studynotesnepal.com

27

High Cohesion...

// Less cohesive class design

r

class BudgetReport {

vold connectToRDBMS() {

¥

vold generateBudgetReport()

¥

void saveToFile() {

¥
void print() {

¥

r

L

www.studynotesnepal.com

More cohesive class design
/f More cohesive class design

class BudgetReport {
Options getReportingOptions() {

¥

vold generateBudgetReport({Options o) {

¥

1.
J

class ConnectToRDBMS {
DBconnection getRDBMS() {

¥

1
}
class PrintStuff {
PrintOptions getPrintOptions() {

¥

1.
J

class FileSaver {
SaveOptions getFileSaveOptions() {

¥

28

Polymorphism

* How to handle related but varying elements
pased on element type?

* Polymorphism guides us in deciding which
object is responsible for handling those
varying elements.

* Benefits: handling new variations will become
easy. e

draw()

Rectangle

quare

draw() draw () draw()

Polymorphism(Example)...

« the getArea() varies by the type of shape, so we assign that
responsibility to the subclasses.

Shape
_____ getirea() —=> getAreal)

| |
Circle Triangle
getArea() getArzal)

« By sending message to the Shape object, a call will be made
to the corresponding sub class object — Circle or Triangle.

www.studynotesnepal.com

30

Pure Fabrication

* Fabricated class/ artificial class — assign set of related
responsibilities that doesn't represent any domain
object.

* j.e. a pure fabrication is a class that does not represent
a concept in the problem domain, specially made up to
achieve low coupling and high cohesion

* Provides a highly cohesive set of activities.
* Behavioral decomposed — implements some algorithm.
 Examples: Adapter

* Benefits: High cohesion, low coupling and can reuse
this class.

Pure Fabrication (Example)...

Example: Suppose we need to save Sale Dbject in a relational DB.

Information Expert or Expert says Sale should do it, because Sale
knows its total.

But it violates Low Coupling and High Cohesion because Sale will
be coupled with JDBC etc.

Sale remains well-designed, with high cohesion and low coupling
L= L L

The PersfstﬂntStarage class is itself relatively cohesive, h:ﬁ'mg the

sole purpose of storing or inserting Dbjects in a persistent storage
[- W L.
medium

® The Persfsteﬂtsmrage class is Very generic and reusable Dbject

PersistentStorage

By Pure Fabrication LN O

| ©

insert(Object)
update(Object)

www.studynotesnepal.com

32

Pure Fabrication (Example)...

 Suppose we Shape class, if we must store the
shape data in a database.

* |f we put this responsibility in Shape class, there
will be many database related operations thus
making Shape incohesive.

e So, create a fabricated class DBStore which is
responsible to perform all database operations.

* Similarly loglnterface which is responsible for
logging information is also a good example for
Pure Fabrication

Indirection

* How can we avoid a direct coupling between
two or more elements.

* Indirection introduces an intermediate unit to
communicate between the other units, so that
the other units are not directly coupled.

* Benefits: low coupling
 Example: Adapter, Obserever

Indirection...

* Context/Problem: Where to assign responsibility, to avoid
direct CDupljllE between two (or more) tlﬂngs? How to decouple

ijects so that low ccmpling is suppc:-rted and reuse remains high?

* Solution: Create an intermediate DbjE'E“l’ to mediate between

other components or services so that thev are not directly coupled.

The intermediarv creates and indirectiobbetween the other

CD]]lI}DI'l ents.

www.studynotesnepal.com

35

Indirection(Example)...

« Here polymorphism illustrates indirection

« Class Employee provides a level of indirection to other units of
the system.

Salary Employee
_________ gEfTDfoSS-"'Fﬂ '____—_:,..;3' ~ I
— Employee act
- | P £
getEmpSalry() -———r--—-== as level of
irnairection

www.studynotesnepal.com 36

Indirection(Example)...

1
s : Sale ’ ‘TaxMasterAdapter
| r
- | .
_t:=getTotal() : | TCP socket -
| | communication W,
taxes := getTaxes(s) il l [
‘ . J X > «system»
L] ' ' : TaxMaster
|
|

the adapter acts as a |evel‘
of indirection to external
systems

www.studynotesnepal.com 37

Protected Variation

* How to avoid impact of variations of some
elements on the other elements.

* |t provides a well defined interface so that the
there will be no affect on other units.

* Provides flexibility and protection from
variations.

* Provides more structured design.
 Example: data encapsulation, interfaces

Protected Variation...

* Context/Problem: How to design objects, subsystems and
systems so that the variations or instability in these elements does

not have an undesirable impact on other elements?

* Solution: Identify points of predicted variation or instability;

assign responsibilities to create a stable interface around them.

. Example: Prior external tax calculator is also a protected

variation e:{ample.

www.studynotesnepal.com

39

GoF Design Pattern

e Gang of Four (Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides)

* Adapter, Singleton, Factory, Observer

Factory Pattern

* Problem

— Who should be responsible for creating objects
when there are special considerations such as
complex creation logic, a desire to separate
creation responsibilities for better cohesion etc

e Solution

— Create pure fabrication object called a Factory
that handles the creation

Factory Pattern...

In Factory pattern, we create object without exposing the creation logic to

Shape

+draw() : void

implements

[

<<Interface>>

implements

Circle

I implements

Square

+draw() : void

the client and refer to newly created object using a common interface

FactoryPattern
Demo

+main() : void

+draw() : void

asks
Rectangle ¥
ShapeFactory
creates
be
+draw() : void +getShape():
Shape

www.studynotesnepal.com

42

public class Square implements Shape {

Fa Cto ry Patte rn . public void draw() {

System.out.println("Inside Square::draw() method.");

Step 1 }
Create an interface. }
Shape.java Circle.java

public interface shape { public class Circle implements Shape {

_ public void draw() {
void draw();
System.out.println("Inside Circle::draw() method.");

Step 2 ¥

Create concrete classes implementing the same interface.

Rectangle.java

public class Rectangle implements Shape {
public void draw() {

System.out.println("Inside Rectangle: :draw() method.");

www.studynotesnepal.com 43

Singleton Pattern

* Problem

— Exactly one instance of a class is allowed. Objects
need a global and single point of access

e Solution

— Define a static model of the class that returns the
singleton: getinstance()

Singleton Pattern...

* This pattern involves a single class which is responsible to create an object while
making sure that only single object gets created

SingletonPatternDemo

Stepl

Create a Singleton Class.

SingleObject. java +main() : void

public class ingledhisct {
asks
ffcreate an object of Singlefbiect
private static SingleQbiesct instance = new SingleQbiect();

S /make the constructor private so that this class cannot be

. J
SingleObject returns

ffinstantiated

private singledbiect () {} -instance: SingleObject

ffGet the only object available

public static SingleObisct emtlnstanse() -SingleObject ()
+getinstance():SingleObject

retucn instance; +showMessage():void

www.studynotesnepal.com 45

Observer Pattern

* Define a one to many dependency between
objects so that when one object changes
state, all its dependents are notified and
updated automatically

* Used in MVC framework

— Model is problem domain

— View in windowing system

— Controller is mouse/keyword control
e Listeners in Java, Thread -> notify()

Adapter Pattern

* Problem

— How to resolve incompatible interfaces, or how to
provide a stable interface to similar components with
different interfaces

e Solution

— Convert the original interface of component into
another interface, through an intermediate adapter
object

e Example

— POS needs to adapt several kinds of external third
party services, like tax calculators, accounting systems,
inventory systems

Adapter Pattern...

* Follows polymorphism, protected variation,
indirection

End of Session

