
1

EXPERIMENT: 1

AIM: Demonstration of preprocessing on some datasets eg. Student.aarf/

labor.aarf/Iris/ loan/ etc.

DESCRIPTION:

Steps to get Started with WEKA:
1. Open C drive.

2. Then open program files in that go to weka-3-8

3. (NOTE: search for folder named weka-version-number).

4. Select Explorer.

Steps To Create Own Data Set with weka attribute relation file format(.arff):
1. Open notepad

2. Type information as shown below in notepad;

@ RELATION = To make table

@ ATTRIBUTE = To define columns

(Note: each attribute should contain @ ATTRIBUTE at beginning then

instances/tuples are added by @ DATA (Note: each tuple in one row)

Example:

@RELATION student

@ATTRIBUTE id NUMERIC

@ATTRIBUTE name STRING

@ATTRIBUTE address STRING

@ATTRIBUTE gender {M, F}

@DATA

1,Sirisha,Vijaynagaram,F

2,Bendi,Visakhapatnam,F

3,Vijay,Gopalapatnam,M

4,Prabin,Nepal,M

3. Save File with arff extension (Eg: student.arff) ;

2

Loading Dataset in weka (.arff or .csv):
1. Open weka Explorer

2. Click “Open File..” at top left

3. Select arff/csv file you want to load (Eg: student.arff/bank-data.csv) Then press
"Open" button as shown below:

3

 Note: The same process is continued for loading all other datasets in later cases.

IRIS DATA SET:
Number of Instances:150

Number of attributes:4

Missing Values?: No

@RELATION iris

@ATTRIBUTE sepallength REAL

@ATTRIBUTE sepalwidth REAL

@ATTRIBUTE petallength REAL

@ATTRIBUTE petalwidth REAL

@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica}

@DATA

5.1, 3.5, 1.4, 0.2, Iris-setosa

4.9, 3.0, 1.4, 0.2, Iris-setosa

4.7, 3.2, 1.3, 0.2, Iris-setosa

4.6, 3.1, 1.5, 0.2, Iris-setosa

5.0, 3.6, 1.4, 0.2, Iris-setosa

7.0, 3.2, 4.7, 1.4, Iris-versicolor

4

6.4, 3.2, 4.5, 1.5, Iris-versicolor

6.9, 3.1, 4.9, 1.5, Iris-versicolor

5.5, 2.3, 4.0, 1.3, Iris-versicolor

6.5, 2.8, 4.6, 1.5, Iris-versicolor

6.3, 3.3, 6.0, 2.5, Iris-virginica

5.8, 2.7, 5.1, 1.9, Iris-virginica

7.1, 3.0, 5.9, 2.1, Iris-virginica

6.3, 2.9, 5.6, 1.8, Iris-virginica

6.5, 3.0, 5.8, 2.2, Iris-virginica

LABOR DATA SET:
Number of Instances:57

Number of attributes:17

Missing Values?: Yes

@RELATION 'labor-data'

@ATTRIBUTE 'duration' real

@ATTRIBUTE 'wage-increase-first-year' real

@ATTRIBUTE 'wage-increase-second-year' real

@ATTRIBUTE 'wage-increase-third-year' real

@ATTRIBUTE 'cost-of-living-adjustment' {'none','tcf','tc'}

@ATTRIBUTE 'working-hours' real

@ATTRIBUTE 'pension' {'none','ret_allw','empl_contr'}

@ATTRIBUTE 'standby-pay' real

@ATTRIBUTE 'shift-differential' real

@ATTRIBUTE 'education-allowance' {'yes','no'}

@ATTRIBUTE 'statutory-holidays' real

@ATTRIBUTE 'vacation' {'below_average','average','generous'}

@ATTRIBUTE 'longterm-disability-assistance' {'yes','no'}

@ATTRIBUTE 'contribution-to-dental-plan' {'none','half','full'}

@ATTRIBUTE 'bereavement-assistance' {'yes','no'}

@ATTRIBUTE 'contribution-to-health-plan' {'none','half','full'}

@ATTRIBUTE 'class' {'bad','good'}

@DATA

1,5,?,?,?,40,?,?,2,?,11,'average',?,?,'yes',?,'good'

5

2,4.5,5.8,?,?,35,'ret_allw',?,?,'yes',11,'below_average',?,'full',?,'full','good'

?,?,?,?,?,38,'empl_contr',?,5,?,11,'generous','yes','half','yes','half','good'

3,3.7,4,5,'tc',?,?,?,?,'yes',?,?,?,?,'yes',?,'good'

3,4.5,4.5,5,?,40,?,?,?,?,12,'average',?,'half','yes','half','good'

2,2,2.5,?,?,35,?,?,6,'yes',12,'average',?,?,?,?,'good'

3,4,5,5,'tc',?,'empl_contr',?,?,?,12,'generous','yes','none','yes','half','good'

3,6.9,4.8,2.3,?,40,?,?,3,?,12,'below_average',?,?,?,?,'good'

2,3,7,?,?,38,?,12,25,'yes',11,'below_average','yes','half','yes',?,'good'

1,5.7,?,?,'none',40,'empl_contr',?,4,?,11,'generous','yes','full',?,?,'good'

3,3.5,4,4.6,'none',36,?,?,3,?,13,'generous',?,?,'yes','full','good'

2,6.4,6.4,?,?,38,?,?,4,?,15,?,?,'full',?,?,'good'

2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad'

3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good'

1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good'

2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good'

1,2.8,?,?,?,35,?,?,2,?,12,'below_average',?,?,?,?,'good'

1,2.1,?,?,'tc',40,'ret_allw',2,3,'no',9,'below_average','yes','half',?,'none','bad'

1,2,?,?,'none',38,'none',?,?,'yes',11,'average','no','none','no','none','bad'

2,4,5,?,'tcf',35,?,13,5,?,15,'generous',?,?,?,?,'good'

2,4.3,4.4,?,?,38,?,?,4,?,12,'generous',?,'full',?,'full','good'

2,2.5,3,?,?,40,'none',?,?,?,11,'below_average',?,?,?,?,'bad'

3,3.5,4,4.6,'tcf',27,?,?,?,?,?,?,?,?,?,?,'good'

2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad'

3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good'

1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good'

2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good'

1,2.8,?,?,?,35,?,?,2,?,12,'below_average',?,?,?,?,'good'

2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad'

3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good'

1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good'

2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good'

1,2.8,?,?,?,35,?,?,2,?,12,'below_average',?,?,?,?,'good'

2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad'

3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good'

1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good'

2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good'

6

Preprocessing in Weka
Pre-processing tools in WEKA are called “filters”. WEKA contains filters for discretization,

normalization, resampling, ATTRIBUTE selection, transformation and combination of

ATTRIBUTEs . Some techniques, such as association rule mining, can only be performed on

categorical data. This requires performing discretization on numeric or continuous

ATTRIBUTEs.

The weka.filters package is concerned with classes that transform datasets – by removing or

adding ATTRIBUTEs, resampling the dataset, removing examples and so on. This package

offers useful support for data preprocessing, which is an important step in machine learning.

All filters offer the options -i for specifying the input dataset, and -o for specifying the output

dataset. If any of these parameters is not given, this specifies standard input resp. output for

use within pipes. Other parameters are specific to each filter and can be found out via -h, as

with any other class. The weka.filters package is organized into supervised and unsupervised

filtering, both of which are again subdivided into instance and ATTRIBUTE filtering.

Steps for preprocessing on dataset labor.arff
1. Loading the data: We can load the dataset into weka by clicking on open file button in

preprocessing interface and selecting the appropriate file.

2. Once the data is loaded, weka will recognize the attributes and during the scan of the

data weka will compute some basic strategies on each attribute. The left panel in the

above figure shows the list of recognized attributes while the top panel indicates the

names of the base relation or table and the current working relation (which are same

initially).

3. Clicking on an attribute in the left panel will show the basic statistics on the attributes

for the categorical attributes the frequency of each attribute value is shown, while for

continuous attributes we can obtain min, max, mean, standard deviation and deviation

etc.,

4. The visualization in the right button panel in the form of cross-tabulation across two

attributes.

(Note:we can select another attribute using the dropdown list)

5. Selecting or filtering attributes

6. Filter example: Removing an attribute:

When we need to remove an attribute,we can do this by using the attribute
filters in weka. Following are steps to follow:

a. In the filter model panel,click on choose button,This will show a popup
window with a list of available filters.

b. Scroll down the list and select the
“weka.filters.unsupervised.attribute.remove” filters.

c. Next click the textbox immediately to the right of the choose button.In the
resulting dialog box enter the index of the attribute to be filtered out.

d. Make sure that invert selection option is set to false.The click OK now in
the filter box.you will see “Remove-R-7”.

e. Click the apply button to apply filter to this data.This will remove the
attribute and create new working relation.

f. Save the new working relation as an arff file by clicking save button on the
top(button)panel.(labor.arff)

7. Filter example: Discretization

7

Sometimes association rule mining can only be performed on categorical
data.This requires performing discretization on numeric or continuous
attributes. In the following example let us discretize duration attribute. Steps
to follow:
a. Let us divide the values of duration attribute into three bins(intervals).
b. From loaded labor.arff dataset in weka; Select the duration attribute.
c. Activate filter-dialog box and select

“WEKA.filters.unsupervised.attribute.discretize”from the list.
d. To change the defaults for the filters,click on the box immediately to the

right of the choose button.
e. We enter the index for the attribute to be discretized.In this case the

attribute is duration So we must enter ‘1’ corresponding to the duration
attribute.

f. Enter ‘3’ as the number of bins.Leave the remaining field values as they
are.

g. Click OK button.
h. Click apply in the filter panel.This will result in a new working relation

with the selected attribute partition into 3 bin.
i. Save the new working relation in a file called labor-data-discretized.arff

Before Discretization:

After Discretization:

8

EXPERIMENT: 2

AIM:

DESCRIPTION:

Once the data is loaded, WEKA will recognize the attributes and during the scan of the data

will compute some basic statistics on each attribute. The left panel in below figure shows the

list of recognized attributes, while the top panels indicate the names of the base relation (or

table) and the current working relation (which are the same initially).

Clicking on any attribute in the left panel will show the basic statistics on that attribute. For

categorical attributes, the frequency for each attribute value is shown, while for continuous

attributes we can obtain min, max, mean, standard deviation, etc. As an example, see Figures

below which show the results of selecting the "id" and "gender" attributes, respectively.

Demonstration of Data Visualization using Weka

9

After selection of id attribute:

After selection of gender attribute:

10

Visualization with Iris dataset:
There are a number of ways in which you can use Weka to visualize your data.

After loading dataset the main GUI will show a histogram for the attribute distributions for a

single selected attribute at a time, by default this is the class attribute.

Note that the individual colors indicate the individual classes (the Iris dataset has 3). If you

move the mouse over the histogram, it will show you the ranges and how many samples fall in

each range.

The button VISUALIZE ALL will let you bring up a screen showing all distributions at once

as in the picture below:

11

There is also a tab called called VISUALIZE. Clicking on that will open the scatterplots for all

attribute pairs:

From these scatterplots, we can infer a number of interesting things. For example, in the picture

above we can see that in some examples the clusters (for now, think of clusters as collections

of points that are physically close to each other on the screen) and the different colors

correspond to each other such as for example in the plots for class/(any attribute) pairs and the

petalwidth/petallength attribute pair, whereas for other pairs (sepalwidth/sepallength for

example) it's much hader to separate the clusters by color.

By default, the colors indicate the different classes, in this case we used red and two shades of

blue. Left clicking on any of the highlighted class names towards the bottom of the screenshot

allows you to set your own color for the classes. Also, by default, the color is used in

conjunction with the class attribute, but it can be useful to color the other attributes as well. For

example, changing the color to the fourth attribute by clicking on the arrow next to the bar that

currently reads Color: class (Num) and selecting pedalwidth enables us to observe even more

about the data, for example the fact that for the class/sepallength attribute pair, which range of

attribute values (indicated by different color) tends to go along with which class.

12

EXPERIMENT: 3

AIM: Demonstration of Association Rules extraction on Market basket data

using apriori/ FP Algorithm

DESCRIPTION:

Association rule generation is usually split up into two separate steps:

1. First, minimum support is applied to find all frequent itemsets in a database.

2. Second, these frequent itemsets and the minimum confidence constraint are used to

form rules.

While the second step is straight forward, the first step needs more attention.

Finding all frequent itemsets in a database is difficult since it involves searching all possible

itemsets (item combinations). The set of possible itemsets is the power set over I and has size

2n − 1 (excluding the empty set which is not a valid itemset). Although the size of the powerset

grows exponentially in the number of items n in I, efficient search is possible using the

downward-closure property of support (also called anti-monotonicity) which guarantees that

for a frequent itemset, all its subsets are also frequent and thus for an infrequent itemset, all its

supersets must also be infrequent. Exploiting this property, efficient algorithms (e.g., Apriori

and Eclat) can find all frequent itemsets.

Apriori Algorithm Pseudo code:
procedureApriori (T, minSupport) { //T is the database and minSupport is the minimum support

L1= {frequent items};

for (k= 2; Lk-1 !=∅; k++) {

Ck= candidates generated from Lk-1

//that iscartesian product Lk-1 x Lk-1 and eliminating any k-1 size itemset that is not

 //frequent for each transaction t in database do{

 #increment the count of all candidates in Ck that are contained in t

Lk = candidates in Ck with minSupport

 }//end for each

 }//end for return ⋃ ; }

As is common in association rule mining, given a set of itemsets (for instance, sets of retail

transactions, each listing individual items purchased), the algorithm attempts to find subsets

which are common to at least a minimum number C of the itemsets. Apriori uses a "bottom up"

approach, where frequent subsets are extended one item at a time (a step known as candidate

generation), and groups of candidates are tested against the data. The algorithm terminates

when no further successful extensions are found.

Apriori uses breadth-first search and a tree structure to count candidate item sets efficiently. It

generates candidate item sets of length k from item sets of length k − 1. Then it prunes the

candidates which have an infrequent sub pattern. According to the downward closure lemma,

the candidate set contains all frequent k-length item sets. After that, it scans the transaction

database to determine frequent item sets among the candidates.

13

Apriori, while historically significant, suffers from a number of inefficiencies or trade-offs,

which have spawned other algorithms. Candidate generation generates large numbers of

subsets (the algorithm attempts to load up the candidate set with as many as possible before

each scan). Bottom-up subset exploration (essentially a breadth-first traversal of the subset

lattice) finds any maximal subset S only after all 2 | S | − 1 of its proper subsets.

Steps to run data set using apriori algorithm:
1. Load arff dataset

2. From the displayed functions above select associate.

3. Go to choose option below the functions.

4. By clicking on the choose you may select the required alogithm (apriori), to

demonstrate association rule process.

OUTPUT:

14

Association rule process using FP-growth algorithm:
FP stands for frequent pattern. In the first pass, the algorithm counts occurrence of items

(attribute-value pairs) in the dataset, and stores them to 'header table'. In the second pass, it

builds the FP-tree structure by inserting instances. Items in each instance have to be sorted by

descending order of their frequency in the dataset, so that the tree can be processed quickly.

Items in each instance that do not meet minimum coverage threshold are discarded. If many

instances share most frequent items, FP-tree provides high compression close to tree root.

Recursive processing of this compressed version of main dataset grows large item sets directly,

instead of generating candidate items and testing them against the entire database. Growth

starts from the bottom of the header table (having longest branches), by finding all instances

matching given condition. New tree is created, with counts projected from the original tree

corresponding to the set of instances that are conditional on the attribute, with each node getting

sum of its children counts. Recursive growth ends when no individual items conditional on the

attribute meet minimum support threshold, and processing continues on the remaining header

items of the original FP-tree.Once the recursive process has completed, all large item sets with

minimum coverage have been found, and association rule creation begins.

Steps to run data set using FPGrowth algorithm:
1. Load arff dataset

2. From the displayed functions above select associate.

3. Go to choose option below the functions.

4. By clicking on the choose you may select the required alogithm (FPGrowth), to

demonstrate association rule process.

OUTPUT:

15

EXPERIMENT: 4

AIM: Demonstration of Classification Rule extraction a bench mark dataset

using j48/ID3 Algorithm

DESCRIPTION:

Classification rule process using ID3 Algorithm:
In decision tree learning, ID3 (Iterative Dichotomiser) is an algorithm invented by Ross

Quinlan used to generate a decision tree from the dataset. ID3 is typically used in the machine

learning and natural language processing domains. The decision tree technique involves

constructing a tree to model the classification process. Once a tree is built, it is applied to each

tuple in the database and results in classification for that tuple. The following issues are faced

by most decision tree algorithms :

• Choosing splitting attributes

• Ordering of splitting attributes

• Number of splits to take

• Balance of tree structure and pruning

• Stopping criteria

 The ID3 algorithm is a classification algorithm based on Information Entropy, its basic idea is

that all examples are mapped to different categories according to different values of the

condition attribute set; its core is to determine the best classification attribute form condition

attribute sets. The algorithm chooses information gain as attribute selection criteria; usually the

attribute that has the highest information gain is selected as the splitting attribute of current

node, in order to make information entropy that the divided subsets need smallest . According

to the different values of the attribute, branches can be established, and the process above is

recursively called on each branch to create other nodes and branches until all the samples in a

branch belong to the same category. To select the splitting attributes, the concepts of Entropy

and Information Gain are used.

Entropy

 Given probabilities p1, p2, …,ps , where ∑pi = 1, Entropy is defined as

H(p1, p2, …, ps) = ∑ - (pi log pi)

Entropy finds the amount of order in a given database state. A value of H = 0 identifies a

perfectly classified set. In other words, the higher the entropy, the higher the potential to

improve the classification process.

Information Gain

 ID3 chooses the splitting attribute with the highest gain in information, where gain is defined

as difference between how much information is needed after the split. This is calculated by

determining the differences between the entropies of the original dataset and the weighted sum

of the entropies from each of the subdivided datasets. The formula used for this purpose is:

G(D, S) = H(D) - ∑P(Di)H(Di)

Steps to run data set using ID3 Algorithm:
1. Load arff dataset.

2. From the displayed functions above select classify.

3. Go to choose option below the functions.

4. By clicking on the choose you may observe certain ways for classification.

5. Choose tress from different classifications shown.

16

6. Now from tress ,select ID3 and run the data set.

OUTPUT:

Data Mining Lab from prabinsilwal.com.np

17

Classification rule process using J48 :
Classification is the process of building a model of classes from a set of records that contain

class labels. Decision Tree Algorithm is to find out the way the attributes-vector behaves for a

number of instances. Also on the bases of the training instances the classes for the newly

generated instances are being found. This algorithm generates the rules for the prediction of

the target variable. With the help of tree classification algorithm the critical distribution of the

data is easily understandable.

 J48 is an extension of ID3. The additional features of J48 are accounting for missing values,

decision trees pruning, continuous attribute value ranges, derivation of rules, etc. In the WEKA

data mining tool, J48 is an open source Java implementation of the C4.5 algorithm. The WEKA

tool provides a number of options associated with tree pruning. In case of potential over fitting

pruning can be used as a tool for précising. In other algorithms the classification is performed

recursively till every single leaf is pure, that is the classification of the data should be as perfect

as possible. This algorithm it generates the rules from which particular identity of that data is

generated. The objective is progressively generalization of a decision tree until it gains

equilibrium of flexibility and accuracy.

 Basic Steps in the Algorithm:
1. In case the instances belong to the same class the tree represents a leaf so the leaf is

returned by labeling with the same class.

2. The potential information is calculated for every attribute, given by a test on the

attribute. Then the gain in information is calculated that would result from a test on the

attribute.

3. Then the best attribute is found on the basis of the present selection criterion and that

attribute selected for branching.

Counting Gain

This process uses the “Entropy” which is a measure of the data disorder. The Entropy

of is calculated by And Gain is

Steps to run data set using J48 Decision Tree:

1. Load arff dataset

2. From the displayed functions above select classify.

3. Go to choose option below the functions.

4. By clicking on the choose you may observe certain ways for classification.

5. Choose tress from different classifications shown.

6. Now from tress, select J48 and run the data set.

OUTPUT:

18

19

EXPERIMENT: 5

AIM: Demonstration of Classification Rule Process on any datasets using Navie Bayes

Algorithm

DESCRIPTION:

The Naive Bayesian classifier is based on Bayes’ theorem with independence assumptions between

predictors. A Naive Bayesian model is easy to build, with no complicated iterative parameter estimation

which makes it particularly useful for very large datasets. Despite its simplicity, the Naive Bayesian

classifier often does surprisingly well and is widely used because it often outperforms more sophisticated

classification methods.

Algorithm:
Bayes theorem provides a way of calculating the posterior probability, P(c|x), from P(c), P(x), and P(x|c).

Naive Bayes classifier assume that the effect of the value of a predictor (x) on a given class (c) is

independent of the values of other predictors. This assumption is called class conditional independence.

Data Mining Lab from prabinsilwal.com.np

20

Steps to run data set using Navie Bayes Algorithm:
1. Load arff dataset

2. From the displayed functions above select classify.

3. Go to choose option below the functions.

4. By clicking on the choose you may observe certain ways for classification.

5. Choose bayes from different classifications shown.

6. Now from bayes ,select Navie Bayes and run the data set.

OUTPUT:

21

EXPERIMENT: 6

AIM: Demonstration of Classification Rule Process on any datasets using

K-nearest Neighbor classification Algorithm

DESCRIPTION:

K nearest neighbors is a simple algorithm that stores all available cases and classifies new cases

based on a similarity measure (e.g., distance functions). KNN has been used in statistical

estimation and pattern recognition already in the beginning of 1970’s as a non-parametric

technique.

Algorithm:
A case is classified by a majority vote of its neighbors, with the case being assigned to the class

most common amongst its K nearest neighbors measured by a distance function.

If K = 1, then the case is simply assigned to the class of its nearest neighbor.

22

It should also be noted that all three distance measures are only valid for continuous variables.

In the instance of categorical variables the Hamming distance must be used. It also brings up

the issue of standardization of the numerical variables between 0 and 1 when there is a mixture

of numerical and categorical variable in the dataset.

Steps to run data set using K-means algorithm:
1. Load arff dataset

2. From the displayed functions above select classify.

3. Go to choose option below the functions.

4. By clicking on the choose you may observe certain ways for classification.

5. Choose tress from different classifications shown.

6. Now from tress ,select NBTree and run the data set.

Output:

23

Data Mining Lab from prabinsilwal.com.np

24

EXPERIMENT: 7

AIM: Demonstration of partitional Clustering on any datasets using K-means

Algorithm

DESCRIPTION:

k-means is one of the simplest unsupervised learning algorithms that solve the well-known

clustering problem. The procedure follows a simple and easy way to classify a given data

set through a certain number of clusters (assume k clusters) fixed apriori. The main idea is

to define k centers, one for each cluster. These centers should be placed in a

cunning way because of different location causes different result. So, the

better choice is to place them as much as possible far away from each other. The next step

is to take each point belonging to a given data set and associate it to the nearest center. When

no point is pending, the first step is completed and an early group age is done. At this point

we need to re-calculate k new centroids as barycenter of the clusters resulting from the

previous step. After we have these k new centroids, a new binding has to be done between the

same data set points and the nearest new center. A loop has been generated. As a result of this

loop we may notice that the k centers change their location step by step until no more

changes are done or in other words centers do not move any more. Finally,

this algorithm aims at minimizing an objective function know as squared error function given

by:

where,

 ‘||xi - vj||’ is the Euclidean distance between xi and vj.

 ‘ci’ is the number of data points in ith cluster.

 ‘c’ is the number of cluster centers.

Algorithmic steps for k-means clustering :
Let X = {x1,x2,x3,……..,xn} be the set of data points and V = {v1,v2,…….,vc} be the set of

centers.

1. Randomly select ‘c’ cluster centers.

2. Calculate the distance between each data point and cluster centers.

3. Assign the data point to the cluster center whose distance from the cluster center is

minimum of all the cluster centers..

4. Recalculate the new cluster center using:

where, ‘ci’ represents the number of data points in ith cluster.

5. Recalculate the distance between each data point and new obtained cluster centers.

6. If no data point was reassigned then stop, otherwise repeat from step 3).

https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm/kmeans.JPG?attredirects=0

25

Steps to run data set using simple K-means algorithm:
1. Load Dataset

2. From the displayed functions above select cluster.

3. Go to choose option below the functions.

4. By clicking on the choose you may observe certain forms of clusters.

5. Choose SimpleKMeans.

6. Now run the data set.

OUTPUT:

26

EXPERIMENT: 8

AIM: Demonstration of Clustering on any datasets using simple K-mediods
algorithm

DESCRIPTION:

The K-medoids clustering algorithm is similar to the K-means algorithm. Both of these two

algorithms partition the dataset into groups and minimize the squared error based on the

distance between points. In contrast to the K-means algorithm which chooses the means as the

centroids, the K-medoids chooses datapoints as centers (medoids or exemplars).

The most common realisation of K-medoid clustering algorithm is the Partitioning Around

Medoids (PAM) algorithm.

The PAM algorithm works as following steps:
1. Initialization step: randomly select k data points in the dataset as the medoids.

2. Assignment step: associate each data point to the closest medoid. The closeness is

measured by any valid distance metric, such as Euclidean distance, Manhattan

distance, or Minkowski distance.

3. Updating step:

For each cluster

For each data point o in the cluster

Compute the cost of o as the medoid. The cost is defined as

the DistanceError which is

Choose the o with the smallest cost as the new medoid.

4. Repeat steps 2 and 3 until there is no change in medoids.

5. Repeat steps 1 to 4 for several times and output the solution with the least squared

error.

K-medoid in weka:
Weka provides new tab called Subspace Clustering for additional clustering methods.

While subspace clustering is a rather young area that has been researched for only one decade,

several distinct paradigms can be observed in the literature. Our system includes

representatives of these paradigms to provide an overview over the techniques available. We

provide implementations of the most recent approaches from different paradigms:

1. Cell-based subspace clustering discretizes the data space for efficient detection of

dense grid cells in a bottom-up fashion. It was introduced in the CLIQUE approach

which exploits monotonicity on the density of grid cells for pruning. SCHISM

extends CLIQUE using a variable threshold adapted to the dimensionality of the

subspace as well as efficient heuristics for pruning. In contrast, DOC and MINECLUS

use variable cells represented by hypercubes.

2. Density-based subspace clustering defines clusters as dense areas separated by

sparsely populated areas. In SUBCLU, a density monotonicity property is used to

prune subspaces in a bottom-up fashion. FIRES extends this paradigm by using

variable neighborhoods and an approximative heuristicts for efficient computation. In

INSCY we use dimensionality unbias density, normalized with respect to the

dimensionality of the subspace and in addition in-process pruning of redundant

subspace clusters achieves meaningful result sizes.

27

3. Clustering oriented methods optimize the overall clustering result. PROCLUS

extends the k-medoid algorithm by iteratively refining a full-space k-medoid

clustering in a top-down manner. P3C combines one-dimensional cluster cores to

higher-dimensional clusters bottom-up. STATPC uses a statistical test to remove

redundant clusters out of the result.

You can perform k-medoids by selecting Proclus as shown below:

28

OUTPUT:

Visualization of output:

Data Mining Lab from prabinsilwal.com.np

29

EXPERIMENT: 9

AIM: Demonstration of Clustering rules process on any datasets of images

using DB Scan algorithm

DESCRIPTION:

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering

algorithm. It is a density-based clustering algorithm: given a set of points in some space, it

groups together points that are closely packed together (points with many nearby neighbors),

marking as outliers points that lie alone in low-density regions (whose nearest neighbors are

too far away). DBSCAN is one of the most common clustering algorithms.

Algorithm:
DBSCAN requires two parameters: ε (eps) and the minimum number of points required to form

a dense region.

 It starts with an arbitrary starting point that has not been visited. This point's ε-neighborhood

is retrieved, and if it contains sufficiently many points, a cluster is started. Otherwise, the point

is labeled as noise. Note that this point might later be found in a sufficiently sized ε-

environment of a different point and hence be made part of a cluster.

In the following, we present a basic version of DBSCAN omitting details of data types and

generation of additional information about clusters:

DBSCAN (SetOfPoints, Eps, MinPts)

// SetOfPoints is UNCLASSIFIED

ClusterId := nextId(NOISE);

FOR i FROM 1 TO SetOfPoints.size DO

Point := SetOfPoints.get(i);

IF Point.ClId = UNCLASSIFIED THEN

IF ExpandCluster(SetOfPoints, Point,

ClusterId, Eps, MinPts) THEN

ClusterId := nextId(ClusterId)

END IF

END IF

END FOR

END; // DBSCAN

Steps to run data set using DBScan algorithm:
1. Load Dataset

2. From the displayed functions above select cluster.

3. Go to choose option below the functions.

4. By clicking on the choose you may observe certain forms of clusters.

5. Choose MakeDensityBasedClusterer.

6. Now run the data set.

30

OUTPUT:

Data Mining Lab from prabinsilwal.com.np

31

EXPERIMENT: 10

AIM: Demonstration of Clustering rules process on any datasets using Birch

Algorithm

DESCRIPTION:

BIRCH (balanced iterative reducing and clustering using hierarchies) is an unsupervised data

mining algorithm used to perform hierarchical clustering over particularly large data-sets. An

advantage of BIRCH is its ability to incrementally and dynamically cluster incoming, multi-

dimensional metric data points in an attempt to produce the best quality clustering for a given

set of resources (memory and time constraints). In most cases, BIRCH only requires a single

scan of the database.

Its inventors claim BIRCH to be the "first clustering algorithm proposed in the database area

to handle 'noise' (data points that are not part of the underlying pattern)

effectively", beating DBSCAN by two months. The algorithm received the SIGMOD 10 year

test of time award in 2006.

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies) is an integrated

agglomerative hierarchical clustering method. It is mainly designed for clustering large amount

of metric data. It is mainly suitable when there is limited amount of main memory and have to

achieve a linear I/O time requiring only in one database scan. It introduces two concepts,

clustering feature and clustering feature tree (CF tree), which are used to summarize cluster

representations [Tian Zhang et al., 1996].

A CF tree is a height-balanced tree that stores the clustering features for a hierarchical

clustering. It is similar to B+-Tree or R-Tree. CF tree is balanced tree with a branching factor

(maximum number of children per none leaf node) B and threshold T. Each internal node

contains a CF triple for each of its children. Each leaf node also represents a cluster and contains

a CF entry for each sub cluster in it. A sub cluster in a leaf node must have a diameter no greater

than a given threshold value (maximum diameter of sub-clusters in the leaf node) [Tian Zhang

et al., 1996].

An object is inserted to the closest leaf entry (sub cluster). A leaf node represents a cluster

made up of all sub clusters represented by its entries. All the entries in a leaf node must satisfy

the threshold requirements with respect to the threshold value T, that is, the diameter of the sub

cluster must be less than T. If the diameter of the sub cluster stored in the leaf node after

insertion is larger than the threshold

Steps to run data set using BIRCH algorithm:
1. Load Dataset

2. From the displayed functions above select cluster.

3. Go to choose option below the functions.

4. By clicking on the choose you may observe certain forms of clusters.

5. Choose HierarchicalClustering.

6. Now run the data set.

https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_clustering
https://en.wikipedia.org/wiki/Data_point
https://en.wikipedia.org/wiki/Time_constraint
https://en.wikipedia.org/wiki/DBSCAN

32

OUTPUT:

Data Mining Lab from prabinsilwal.com.np

DM Lab fro prabinsilwal.com.np

