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EXPERIMENT: 1 

AIM: Demonstration of preprocessing on some datasets eg. Student.aarf/ 

labor.aarf/Iris/ loan/ etc. 

DESCRIPTION:  

Steps to get Started with WEKA: 
1. Open C drive. 

2. Then open program files in that go to weka-3-8 

3. (NOTE: search for folder named weka-version-number). 

4. Select Explorer. 

 

 
 

Steps To Create Own Data Set with weka attribute relation file format(.arff):  
1. Open notepad 

2. Type information as shown below in notepad;  

@ RELATION = To make table   

@ ATTRIBUTE = To define columns  

(Note: each attribute should contain @ ATTRIBUTE at beginning then 

instances/tuples are added by @ DATA (Note: each tuple in one row) 

Example: 

@RELATION student 

@ATTRIBUTE id  NUMERIC 

@ATTRIBUTE name STRING 

@ATTRIBUTE address STRING 

@ATTRIBUTE gender {M, F} 

@DATA 

1,Sirisha,Vijaynagaram,F 

2,Bendi,Visakhapatnam,F 

3,Vijay,Gopalapatnam,M 

4,Prabin,Nepal,M 

 

3. Save File with arff extension (Eg: student.arff ) ;  
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Loading Dataset in weka (.arff or .csv): 
1. Open weka Explorer 

2. Click “Open File..” at top left 

3. Select arff/csv file you want to load (Eg: student.arff/bank-data.csv) Then press 
"Open" button as shown below: 
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 Note:  The same process is continued for loading all other datasets in later cases. 

 

IRIS DATA SET: 
Number of Instances:150 

Number of attributes:4 

Missing Values?: No 

 

@RELATION iris 

 

@ATTRIBUTE sepallength REAL 

@ATTRIBUTE sepalwidth REAL 

@ATTRIBUTE petallength REAL 

@ATTRIBUTE petalwidth REAL 

@ATTRIBUTE class {Iris-setosa, Iris-versicolor, Iris-virginica} 

 

@DATA 

5.1, 3.5, 1.4, 0.2, Iris-setosa 

4.9, 3.0, 1.4, 0.2, Iris-setosa 

4.7, 3.2, 1.3, 0.2, Iris-setosa 

4.6, 3.1, 1.5, 0.2, Iris-setosa 

5.0, 3.6, 1.4, 0.2, Iris-setosa 

7.0, 3.2, 4.7, 1.4, Iris-versicolor 
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6.4, 3.2, 4.5, 1.5, Iris-versicolor 

6.9, 3.1, 4.9, 1.5, Iris-versicolor 

5.5, 2.3, 4.0, 1.3, Iris-versicolor 

6.5, 2.8, 4.6, 1.5, Iris-versicolor 

6.3, 3.3, 6.0, 2.5, Iris-virginica 

5.8, 2.7, 5.1, 1.9, Iris-virginica 

7.1, 3.0, 5.9, 2.1, Iris-virginica 

6.3, 2.9, 5.6, 1.8, Iris-virginica 

6.5, 3.0, 5.8, 2.2, Iris-virginica 

 

LABOR DATA SET: 
Number of Instances:57 

Number of attributes:17 

Missing Values?: Yes 

 

@RELATION 'labor-data' 

 

@ATTRIBUTE 'duration' real 

@ATTRIBUTE 'wage-increase-first-year' real 

@ATTRIBUTE 'wage-increase-second-year' real 

@ATTRIBUTE 'wage-increase-third-year' real 

@ATTRIBUTE 'cost-of-living-adjustment' {'none','tcf','tc'} 

@ATTRIBUTE 'working-hours' real 

@ATTRIBUTE 'pension' {'none','ret_allw','empl_contr'} 

@ATTRIBUTE 'standby-pay' real 

@ATTRIBUTE 'shift-differential' real 

@ATTRIBUTE 'education-allowance' {'yes','no'} 

@ATTRIBUTE 'statutory-holidays' real 

@ATTRIBUTE 'vacation' {'below_average','average','generous'} 

@ATTRIBUTE 'longterm-disability-assistance' {'yes','no'} 

@ATTRIBUTE 'contribution-to-dental-plan' {'none','half','full'} 

@ATTRIBUTE 'bereavement-assistance' {'yes','no'} 

@ATTRIBUTE 'contribution-to-health-plan' {'none','half','full'} 

@ATTRIBUTE 'class' {'bad','good'} 

 

@DATA 

1,5,?,?,?,40,?,?,2,?,11,'average',?,?,'yes',?,'good' 
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2,4.5,5.8,?,?,35,'ret_allw',?,?,'yes',11,'below_average',?,'full',?,'full','good' 

?,?,?,?,?,38,'empl_contr',?,5,?,11,'generous','yes','half','yes','half','good' 

3,3.7,4,5,'tc',?,?,?,?,'yes',?,?,?,?,'yes',?,'good' 

3,4.5,4.5,5,?,40,?,?,?,?,12,'average',?,'half','yes','half','good' 

2,2,2.5,?,?,35,?,?,6,'yes',12,'average',?,?,?,?,'good' 

3,4,5,5,'tc',?,'empl_contr',?,?,?,12,'generous','yes','none','yes','half','good' 

3,6.9,4.8,2.3,?,40,?,?,3,?,12,'below_average',?,?,?,?,'good' 

2,3,7,?,?,38,?,12,25,'yes',11,'below_average','yes','half','yes',?,'good' 

1,5.7,?,?,'none',40,'empl_contr',?,4,?,11,'generous','yes','full',?,?,'good' 

3,3.5,4,4.6,'none',36,?,?,3,?,13,'generous',?,?,'yes','full','good' 

2,6.4,6.4,?,?,38,?,?,4,?,15,?,?,'full',?,?,'good' 

2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad' 

3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good' 

1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good' 

2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good' 

1,2.8,?,?,?,35,?,?,2,?,12,'below_average',?,?,?,?,'good' 

1,2.1,?,?,'tc',40,'ret_allw',2,3,'no',9,'below_average','yes','half',?,'none','bad' 

1,2,?,?,'none',38,'none',?,?,'yes',11,'average','no','none','no','none','bad' 

2,4,5,?,'tcf',35,?,13,5,?,15,'generous',?,?,?,?,'good' 

2,4.3,4.4,?,?,38,?,?,4,?,12,'generous',?,'full',?,'full','good' 

2,2.5,3,?,?,40,'none',?,?,?,11,'below_average',?,?,?,?,'bad' 

3,3.5,4,4.6,'tcf',27,?,?,?,?,?,?,?,?,?,?,'good' 

2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad' 

3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good' 

1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good' 

2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good' 

1,2.8,?,?,?,35,?,?,2,?,12,'below_average',?,?,?,?,'good' 

2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad' 

3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good' 

1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good' 

2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good' 

1,2.8,?,?,?,35,?,?,2,?,12,'below_average',?,?,?,?,'good' 

2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad' 

3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good' 

1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good' 

2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good' 
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Preprocessing in Weka 
Pre-processing tools in WEKA are called “filters”. WEKA contains filters for discretization, 

normalization, resampling, ATTRIBUTE selection, transformation and combination of 

ATTRIBUTEs . Some techniques, such as association rule mining, can only be performed on 

categorical data. This requires performing discretization on numeric or continuous 

ATTRIBUTEs. 

The weka.filters package is concerned with classes that transform datasets – by removing or 

adding ATTRIBUTEs, resampling the dataset, removing examples and so on. This package 

offers useful support for data preprocessing, which is an important step in machine learning. 

All filters offer the options -i for specifying the input dataset, and -o for specifying the output 

dataset. If any of these parameters is not given, this specifies standard input resp. output for 

use within pipes. Other parameters are specific to each filter and can be found out via -h, as 

with any other class. The weka.filters package is organized into supervised and unsupervised 

filtering, both of which are again subdivided into instance and ATTRIBUTE filtering. 

 

Steps for preprocessing on dataset labor.arff 
1. Loading the data: We can load the dataset into weka by clicking on open file button in 

preprocessing interface and selecting the appropriate file.  

2. Once the data is loaded, weka will recognize the attributes and during the scan of the 

data weka will compute some basic strategies on each attribute. The left panel in the 

above figure shows the list of recognized attributes while the top panel indicates the 

names of the base relation or table and the current working relation (which are same 

initially).  

3. Clicking on an attribute in the left panel will show the basic statistics on the attributes 

for the categorical attributes the frequency of each attribute value is shown, while for 

continuous attributes we can obtain min, max, mean, standard deviation and deviation 

etc.,  

4. The visualization in the right button panel in the form of cross-tabulation across two 

attributes.  

(Note:we can select another attribute using the dropdown list) 

5. Selecting or filtering attributes 

6. Filter example: Removing an attribute: 

When we need to remove an attribute,we can do this by using the attribute 
filters in weka. Following are steps to follow: 

a. In the filter model panel,click on choose button,This will show a popup 
window with a list of available filters.  

b. Scroll down the list and select the 
“weka.filters.unsupervised.attribute.remove” filters.  

c. Next click the textbox immediately to the right of the choose button.In the 
resulting dialog box enter the index of the attribute to be filtered out.  

d. Make sure that invert selection option is set to false.The click OK now in 
the filter box.you will see “Remove-R-7”.  

e. Click the apply button to apply filter to this data.This will remove the 
attribute and create new working relation.  

f. Save the new working relation as an arff file by clicking save button on the 
top(button)panel.(labor.arff) 

7. Filter example: Discretization 
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Sometimes association rule mining can only be performed on categorical 
data.This requires performing discretization on numeric or continuous 
attributes. In the following example let us discretize duration attribute. Steps 
to follow: 
a. Let us divide the values of duration attribute into three bins(intervals). 
b. From loaded labor.arff  dataset in weka; Select the duration attribute. 
c. Activate filter-dialog box and select 

“WEKA.filters.unsupervised.attribute.discretize”from the list. 
d. To change the defaults for the filters,click on the box immediately to the 

right of the choose button. 
e. We enter the index for the attribute to be discretized.In this case the 

attribute is duration So we must enter ‘1’ corresponding to the duration 
attribute. 

f. Enter ‘3’ as the number of bins.Leave the remaining field values as they 
are. 

g. Click OK button. 
h. Click apply in the filter panel.This will result in a new working relation 

with the selected attribute partition into 3 bin. 
i. Save the new working relation in a file called labor-data-discretized.arff 

Before Discretization: 

After Discretization: 
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EXPERIMENT: 2 

AIM:   

   

 
 

DESCRIPTION: 

Once the data is loaded, WEKA will recognize the attributes and during the scan of the data 

will compute some basic statistics on each attribute. The left panel in below figure shows the 

list of recognized attributes, while the top panels indicate the names of the base relation (or 

table) and the current working relation (which are the same initially). 

 

 
 

Clicking on any attribute in the left panel will show the basic statistics on that attribute. For 

categorical attributes, the frequency for each attribute value is shown, while for continuous 

attributes we can obtain min, max, mean, standard deviation, etc. As an example, see Figures 

below which show the results of selecting the "id" and "gender" attributes, respectively. 

 

 

 

Demonstration of Data Visualization using Weka
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After selection of id attribute: 

 
After selection of gender attribute: 

 



10 

 

Visualization with Iris dataset: 
There are a number of ways in which you can use Weka to visualize your data.  

After loading dataset the main GUI will show a histogram for the attribute distributions for a 

single selected attribute at a time, by default this is the class attribute. 

Note that the individual colors indicate the individual classes (the Iris dataset has 3). If you 

move the mouse over the histogram, it will show you the ranges and how many samples fall in 

each range.  

 

 
 

The button VISUALIZE ALL will let you bring up a screen showing all distributions at once 

as in the picture below: 
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There is also a tab called called VISUALIZE. Clicking on that will open the scatterplots for all 

attribute pairs: 

 

 
 

From these scatterplots, we can infer a number of interesting things. For example, in the picture 

above we can see that in some examples the clusters (for now, think of clusters as collections 

of points that are physically close to each other on the screen) and the different colors 

correspond to each other such as for example in the plots for class/(any attribute) pairs and the 

petalwidth/petallength attribute pair, whereas for other pairs (sepalwidth/sepallength for 

example) it's much hader to separate the clusters by color. 

By default, the colors indicate the different classes, in this case we used red and two shades of 

blue. Left clicking on any of the highlighted class names towards the bottom of the screenshot 

allows you to set your own color for the classes. Also, by default, the color is used in 

conjunction with the class attribute, but it can be useful to color the other attributes as well. For 

example, changing the color to the fourth attribute by clicking on the arrow next to the bar that 

currently reads Color: class (Num) and selecting pedalwidth enables us to observe even more 

about the data, for example the fact that for the class/sepallength attribute pair, which range of 

attribute values (indicated by different color) tends to go along with which class. 
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EXPERIMENT: 3 

 

AIM:  Demonstration of Association Rules extraction on Market basket data 

using apriori/ FP Algorithm 

 

DESCRIPTION: 

 

Association rule generation is usually split up into two separate steps: 

1. First, minimum support is applied to find all frequent itemsets in a database.  

2. Second, these frequent itemsets and the minimum confidence constraint are used to 

form rules.  

 

While the second step is straight forward, the first step needs more attention.  

Finding all frequent itemsets in a database is difficult since it involves searching all possible 

itemsets (item combinations). The set of possible itemsets is the power set over I and has size 

2n − 1 (excluding the empty set which is not a valid itemset). Although the size of the powerset 

grows exponentially in the number of items n in I, efficient search is possible using the 

downward-closure property of support (also called anti-monotonicity) which guarantees that 

for a frequent itemset, all its subsets are also frequent and thus for an infrequent itemset, all its 

supersets must also be infrequent. Exploiting this property, efficient algorithms (e.g., Apriori 

and Eclat) can find all frequent itemsets.  

 

Apriori Algorithm Pseudo code: 
procedureApriori (T, minSupport) { //T is the database and minSupport is the minimum support 

L1= {frequent items}; 

for (k= 2; Lk-1 !=∅; k++) { 

Ck= candidates generated from Lk-1  

//that iscartesian product Lk-1 x Lk-1 and eliminating any k-1 size itemset that is not 

 //frequent for each transaction t in database do{ 

 #increment the count of all candidates in Ck that are contained in t  

Lk = candidates in Ck with minSupport 

 }//end for each 

 }//end for return ⋃ ; }  

 

As is common in association rule mining, given a set of itemsets (for instance, sets of retail 

transactions, each listing individual items purchased), the algorithm attempts to find subsets 

which are common to at least a minimum number C of the itemsets. Apriori uses a "bottom up" 

approach, where frequent subsets are extended one item at a time (a step known as candidate 

generation), and groups of candidates are tested against the data. The algorithm terminates 

when no further successful extensions are found. 

Apriori uses breadth-first search and a tree structure to count candidate item sets efficiently. It 

generates candidate item sets of length k from item sets of length k − 1. Then it prunes the 

candidates which have an infrequent sub pattern. According to the downward closure lemma, 

the candidate set contains all frequent k-length item sets. After that, it scans the transaction 

database to determine frequent item sets among the candidates. 
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Apriori, while historically significant, suffers from a number of inefficiencies or trade-offs, 

which have spawned other algorithms. Candidate generation generates large numbers of 

subsets (the algorithm attempts to load up the candidate set with as many as possible before 

each scan). Bottom-up subset exploration (essentially a breadth-first traversal of the subset 

lattice) finds any maximal subset S only after all 2 | S | − 1 of its proper subsets. 

 

Steps to run data set using apriori algorithm: 
1. Load arff dataset 

2. From the displayed functions above select associate. 

3. Go to choose option below the functions. 

4. By clicking on the choose you may select the required alogithm (apriori), to 

demonstrate association rule process. 

OUTPUT: 
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Association rule process using FP-growth algorithm: 
FP stands for frequent pattern. In the first pass, the algorithm counts occurrence of items 

(attribute-value pairs) in the dataset, and stores them to 'header table'. In the second pass, it 

builds the FP-tree structure by inserting instances. Items in each instance have to be sorted by 

descending order of their frequency in the dataset, so that the tree can be processed quickly. 

Items in each instance that do not meet minimum coverage threshold are discarded. If many 

instances share most frequent items, FP-tree provides high compression close to tree root. 

Recursive processing of this compressed version of main dataset grows large item sets directly, 

instead of generating candidate items and testing them against the entire database. Growth 

starts from the bottom of the header table (having longest branches), by finding all instances 

matching given condition. New tree is created, with counts projected from the original tree 

corresponding to the set of instances that are conditional on the attribute, with each node getting 

sum of its children counts. Recursive growth ends when no individual items conditional on the 

attribute meet minimum support threshold, and processing continues on the remaining header 

items of the original FP-tree.Once the recursive process has completed, all large item sets with 

minimum coverage have been found, and association rule creation begins. 

Steps to run data set using FPGrowth algorithm: 
1. Load arff dataset 

2. From the displayed functions above select associate. 

3. Go to choose option below the functions. 

4. By clicking on the choose you may select the required alogithm (FPGrowth), to 

demonstrate association rule process. 

OUTPUT: 
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EXPERIMENT: 4 

AIM:  Demonstration of Classification Rule extraction a bench mark dataset 

using j48/ID3 Algorithm  

 

DESCRIPTION: 

 

Classification rule process using ID3 Algorithm: 
In decision tree learning, ID3 (Iterative Dichotomiser ) is an algorithm invented by Ross 

Quinlan used to generate a decision tree from the dataset. ID3 is typically used in the machine 

learning and natural language processing domains. The decision tree technique involves 

constructing a tree to model the classification process. Once a tree is built, it is applied to each 

tuple in the database and results in classification for that tuple. The following issues are faced 

by most decision tree algorithms : 

• Choosing splitting attributes  

• Ordering of splitting attributes  

• Number of splits to take  

• Balance of tree structure and pruning  

• Stopping criteria 

 

 The ID3 algorithm is a classification algorithm based on Information Entropy, its basic idea is 

that all examples are mapped to different categories according to different values of the 

condition attribute set; its core is to determine the best classification attribute form condition 

attribute sets. The algorithm chooses information gain as attribute selection criteria; usually the 

attribute that has the highest information gain is selected as the splitting attribute of current 

node, in order to make information entropy that the divided subsets need smallest . According 

to the different values of the attribute, branches can be established, and the process above is 

recursively called on each branch to create other nodes and branches until all the samples in a 

branch belong to the same category. To select the splitting attributes, the concepts of Entropy 

and Information Gain are used.  

 

Entropy 

 Given probabilities p1, p2, …,ps , where ∑pi = 1, Entropy is defined as  

H(p1, p2, …, ps) = ∑ - (pi log pi) 

Entropy finds the amount of order in a given database state. A value of H = 0 identifies a 

perfectly classified set. In other words, the higher the entropy, the higher the potential to 

improve the classification process. 

Information Gain 

 ID3 chooses the splitting attribute with the highest gain in information, where gain is defined 

as difference between how much information is needed after the split. This is calculated by 

determining the differences between the entropies of the original dataset and the weighted sum 

of the entropies from each of the subdivided datasets. The formula used for this purpose is:  

G(D, S) = H(D) - ∑P(Di)H(Di) 

 

Steps to run data set using ID3 Algorithm: 
1. Load arff dataset. 

2. From the displayed functions above select classify. 

3. Go to choose option below the functions. 

4. By clicking on the choose you may observe certain ways for classification. 

5. Choose tress from different classifications shown. 



16 

 

6. Now from tress ,select ID3 and run the data set. 

 

OUTPUT: 
 

 

 

Data Mining Lab from prabinsilwal.com.np
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Classification rule process using J48 : 
Classification is the process of building a model of classes from a set of records that contain 

class labels. Decision Tree Algorithm is to find out the way the attributes-vector behaves for a 

number of instances. Also on the bases of the training instances the classes for the newly 

generated instances are being found. This algorithm generates the rules for the prediction of 

the target variable. With the help of tree classification algorithm the critical distribution of the 

data is easily understandable. 

 J48 is an extension of ID3. The additional features of J48 are accounting for missing values, 

decision trees pruning, continuous attribute value ranges, derivation of rules, etc. In the WEKA 

data mining tool, J48 is an open source Java implementation of the C4.5 algorithm. The WEKA 

tool provides a number of options associated with tree pruning. In case of potential over fitting 

pruning can be used as a tool for précising. In other algorithms the classification is performed 

recursively till every single leaf is pure, that is the classification of the data should be as perfect 

as possible. This algorithm it generates the rules from which particular identity of that data is 

generated. The objective is progressively generalization of a decision tree until it gains 

equilibrium of flexibility and accuracy. 

 Basic Steps in the Algorithm:  
1. In case the instances belong to the same class the tree represents a leaf so the leaf is 

returned by labeling with the same class. 

2. The potential information is calculated for every attribute, given by a test on the 

attribute. Then the gain in information is calculated that would result from a test on the 

attribute.  

3. Then the best attribute is found on the basis of the present selection criterion and that 

attribute selected for branching. 

Counting Gain  

This process uses the “Entropy” which is a measure of the data disorder. The Entropy 

of is calculated by And Gain is  

         
Steps to run data set using J48 Decision Tree: 

1. Load arff dataset 

2. From the displayed functions above select classify. 

3. Go to choose option below the functions. 

4. By clicking on the choose you may observe certain ways for classification. 

5. Choose tress from different classifications shown. 

6. Now from tress, select J48 and run the data set. 

OUTPUT: 
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19 

 

 

 

 

EXPERIMENT: 5 

AIM: Demonstration of Classification Rule Process on any datasets using Navie Bayes 

Algorithm  

 

DESCRIPTION: 

The Naive Bayesian classifier is based on Bayes’ theorem with independence assumptions between 

predictors. A Naive Bayesian model is easy to build, with no complicated iterative parameter estimation 

which makes it particularly useful for very large datasets. Despite its simplicity, the Naive Bayesian 

classifier often does surprisingly well and is widely used because it often outperforms more sophisticated 

classification methods. 

Algorithm: 
Bayes theorem provides a way of calculating the posterior probability, P(c|x), from P(c), P(x), and P(x|c). 

Naive Bayes classifier assume that the effect of the value of a predictor (x) on a given class (c) is 

independent of the values of other predictors. This assumption is called class conditional independence. 
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Steps to run data set using Navie Bayes Algorithm: 
1. Load arff dataset 

2. From the displayed functions above select classify. 

3. Go to choose option below the functions. 

4. By clicking on the choose you may observe certain ways for classification. 

5. Choose bayes from different classifications shown. 

6. Now from bayes ,select Navie Bayes and run the data set. 

OUTPUT: 

 

 

 

 



21 

 

EXPERIMENT: 6 

AIM:  Demonstration of Classification Rule Process on any datasets using 

K-nearest Neighbor classification Algorithm  

DESCRIPTION: 

K nearest neighbors is a simple algorithm that stores all available cases and classifies new cases 

based on a similarity measure (e.g., distance functions). KNN has been used in statistical 

estimation and pattern recognition already in the beginning of 1970’s as a non-parametric 

technique.  

 

Algorithm: 
A case is classified by a majority vote of its neighbors, with the case being assigned to the class 

most common amongst its K nearest neighbors measured by a distance function. 

If K = 1, then the case is simply assigned to the class of its nearest neighbor.  
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It should also be noted that all three distance measures are only valid for continuous variables. 

In the instance of categorical variables the Hamming distance must be used. It also brings up 

the issue of standardization of the numerical variables between 0 and 1 when there is a mixture 

of numerical and categorical variable in the dataset. 

 

Steps to run data set using K-means algorithm: 
1. Load arff dataset 

2. From the displayed functions above select classify. 

3. Go to choose option below the functions. 

4. By clicking on the choose you may observe certain ways for classification. 

5. Choose tress from different classifications shown. 

6. Now from tress ,select NBTree and run the data set. 

Output: 
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EXPERIMENT: 7 

AIM:  Demonstration of partitional Clustering on any datasets using K-means 

Algorithm  

 

DESCRIPTION: 

k-means is  one of  the simplest unsupervised  learning  algorithms  that  solve  the well-known 

clustering problem. The procedure follows a simple and  easy  way  to classify a given data 

set  through a certain number of  clusters (assume k clusters) fixed apriori. The  main  idea  is 

to define k centers, one for each cluster. These centers  should  be placed in a 

cunning  way  because of  different  location  causes different  result. So, the 

better  choice  is  to place them  as  much as possible  far away from each other. The  next  step 

is to take each point belonging  to a  given data set and associate it to the nearest center. When 

no point  is  pending,  the first step is completed and an early group age  is done. At this point 

we need to re-calculate k new centroids as barycenter of  the clusters resulting from the 

previous step. After we have these k new centroids, a new binding has to be done  between  the 

same data set points  and  the nearest new center. A loop has been generated. As a result of  this 

loop we  may  notice that the k centers change their location step by step until no more 

changes  are done or  in  other words centers do not move any more. Finally, 

this  algorithm  aims at  minimizing  an objective function know as squared error function given 

by:   

                                      

where, 

                           ‘||xi - vj||’ is the Euclidean distance between xi and vj. 

                           ‘ci’ is the number of data points in ith cluster.  

                           ‘c’ is the number of cluster centers. 

Algorithmic steps for k-means clustering : 
Let  X = {x1,x2,x3,……..,xn} be the set of data points and V = {v1,v2,…….,vc} be the set of 

centers. 

1. Randomly select ‘c’ cluster centers. 

2. Calculate the distance between each data point and cluster centers. 

3. Assign the data point to the cluster center whose distance from the cluster center is 

minimum of all the cluster centers.. 

4. Recalculate the new cluster center using:   

 
where, ‘ci’ represents the number of data points in ith cluster. 

5. Recalculate the distance between each data point and new obtained cluster centers. 

6. If no data point was reassigned then stop, otherwise repeat from step 3). 

  

https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm/kmeans.JPG?attredirects=0
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Steps to run data set using simple K-means algorithm: 
1. Load Dataset 

2. From the displayed functions above select cluster. 

3. Go to choose option below the functions. 

4. By clicking on the choose you may observe certain forms of clusters. 

5. Choose SimpleKMeans. 

6. Now run the data set. 

OUTPUT: 
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EXPERIMENT: 8 

 

AIM:  Demonstration of Clustering on any datasets using simple K-mediods 
algorithm  
 

DESCRIPTION: 

The K-medoids clustering algorithm is similar to the K-means algorithm. Both of these two 

algorithms partition the dataset into groups and minimize the squared error based on the 

distance between points. In contrast to the K-means algorithm which chooses the means as the 

centroids, the K-medoids chooses datapoints as centers (medoids or exemplars). 

The most common realisation of K-medoid clustering algorithm is the Partitioning Around 

Medoids (PAM) algorithm. 

The PAM algorithm works as following steps: 
1. Initialization step: randomly select k data points in the dataset as the medoids. 

2. Assignment step: associate each data point to the closest medoid. The closeness is 

measured by any valid distance metric, such as Euclidean distance, Manhattan 

distance, or Minkowski distance. 

3. Updating step:  

For each cluster 

For each data point o in the cluster 

Compute the cost of o as the medoid. The cost is defined as 

the DistanceError which is 

 
Choose the o with the smallest cost as the new medoid. 

4. Repeat steps 2 and 3 until there is no change in medoids. 

5. Repeat steps 1 to 4 for several times and output the solution with the least squared 

error. 

K-medoid in weka: 
Weka provides new tab called Subspace Clustering for additional clustering methods. 

While subspace clustering is a rather young area that has been researched for only one decade, 

several distinct paradigms can be observed in the literature. Our system includes 

representatives of these paradigms to provide an overview over the techniques available. We 

provide implementations of the most recent approaches from different paradigms: 

 

1. Cell-based subspace clustering discretizes the data space for efficient detection of 

dense grid cells in a bottom-up fashion. It was introduced in the CLIQUE approach 

which exploits monotonicity on the density of grid cells for pruning. SCHISM 

extends CLIQUE using a variable threshold adapted to the dimensionality of the 

subspace as well as efficient heuristics for pruning. In contrast, DOC and MINECLUS 

use variable cells represented by hypercubes. 

2. Density-based subspace clustering defines clusters as dense areas separated by 

sparsely populated areas. In SUBCLU, a density monotonicity property is used to 

prune subspaces in a bottom-up fashion. FIRES extends this paradigm by using 

variable neighborhoods and an approximative heuristicts for efficient computation. In 

INSCY we use dimensionality unbias density, normalized with respect to the 

dimensionality of the subspace and in addition in-process pruning of redundant 

subspace clusters achieves meaningful result sizes. 
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3. Clustering oriented methods optimize the overall clustering result. PROCLUS 

extends the k-medoid algorithm by iteratively refining a full-space k-medoid 

clustering in a top-down manner. P3C combines one-dimensional cluster cores to 

higher-dimensional clusters bottom-up. STATPC uses a statistical test to remove 

redundant clusters out of the result. 

 

 

You can perform k-medoids by selecting Proclus as shown below: 
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OUTPUT: 
 

 
Visualization of output: 

  

Data Mining Lab from prabinsilwal.com.np
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EXPERIMENT: 9 

 

AIM:  Demonstration of Clustering rules process on any datasets of images 

using DB Scan algorithm  

 

DESCRIPTION: 

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering 

algorithm. It is a density-based clustering algorithm: given a set of points in some space, it 

groups together points that are closely packed together (points with many nearby neighbors), 

marking as outliers points that lie alone in low-density regions (whose nearest neighbors are 

too far away). DBSCAN is one of the most common clustering algorithms. 

Algorithm: 
DBSCAN requires two parameters: ε (eps) and the minimum number of points required to form 

a dense region. 

 It starts with an arbitrary starting point that has not been visited. This point's ε-neighborhood 

is retrieved, and if it contains sufficiently many points, a cluster is started. Otherwise, the point 

is labeled as noise. Note that this point might later be found in a sufficiently sized ε-

environment of a different point and hence be made part of a cluster. 

In the following, we present a basic version of DBSCAN omitting details of data types and 

generation of additional information about clusters: 

 

DBSCAN (SetOfPoints, Eps, MinPts) 

// SetOfPoints is UNCLASSIFIED 

ClusterId := nextId(NOISE); 

FOR i FROM 1 TO SetOfPoints.size DO 

Point := SetOfPoints.get(i); 

IF Point.ClId = UNCLASSIFIED THEN 

IF ExpandCluster(SetOfPoints, Point, 

ClusterId, Eps, MinPts) THEN 

ClusterId := nextId(ClusterId) 

END IF 

END IF 

END FOR 

END; // DBSCAN 

 

Steps to run data set using DBScan algorithm: 
1. Load Dataset 

2. From the displayed functions above select cluster. 

3. Go to choose option below the functions. 

4. By clicking on the choose you may observe certain forms of clusters. 

5. Choose MakeDensityBasedClusterer. 

6. Now run the data set. 
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OUTPUT: 
 

 

 

  

Data Mining Lab from prabinsilwal.com.np
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EXPERIMENT: 10 

 

AIM:  Demonstration of Clustering rules process on any datasets using Birch 

Algorithm  

 

DESCRIPTION: 

BIRCH (balanced iterative reducing and clustering using hierarchies) is an unsupervised data 

mining algorithm used to perform hierarchical clustering over particularly large data-sets. An 

advantage of BIRCH is its ability to incrementally and dynamically cluster incoming, multi-

dimensional metric data points in an attempt to produce the best quality clustering for a given 

set of resources (memory and time constraints). In most cases, BIRCH only requires a single 

scan of the database. 

Its inventors claim BIRCH to be the "first clustering algorithm proposed in the database area 

to handle 'noise' (data points that are not part of the underlying pattern) 

effectively", beating DBSCAN by two months. The algorithm received the SIGMOD 10 year 

test of time award in 2006. 

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies) is an integrated 

agglomerative hierarchical clustering method. It is mainly designed for clustering large amount 

of metric data. It is mainly suitable when there is limited amount of main memory and have to 

achieve a linear I/O time requiring only in one database scan. It introduces two concepts, 

clustering feature and clustering feature tree (CF tree), which are used to summarize cluster 

representations [Tian Zhang et al., 1996].  

A CF tree is a height-balanced tree that stores the clustering features for a hierarchical 

clustering. It is similar to B+-Tree or R-Tree. CF tree is balanced tree with a branching factor 

(maximum number of children per none leaf node) B and threshold T. Each internal node 

contains a CF triple for each of its children. Each leaf node also represents a cluster and contains 

a CF entry for each sub cluster in it. A sub cluster in a leaf node must have a diameter no greater 

than a given threshold value (maximum diameter of sub-clusters in the leaf node) [Tian Zhang 

et al., 1996].  

An object is inserted to the closest leaf entry (sub cluster). A leaf node represents a cluster 

made up of all sub clusters represented by its entries. All the entries in a leaf node must satisfy 

the threshold requirements with respect to the threshold value T, that is, the diameter of the sub 

cluster must be less than T. If the diameter of the sub cluster stored in the leaf node after 

insertion is larger than the threshold 

 

Steps to run data set using BIRCH algorithm: 
1. Load Dataset 

2. From the displayed functions above select cluster. 

3. Go to choose option below the functions. 

4. By clicking on the choose you may observe certain forms of clusters. 

5. Choose HierarchicalClustering. 

6. Now run the data set. 

 

  

https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Data_clustering
https://en.wikipedia.org/wiki/Data_point
https://en.wikipedia.org/wiki/Time_constraint
https://en.wikipedia.org/wiki/DBSCAN


32 

 

OUTPUT: 
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