EXPERIMENT: 1
AlIM: Demonstration of preprocessing on some datasets eg. Student.aarf/
labor.aarf/Iris/ loan/ etc.
DESCRIPTION:

Steps to get Started with WEKA:
1. Open C drive.
2. Then open program files in that go to weka-3-8
3. (NOTE: search for folder named weka-version-number).
4. Select Explorer.
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Steps To Create Own Data Set with weka attribute relation file format(.arff):
1. Open notepad
2. Type information as shown below in notepad;
@ RELATION = To make table
@ ATTRIBUTE = To define columns

(Note: each attribute should contain @ ATTRIBUTE at beginning then
instances/tuples are added by @ DATA (Note: each tuple in one row)

Example:
@RELATION student
@ATTRIBUTE id NUMERIC
@ATTRIBUTE name STRING
@ATTRIBUTE address STRING
@ATTRIBUTE gender {M, F}
@DATA
1,Sirisha,Vijaynagaram,F
2,Bendi,Visakhapatnam,F
3,Vijay,Gopalapatnam,M
4,Prabin,Nepal,M

3. Save File with arff extension (Eg: student.arff ) ;
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Loading Dataset in weka (.arff or .csv):
1. Open weka Explorer
2. Click “Open File..” at top left

3. Select arff/csv file you want to load (Eg: student.arff/bank-data.csv) Then press

"Open" button as shown below:
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Note: The same process is continued for loading all other datasets in later cases.

IRIS DATA SET:
Number of Instances:150

Number of attributes:4
Missing Values?: No

@RELATION iris

@ATTRIBUTE sepallength REAL
@ATTRIBUTE sepalwidth REAL
@ATTRIBUTE petallength REAL
@ATTRIBUTE petalwidth REAL

@ATTRIBUTE class {lris-setosa, Iris-versicolor, Iris-virginica}

@DATA

5.1, 3.5, 1.4, 0.2, Iris-setosa
4.9,3.0,1.4,0.2, Iris-setosa
4.7,3.2,1.3, 0.2, Iris-setosa
4.6,3.1,1.5, 0.2, Iris-setosa
5.0, 3.6, 1.4, 0.2, Iris-setosa
7.0,3.2,4.7, 1.4, Iris-versicolor



6.4,3.2,4.5, 1.5, Iris-versicolor
6.9, 3.1, 4.9, 1.5, Iris-versicolor
5.5, 2.3, 4.0, 1.3, Iris-versicolor
6.5, 2.8, 4.6, 1.5, Iris-versicolor
6.3, 3.3, 6.0, 2.5, Iris-virginica
5.8,2.7,5.1, 1.9, Iris-virginica
7.1,3.0,5.9, 2.1, Iris-virginica
6.3, 2.9, 5.6, 1.8, Iris-virginica
6.5, 3.0, 5.8, 2.2, Iris-virginica

LABOR DATA SET:
Number of Instances:57

Number of attributes:17

Missing Values?: Yes

@RELATION 'labor-data’

@ATTRIBUTE 'duration’ real

@ATTRIBUTE 'wage-increase-first-year' real

@ATTRIBUTE 'wage-increase-second-year" real
@ATTRIBUTE 'wage-increase-third-year' real

@ATTRIBUTE 'cost-of-living-adjustment’ {'none','tcf','tc'}
@ATTRIBUTE 'working-hours' real

@ATTRIBUTE 'pension’ {'none’,'ret_allw','empl_contr'}
@ATTRIBUTE 'standby-pay' real

@ATTRIBUTE 'shift-differential’ real

@ATTRIBUTE 'education-allowance' {'yes','no'}
@ATTRIBUTE 'statutory-holidays' real

@ATTRIBUTE 'vacation' {'below_average','average’,'generous'}
@ATTRIBUTE 'longterm-disability-assistance' {'yes','no'}
@ATTRIBUTE 'contribution-to-dental-plan’ {'none’,'half','full'}
@ATTRIBUTE 'bereavement-assistance’ {'yes','no'}
@ATTRIBUTE ‘contribution-to-health-plan’ {'none’,'half','full'}
@ATTRIBUTE 'class’ {'bad’,'good"}

@DATA

1,5,7,?,,40,?,2,2,?,11,"average’,?,?,'yes',?,'good’
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2,4.5,5.8,7,7,35,'ret_allw',?,?,'yes',11,'below_average',?,'full’,?,'full’,'good’
?,?,2,2,7,38,'empl_contr',?,5,?,11,'generous’,'yes’,'half','yes','half','good'
3,3.7,4,5,'tc',?,2,2,?,'yes',?,?,?,?,'yes',?,'good’
3,4.5,4.5,5,7,40,7,7,?,7,12,"average’,?,'half','yes','half','good’
2,2,2.5,?,7,35,?,7,6,'yes',12,"average’,?,?,?,?,'good’
3,4,5,5,'tc',?,'empl_contr',?,?,?,12,'generous’,'yes’,'none’,'yes','half','good’
3,6.9,4.8,2.3,7,40,?,7,3,?,12,'below_average',?,?,?,?,'good’
2,3,7,7,7,38,?,12,25,'yes', 11,'below_average','yes','half','yes’,?,'good’
1,5.7,?,?,'none",40,'empl_contr',?,4,?,11,'generous’,'yes','full’,?,?,'good'
3,3.5,4,4.6,'none',36,?,?,3,?,13,'generous’,?,?,'yes', full’,'good’
2,6.4,6.4,7,?,38,7,2,4,7,15,2,? "full',?,?,'good"'
2,3.5,4,?,'none',40,?,?,2,'n0',10,'below_average','no’,'half',?,'half','bad’
3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?, full’,'yes','full’,'good"'
1,3,7,?,'none’,36,?,7,10,'n0’,11,'generous’,?,?,?,?,'good'
2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average’,?,'full’,'yes',?,'good'
1,2.8,7,7,7,35,?,7,2,7,12,'below_average',?,?,?,?,'good'
1,2.1,7,2,'tc',40,'ret_allw',2,3,'n0',9,'below_average','yes','half',?,'none’,'bad'
1,2,7,?,'none’,38,'none’,?,?,'yes’,11,'average’,'no’,'none’,'no’,'none’,'bad’
2,4,5,?'tcf',35,?,13,5,7,15,'generous',?,?,?,?,'good'
2,4.3,4.4,2,?,38,?,7,4,?,12,'generous',?,'full’,?,'full’,'good'
2,2.5,3,?,7,40,'none",?,?,?,11,'below_average',?,?,?,?,'bad’
3,3.5,4,4.6,'tcf',27,2,7,2,2,2,2,2,2,7,?,'good'
2,3.5,4,?,'none’,40,?,?,2,'n0',10,'below_average','no’,'half',?,'half','bad’
3,3.5,4,5.1,'tcf',37,?,?,4,7,13,'generous',?, full’,'yes','full’,'good'
1,3,7,?,'none’,36,?,?,10,'n0’,11,'generous',?,?,?,?,'good’
2,4.5,4,?'none',37,'empl_contr',?,?,?,11,'average’,?,'full’,'yes',?,'good'
1,2.8,7,2,7,35,?,7,2,7,12,'below_average',?,?,?,?,'good'
2,3.5,4,?,'none’,40,?,?,2,'n0',10,'below_average','no’,'half',?,'half','bad’
3,3.5,4,5.1,'tcf',37,?,2,4,?,13,'generous',?,'full’,'yes','full','good'
1,3,?,?,'none',36,?,?,10,'n0’,11,'generous’,?,?,?,?,'good’
2,4.5,4,?'none’,37,'empl_contr',?,?,?,11,'average’,?,'full’,'yes',?,'good'
1,2.8,7,2,7,35,?,7,2,7,12,'below_average',?,?,?,?,'good'
2,3.5,4,?,'none',40,7,?,2,'n0',10,'below_average','no’,'half',?,'half','bad’
3,3.5,4,5.1,'tcf',37,?,7,4,?,13,'generous',?,'full’,'yes','full','good'
1,3,7,?,'none’,36,?,?,10,'n0’,11,'generous’,?,?,?,?,'good’

2,4.5,4,?'none’,37,'empl_contr',?,?,?,11,"average’,?,'full’,'yes',?,'good'



Preprocessing in Weka

Pre-processing tools in WEKA are called “filters”. WEKA contains filters for discretization,
normalization, resampling, ATTRIBUTE selection, transformation and combination of
ATTRIBUTESs . Some techniques, such as association rule mining, can only be performed on
categorical data. This requires performing discretization on numeric or continuous
ATTRIBUTEs.

The weka.filters package is concerned with classes that transform datasets — by removing or
adding ATTRIBUTEs, resampling the dataset, removing examples and so on. This package
offers useful support for data preprocessing, which is an important step in machine learning.
All filters offer the options -i for specifying the input dataset, and -o for specifying the output
dataset. If any of these parameters is not given, this specifies standard input resp. output for
use within pipes. Other parameters are specific to each filter and can be found out via -h, as
with any other class. The weka.filters package is organized into supervised and unsupervised
filtering, both of which are again subdivided into instance and ATTRIBUTE filtering.

Steps for preprocessing on dataset labor.arff

1. Loading the data: We can load the dataset into weka by clicking on open file button in
preprocessing interface and selecting the appropriate file.

2. Once the data is loaded, weka will recognize the attributes and during the scan of the
data weka will compute some basic strategies on each attribute. The left panel in the
above figure shows the list of recognized attributes while the top panel indicates the
names of the base relation or table and the current working relation (which are same
initially).

3. Clicking on an attribute in the left panel will show the basic statistics on the attributes
for the categorical attributes the frequency of each attribute value is shown, while for
continuous attributes we can obtain min, max, mean, standard deviation and deviation
etc.,

4. The visualization in the right button panel in the form of cross-tabulation across two

attributes.
(Note:we can select another attribute using the dropdown list)
Selecting or filtering attributes

6. Filter example: Removing an attribute:

o

When we need to remove an attribute,we can do this by using the attribute
filters in weka. Following are steps to follow:

a. In the filter model panel,click on choose button,This will show a popup
window with a list of available filters.

b. Scroll down the list and select the
“weka.filters.unsupervised.attribute.remove” filters.

c. Next click the textbox immediately to the right of the choose button.In the
resulting dialog box enter the index of the attribute to be filtered out.

d. Make sure that invert selection option is set to false.The click OK now in
the filter box.you will see “Remove-R-7".

e. Click the apply button to apply filter to this data.This will remove the
attribute and create new working relation.

f. Save the new working relation as an arff file by clicking save button on the
top(button)panel.(labor.arff)

7. Filter example: Discretization



Sometimes association rule mining can only be performed on categorical
data.This requires performing discretization on numeric or continuous
attributes. In the following example let us discretize duration attribute. Steps
to follow:

a. Letusdivide the values of duration attribute into three bins(intervals).

b. From loaded labor.arff dataset in weka; Select the duration attribute.

c. Activate filter-dialog box and select
“WEKA filters.unsupervised.attribute.discretize”from the list.

d. To change the defaults for the filters,click on the box immediately to the
right of the choose button.

e. We enter the index for the attribute to be discretized.In this case the
attribute is duration So we must enter ‘1’ corresponding to the duration
attribute.

f. Enter ‘3’ as the number of bins.Leave the remaining field values as they
are.

g. Click OK button.

h. Click apply in the filter panel.This will result in a new working relation
with the selected attribute partition into 3 bin.

i. Save the new working relation in a file called labor-data-discretized.arff

Before Discretization:
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After Discretization:
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EXPERIMENT: 2

AIM:
Demonstration of Data Visualization using Weka

DESCRIPTION:

Once the data is loaded, WEKA will recognize the attributes and during the scan of the data
will compute some basic statistics on each attribute. The left panel in below figure shows the
list of recognized attributes, while the top panels indicate the names of the base relation (or

table) and the current working relation (which are the same initially).
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Clicking on any attribute in the left panel will show the basic statistics on that attribute. For
categorical attributes, the frequency for each attribute value is shown, while for continuous
attributes we can obtain min, max, mean, standard deviation, etc. As an example, see Figures
below which show the results of selecting the "id" and "gender" attributes, respectively.



After selection of id attribute:
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After selection of gender attribute:
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Visualization with Iris dataset:

There are a number of ways in which you can use Weka to visualize your data.

After loading dataset the main GUI will show a histogram for the attribute distributions for a

single selected attribute at a time, by default this is the class attribute.

Note that the individual colors indicate the individual classes (the Iris dataset has 3). If you

move the mouse over the histogram, it will show you the ranges and how many samples fall in

each range.
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The button VISUALIZE ALL will let you bring up a screen showing all distributions at once
as in the picture below:
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There is also a tab called called VISUALIZE. Clicking on that will open the scatterplots for all
attribute pairs:

e e
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From these scatterplots, we can infer a number of interesting things. For example, in the picture
above we can see that in some examples the clusters (for now, think of clusters as collections
of points that are physically close to each other on the screen) and the different colors
correspond to each other such as for example in the plots for class/(any attribute) pairs and the
petalwidth/petallength attribute pair, whereas for other pairs (sepalwidth/sepallength for
example) it's much hader to separate the clusters by color.

By default, the colors indicate the different classes, in this case we used red and two shades of
blue. Left clicking on any of the highlighted class names towards the bottom of the screenshot
allows you to set your own color for the classes. Also, by default, the color is used in
conjunction with the class attribute, but it can be useful to color the other attributes as well. For
example, changing the color to the fourth attribute by clicking on the arrow next to the bar that
currently reads Color: class (Num) and selecting pedalwidth enables us to observe even more
about the data, for example the fact that for the class/sepallength attribute pair, which range of
attribute values (indicated by different color) tends to go along with which class.
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EXPERIMENT: 3

AIM: Demonstration of Association Rules extraction on Market basket data
using apriori/ FP Algorithm

DESCRIPTION:

Association rule generation is usually split up into two separate steps:
1. First, minimum support is applied to find all frequent itemsets in a database.

2. Second, these frequent itemsets and the minimum confidence constraint are used to
form rules.

While the second step is straight forward, the first step needs more attention.

Finding all frequent itemsets in a database is difficult since it involves searching all possible
itemsets (item combinations). The set of possible itemsets is the power set over | and has size
2n — 1 (excluding the empty set which is not a valid itemset). Although the size of the powerset
grows exponentially in the number of items n in |, efficient search is possible using the
downward-closure property of support (also called anti-monotonicity) which guarantees that
for a frequent itemset, all its subsets are also frequent and thus for an infrequent itemset, all its
supersets must also be infrequent. Exploiting this property, efficient algorithms (e.g., Apriori
and Eclat) can find all frequent itemsets.

Apriori Algorithm Pseudo code:

procedureApriori (T, minSupport) { /T is the database and minSupport is the minimum support
L1= {frequent items};

for (k= 2; Lk-11'=0; k++) {

Ck= candidates generated from Lk-1

/lthat iscartesian product Lk-1 x Lk-1 and eliminating any k-1 size itemset that is not
//frequent for each transaction t in database do{

#increment the count of all candidates in Ck that are contained in t

Lk = candidates in Ck with minSupport

}/end for each

}lend for return U ; }

As is common in association rule mining, given a set of itemsets (for instance, sets of retail
transactions, each listing individual items purchased), the algorithm attempts to find subsets
which are common to at least a minimum number C of the itemsets. Apriori uses a "bottom up"
approach, where frequent subsets are extended one item at a time (a step known as candidate
generation), and groups of candidates are tested against the data. The algorithm terminates
when no further successful extensions are found.

Apriori uses breadth-first search and a tree structure to count candidate item sets efficiently. It
generates candidate item sets of length k from item sets of length k — 1. Then it prunes the
candidates which have an infrequent sub pattern. According to the downward closure lemma,
the candidate set contains all frequent k-length item sets. After that, it scans the transaction
database to determine frequent item sets among the candidates.
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Apriori, while historically significant, suffers from a number of inefficiencies or trade-offs,
which have spawned other algorithms. Candidate generation generates large numbers of
subsets (the algorithm attempts to load up the candidate set with as many as possible before
each scan). Bottom-up subset exploration (essentially a breadth-first traversal of the subset

lattice) finds any maximal subset S only after all 2 | S | — 1 of its proper subsets.

Steps to run data set using apriori algorithm:

1. Load arff dataset

From the displayed functions above select associate.

2.
3. Go to choose option
4

below the functions.

By clicking on the choose you may select the required alogithm (apriori), to
demonstrate association rule process.

OUTPUT:

=

priori N 10-T 0 -C 0.5 -D 0,05 -1 1.0-M 0.1 -5 1.0 -¢ -1

Assodiator output

Schems:
Relation:
Instances:
Attributes:

Minimm support: 0.25 (6 instances)
Minimm metric <confidence>: 0.5
Number of cycles :

nerated sets of large itemsets:

Size of set of large itemsets L(l): 10

rge itemsets L(2): 18

rge itemsets L(3): 4

ori -N 10 -T 0 -C 0.5 -0 0.05 -0 1.0 -¥ 0.1 -5 -1.0 -c -1

Status
oK
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Association rule process using FP-growth algorithm:

FP stands for frequent pattern. In the first pass, the algorithm counts occurrence of items
(attribute-value pairs) in the dataset, and stores them to 'header table'. In the second pass, it
builds the FP-tree structure by inserting instances. Items in each instance have to be sorted by
descending order of their frequency in the dataset, so that the tree can be processed quickly.
Items in each instance that do not meet minimum coverage threshold are discarded. If many
instances share most frequent items, FP-tree provides high compression close to tree root.
Recursive processing of this compressed version of main dataset grows large item sets directly,
instead of generating candidate items and testing them against the entire database. Growth
starts from the bottom of the header table (having longest branches), by finding all instances
matching given condition. New tree is created, with counts projected from the original tree
corresponding to the set of instances that are conditional on the attribute, with each node getting
sum of its children counts. Recursive growth ends when no individual items conditional on the
attribute meet minimum support threshold, and processing continues on the remaining header
items of the original FP-tree.Once the recursive process has completed, all large item sets with
minimum coverage have been found, and association rule creation begins.

Steps to run data set using FPGrowth algorithm:

1. Load arff dataset

2. From the displayed functions above select associate.
3. Go to choose option below the functions.
4

By clicking on the choose you may select the required alogithm (FPGrowth), to
demonstrate association rule process.

> Weka Explorer [HEE]
Preprocess | Classify | Chuster | Assoriate | Select attributes | tisualize
Assadiatar
[ choose |FPGrowth-p2-1-1 N 10-T0-C0.3-D0.05 U L.0-M0.1
Associator oUEpLE
== Bun information ===
osult st {right-click For options)
Srrcrontt Scheme: weka. assoriations. FPEzewth 2 2 -I -1 -N 10 T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1
Sl Relation: supermarket
Instances: 4527

Attributes: 217
[list of attributes omitted]
=== Associator model (full training set) ===

FPGrowth found 16 rules (displaying top 10}

. [fruit=t, frozen foods=t, biscuits=t, total=high]: 785 ==> [bread and cake=t]: 723 <conf:{0.92)> lift:(1.27) lev:(0.03) conv: (3.35)
. [fruit=t, baking needs=t, biscuits=t, totalshigh]: 760 ==> [bread and cake=t]: €96 <conf:(0.92)> lift:(l.27) lev:(0.03) conv: (3.28)

. [fruit=t, baking needs=t, frozen Eoods=t, total=highl: 770 ==> [bread and cake=t]: 705  <conf: (0.92)> lift:{l.27) lew:{0.03) conv:(3.27
. [fruit=t, vegetables=t, biscuits=t, total=high]: 615 ==> [bread and cake=t]: 746 <conf: [0.92)> life:({1.27) lew: (0.03) conw:(3.26)
[fruit=t, party snack Foods=t, total=high]: 854 ==» [bread and cake=t]: 779 <conf: (0.91)% Lift:{l.27) lew:(0.04) conv:(3.15)

. [vegetables=t, frozen foods=t, biscuits=t, totalshighl: 797 ==> [bread and cake=t]: 725 <conf:(0.91)> lift:(Ll.26) lev:{0.03) conv: (3.0
. [vegetsbles=t, baking needs=t, biscuits=t, total=high]: 772 ==> [bread and cake=t]: 701 <conf:(0.91)> life:(1.26) lev:(0.03) conv: (3.
. [fruit=t, biscuits=t, total=high]: 954 ==> [bread and cake=t]: 866 <conf:(0.91)> life:(1.26) lev:(0.04) conv: (3]

. [fruit=t, vegetables=t, frozen foods=t, totalshigh]: $34 ==> [bread and cake=t]: 757 <conf:(0.91)> lift:(1.26) lew: (0.03) conwv:(3)

. [fruit=t, frozen foods=t, total=highl: 969 ==> [bread and cake=t]: 877 <conf: (0.91)> lift:(l.26) lew:(0.04) conv:(2.92)

SRR S A T

-
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EXPERIMENT: 4

AIM: Demonstration of Classification Rule extraction a bench mark dataset
using j48/1D3 Algorithm

DESCRIPTION:

Classification rule process using ID3 Algorithm:

In decision tree learning, ID3 (lterative Dichotomiser ) is an algorithm invented by Ross
Quinlan used to generate a decision tree from the dataset. ID3 is typically used in the machine
learning and natural language processing domains. The decision tree technique involves
constructing a tree to model the classification process. Once a tree is built, it is applied to each
tuple in the database and results in classification for that tuple. The following issues are faced
by most decision tree algorithms :

« Choosing splitting attributes

* Ordering of splitting attributes

» Number of splits to take

* Balance of tree structure and pruning
* Stopping criteria

The ID3 algorithm is a classification algorithm based on Information Entropy, its basic idea is

that all examples are mapped to different categories according to different values of the
condition attribute set; its core is to determine the best classification attribute form condition
attribute sets. The algorithm chooses information gain as attribute selection criteria; usually the
attribute that has the highest information gain is selected as the splitting attribute of current
node, in order to make information entropy that the divided subsets need smallest . According
to the different values of the attribute, branches can be established, and the process above is
recursively called on each branch to create other nodes and branches until all the samples in a
branch belong to the same category. To select the splitting attributes, the concepts of Entropy
and Information Gain are used.

Entropy
Given probabilities pl, p2, ...,ps , where > pi = 1, Entropy is defined as

H(pl, p2, ..., ps) =2 - (pi log pi)
Entropy finds the amount of order in a given database state. A value of H = 0 identifies a
perfectly classified set. In other words, the higher the entropy, the higher the potential to
improve the classification process.

Information Gain

ID3 chooses the splitting attribute with the highest gain in information, where gain is defined
as difference between how much information is needed after the split. This is calculated by
determining the differences between the entropies of the original dataset and the weighted sum
of the entropies from each of the subdivided datasets. The formula used for this purpose is:

G(D, S) = H(D) - Y P(Di)H(Di)

Steps to run data set using ID3 Algorithm:
1. Load arff dataset.
From the displayed functions above select classify.
Go to choose option below the functions.
By clicking on the choose you may observe certain ways for classification.
Choose tress from different classifications shown.

gk~ w
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6. Now from tress ,select ID3 and run the data set.
Data Mining Lab from prabinsilwal.com.np

OUTPUT:

> weseow T T |

Preprocess | Classify | Cluster | Associate | Select attributes | Visualize

Supplied test set Set...
Cross-validation  Folds |10

Percentage spit % |66

(Nom) play -

Result st (fight-click for options)

== Classifier model (full training set) ===

1d3

cutlook = sunny

| humidity = high: no

| humidity = normal: yes
outlook = overcast: yes
outlook

rainy
| windy = TRUE: no
| windy = FALSE: yes

Time taken to build medel: 0 seconds

=== Evaluation on training set ===
=== Summary ===

Correctly Classified Instances 14 100 B
I tly Classified Instances

Kappa statistic

Mean absolute error

Root mean squared error
Relative sbsolute error
Root relative squared error
Total Number of Instances 14

=— Detailed Accuracy By Class ==

TP Rate FP Rate Precision Recall F-Measure ROC Area

1 0 1 1 1 1
1 0 1 1 1 1
Weighted Avg. 1 0 1 1 1 1

=== Confusion Matrix ===

ab <~ classified as
90| a=yes

Classifier
[ choose_Jras |
Testoptions Classifier output

Use training set Test mode:  evaluate on training data a

Class
yes
no

Status
oK
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Classification rule process using J48 :

Classification is the process of building a model of classes from a set of records that contain
class labels. Decision Tree Algorithm is to find out the way the attributes-vector behaves for a
number of instances. Also on the bases of the training instances the classes for the newly
generated instances are being found. This algorithm generates the rules for the prediction of
the target variable. With the help of tree classification algorithm the critical distribution of the
data is easily understandable.

J48 is an extension of ID3. The additional features of J48 are accounting for missing values,
decision trees pruning, continuous attribute value ranges, derivation of rules, etc. In the WEKA
data mining tool, J48 is an open source Java implementation of the C4.5 algorithm. The WEKA
tool provides a number of options associated with tree pruning. In case of potential over fitting
pruning can be used as a tool for précising. In other algorithms the classification is performed
recursively till every single leaf is pure, that is the classification of the data should be as perfect
as possible. This algorithm it generates the rules from which particular identity of that data is
generated. The objective is progressively generalization of a decision tree until it gains
equilibrium of flexibility and accuracy.

Basic Steps in the Algorithm:

1. In case the instances belong to the same class the tree represents a leaf so the leaf is
returned by labeling with the same class.

2. The potential information is calculated for every attribute, given by a test on the
attribute. Then the gain in information is calculated that would result from a test on the
attribute.

3. Then the best attribute is found on the basis of the present selection criterion and that
attribute selected for branching.

Counting Gain
This process uses the “Entropy” which is a measure of the data disorder. The Entropy
of is calculated by And Gain is

o Ll (|:-E|)
Entropy(¥) = - » —log| =+
£, 2\

Entropy(j|y) = @ log (@)
1] ¥l

And Crain 15

Gain(y,j) = Entropy(y — Entropy(j|¥))

The objective 15 to maximize the Gain, dividing by overall
entropy due to split argument ¥ by value |.

Steps to run data set using J48 Decision Tree:
1. Load arff dataset
From the displayed functions above select classify.
Go to choose option below the functions.
By clicking on the choose you may observe certain ways for classification.
Choose tress from different classifications shown.
6. Now from tress, select J48 and run the data set.

OUTPUT:

ok~ wnn
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Preprocess | Classify | Cluster | Assodate | Select atiributes | Visualize

Classifier

| Choose |mB-co2smz

Test options Classifier output

Use training set

Supplied testset | Set. |

Cross-validation  Folds

Pecertage it %
More optians.

I(Nom)dass

|
|
|
Result st (nghmmx for options) : (.
|

J48 pruned tree

petalwidth <= 0.6: Iris-setosa (50.0)
petalwidth > 0.6

pecalwidth <= 1.7

| petallength <= 4.9:

| petallength > 4.9
petalwidth <= 1.

SIUD

Number of Leaves : 5

Size of the tree : 9

Time taken to build model: 0 seconds

= Evaluation on training set —

=== Classifier model (full training set) ===

Iris-versicolor (48.0/1.0)

: Iris-virginica (3.0)
petalwidth > 1.5: Iris-versicolor (3.0/1.0)
petalwidth > 1.7: Iris-virginica (46.0/1.0)

m

= Summary ==
Correctly Classified Instances 147 EH :
Incorrectly Classified Instances 3 H B
Kappa statistic 0.97
Mean absolute error 0.0233
Root mean squared error 0.108
Relative absolute error 5.2482 %
Root relative squared error 22.9089 %
Total Number of Instances 150
== Detailed Accuracy By Class —
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
1 ] 1 1 1 1 Iris-setosa
0.92 0.02 0.961 0.98 0.97 0.99 Iris-versicolor
0.96 0.01 0.98 0.96 0.97 0.93 Iris-virginica il
Status
oK

Preprocess | Classify | Cluster | Assodiate | Select attributes | Visualize

Classifier

[ choose |1a8-co.zs-m2

Test options Classifier output

Use training set | petallength > 4.9

I I
I I
petalwidth > 1.7: Iris-virginica (46.0/

Suppiied test set
Cross-validation ~ Folds

Percentagesplit %

Size of the tree : 9
|

) =

Result list (right-click for options)

Number of Leaves : 5

Time taken to build model: 0 seconds

=== Evaluation on training set ===

=== Confusion Matrix ===

& b ¢ <-- classified as
50 0 0| a=TIris-setosa
043 11 b= Iris-versicolor
0 248 | c = Iris-virginica

petalwidth <= 1.5: Iris-virginica (3.0}
petalwidth > 1.5: Iris-versicolor {3.0/1.0)

1.0)

—— Summary —
Correctly Classified Instances 147
Incorrectly Classified Instances 3
Kappa statistic 0.97
Mean absolute error 0.0233
Root mean squared error 0.108
Relative absolute error 5.2482 %
Root relative squared error 22.9089 3%
Total Number of Instances 150
== Detailed Accuracy By Class —=
TP Rate FP Rate Precision Recall
1 0 1 1
0.98 0.02 0.961 0.98
0.96 0.01 0.98 0.96
Weighted Avg.  0.98 0.01 0.98 0.98

EE B

2 B
F-Measure

1

0.97

0.97

0.98

1
0.99
0.99
0.993

‘Weka Classifier Tree Visualizer: 18:46:27 - trees.J48 (iris)

[=[=] =

Tree View

=

—

.4

=06

o

44

=15

e
v
e

ROC Area Class

Iris-setosa
Iris-versicolor
Iris-virginica

Status
oK
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Data Mining Lab from prabinsilwal.com.np

EXPERIMENT: 5

AIM: Demonstration of Classification Rule Process on any datasets using Navie Bayes
Algorithm

DESCRIPTION:

The Naive Bayesian classifier is based on Bayes’ theorem with independence assumptions between
predictors. A Naive Bayesian model is easy to build, with no complicated iterative parameter estimation
which makes it particularly useful for very large datasets. Despite its simplicity, the Naive Bayesian
classifier often does surprisingly well and is widely used because it often outperforms more sophisticated
classification methods.

Algorithm:

Bayes theorem provides a way of calculating the posterior probability, P(c|x), from P(c), P(x), and P(x|c).
Naive Bayes classifier assume that the effect of the value of a predictor (x) on a given class (c) is
independent of the values of other predictors. This assumption is called class conditional independence.

Likelihood Clafs Prior Probability
P(x C')P(c)
Plc|x)=
| P(x).
u
Posterior Probability Predictor Prior Probability

P(c|X) = P(x,|c) = P(x,|c)x--xP(x,|c)x P(c)

Pic|x) is the posterior probability of class (target) given predicror (attribute).
Pic)is the prior probability of class.

Pix|c) is the likelihood which is the probability of predictor given class.
Pix)is the prior probability of predicror.
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Steps to run data set using Navie Bayes Algorithm:
1. Load arff dataset
2. From the displayed functions above select classify.
3. Go to choose option below the functions.
4. By clicking on the choose you may observe certain ways for classification.
5. Choose bayes from different classifications shown.
6. Now from bayes ,select Navie Bayes and run the data set.

OUTPUT:
~ s cpee T T 5|

Preprocess | Classify | Cluster | Assodate | Select attributes | Visualize

Classifier
[cooosepaivepares

Test options Classifier output

(@) Use training set === Run information ===

() Supplied test set Set..

Schema: weka.classifiers.bayes.NaiveBayes
() Crossvalidation  Folds |10 Relatien: weather
(O Percentage split % |86 Instances: 14
- Rttributes: 5
cutleck
temperature
{Mom) play - I humidity
windy
Test mode:  evaluate on training data 4

== Classifier model (full training set) ===

Naive Bayes Classifier

19:24:25 - bayes. NaiveBayes.

Class
Attribute ves no
(0.63)  (0.38)
outlook L
sunny 3.0
overcast 5.0
rainy 4.0
[total] 12.0
temperacure
mean T2.9697 T4.8364
std. dev. 5.2304  7.384
weight sum 2 s
precision 1.9081 1.9091
humidity
mean 7€.8395 26.1111
std. dev. 9.8023 9.2424
weight sum 8 s
precision 3.4424 3.2494
windy i

Status

oK “;xn

e oo - T -
Preprocess | Classify | Cluster | Associate | Select attributes | visualize|

Classifier

Test options

Classifier output

® Use training set mean 78,8335 86.1111
©) Supplied test set Set... std. dev. 9-8023 9.2424
weight sum s 5
Cross-validation  Folds |10 precision 3.asa0 3.4400
(©) Percentage split % (66
windy
-
FALSE 7.0
(Nom) play - l [total] 1.0

Time taken to build model: 0 seconds

=== Evaluation on training set ===

= Summary =

Correctly Classified Instances 13 92,8571 %

I tly Classified Instances 1 7.1429 % B
Kappa statistic 0.8372

Mean absolute error 0.2798

Root mean squared error 0.3315

Relative absolute error §0.2576 %

Root relative squared error §9.1352 %

Total Nurber of Instances 14

=— Detailed Accuracy By Class ==

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

n

1 0.2 0.9 1 0.947 0.911 yes
0.8 0 1 0.8 0.889 0.911  no
Weighted Avg. 0.929 0.128 0.936 0.929 0.926 0.911

=== Confusion Matrix ===

ab <-- classified as
901 a=yes
141b=mo

Status

oKk ‘daxu
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EXPERIMENT: 6
AIM: Demonstration of Classification Rule Process on any datasets using
K-nearest Neighbor classification Algorithm
DESCRIPTION:

K nearest neighbors is a simple algorithm that stores all available cases and classifies new cases
based on a similarity measure (e.g., distance functions). KNN has been used in statistical
estimation and pattern recognition already in the beginning of 1970’s as a non-parametric
technique.

Algorithm:
A case is classified by a majority vote of its neighbors, with the case being assigned to the class
most common amongst its K nearest neighbors measured by a distance function.

If K=1, then the case is simply assigned to the class of its nearest neighbor.

Distance functions

k

Euclidean Z(T; - .1'} )2

i=1

k
Manhattan Z‘T; —V;
i=1

Yg

k
Minkowski Z( )q

i=1

X, —V

i |
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It should also be noted that all three distance measures are only valid for continuous variables.
In the instance of categorical variables the Hamming distance must be used. It also brings up
the issue of standardization of the numerical variables between 0 and 1 when there is a mixture
of numerical and categorical variable in the dataset.

Steps to run data set using K-means algorithm:
1. Load arff dataset
From the displayed functions above select classify.
Go to choose option below the functions.
By clicking on the choose you may observe certain ways for classification.
Choose tress from different classifications shown.
Now from tress ,select NBTree and run the data set.

Output:

o gk wn

> Weka Explorer

Preprocess | Classify | cluster | Associate | Select attributes | Visuslize

Classifier
Test options Classifier output
(%) Use training set o
) Supplied kest set
© Cross-vakdation ]
Munher of Leaves : 4
© Percentage spit e ]
(Nom) Type v
Time taken to build model: 0.3 seconds
=== Evaluartion on training set ===
Result lst {right-click For aptions) —-- Suumary ===
14:50:29 - trees.NETres
14:50:56 - trees.METree Correc tly Classified Instances 176 82.243 %
14:51:23 - trees.NETres Incorrectly Classified Instances L] 17.757 %
B Kappa staristic 0.7572
Hean absolute erroc 0.0883
Root mean squared error 0.z12
Relative ahsolute error 42.1837 %
Foot relative squared error £5.3406 &
Total Mumber of Instances 214
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.914 0.139 0.762 0.914 0,831 0.919  build wind float
0.75 0.08 0.838 0.75 0.79z 0.8 build wind non-float
0,528 0.01 0,918 0.529 0,643 0.934  wehic wind float
[ 0 [ 0 [ H wehic wind non-float
1 0.02 0.765 1 0.867 0.991  containers
0.778 0 1 0.778 0.875 0.996  tableware
0,897 0.005 0.963 0.897 n.828 0.982  headlamps
Weighted Awg. 0.822 0.075 0.831 0.822 0.819 0.926
== Confusion Matrix ===
a b cde £ g <- classified as
€4 6 0 0 0 0 0| a=build wind float
1357 2 0 3 0 1| b =build wind non-float
6 2 9 0 0 0 0| c=vehic wind float
00 0 0 0 0| d-=vehic wind non-float
00 0 013 0 0| e = containers
02 0 0 0 7 0| f-=tshlemare
1 1 0 0 1 026 g-=headlawps
v
< | >

Status

oK Log -~ x0
aghan... I S ek Explorer Bw o Tree ..
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Data Mining Lab from prabinsilwal.com.np

Weka Classifier Tree Visuvalizer: 14:56:03 - trees.NBTree (Glass)
Tree Yiew

=14 NR5 =14 065
Ne ez

==0.09 =0.09

==0.28 =039
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EXPERIMENT: 7

AIM: Demonstration of partitional Clustering on any datasets using K-means
Algorithm

DESCRIPTION:

k-means is one of the simplest unsupervised learning algorithms that solve the well-known
clustering problem. The procedure follows a simple and easy way to classify a given data
set through a certain number of clusters (assume k clusters) fixed apriori. The main idea is
to define k centers, one for each cluster. These centers should be placed in a
cunning way because of different location causes different result. So, the
better choice is to place them as much as possible far away from each other. The next step
is to take each point belonging to a given data set and associate it to the nearest center. When
no point is pending, the first step is completed and an early group age is done. At this point
we need to re-calculate k new centroids as barycenter of the clusters resulting from the
previous step. After we have these k new centroids, a new binding has to be done between the
same data set points and the nearest new center. A loop has been generated. As a result of this
loop we may notice that the k centers change their location step by step until no more
changes are done or in other words centers do not move any more. Finally,
this algorithm aimsat minimizing an objective function know as squared error function given
by:

C C:

2
J)= % % (x—ul)
i=1j=1

where,
||xi - vj|| " 1s the Euclidean distance between xi and v

‘ci’ is the number of data points in i*" cluster.
‘c’ is the number of cluster centers.
Algorithmic steps for k-means clustering :

Let X ={X1,X2,X3,........ ,xn} be the set of data points and V = {vy,va,....... ,vc} be the set of
centers.

1. Randomly select ‘c’ cluster centers.
2. Calculate the distance between each data point and cluster centers.

3. Assign the data point to the cluster center whose distance from the cluster center is
minimum of all the cluster centers..

4. Recalculate the new cluster center using:

V;Z(I/C;) ‘%1‘ X i
=1

where, ‘ci’ represents the number of data points in i*" cluster.
5. Recalculate the distance between each data point and new obtained cluster centers.
6. If no data point was reassigned then stop, otherwise repeat from step 3).
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https://sites.google.com/site/dataclusteringalgorithms/k-means-clustering-algorithm/kmeans.JPG?attredirects=0

Steps to run data set using simple K-means algorithm:
1. Load Dataset
2. From the displayed functions above select cluster.
3. Go to choose option below the functions.
4. By clicking on the choose you may observe certain forms of clusters.
5. Choose SimpleKMeans.
6. Now run the data set.
OUTPUT:

Proprocms | Claafy | Thaber | jmancate | Select attrates | susion
Chahsrar

Thooss | SipleiMeans A 2 A ‘wels oo EudidesnDist sncs 8 fret dest* 2500 <510

Chaiew vt (hetorts indgadt

(E) e raining sek === Ban informacien ===
1 St et et
Schamn: wekta. 2lustesacs. Siaplefaans <M 2 -A “weka.coce.Detlidembistance <R Elest-last™ =1 500 =3 10
O Pt it Fulataoms weathar, pymbalic
71 Gl o chasbry pemiaateon Insnances) i
Mreributess 8
— autlock
(] Fow iy o vipsslation CeRpETATETE
Ay
[ I e | windy
play
Tt TeAU Bedtl  EVAIUATH OB TOALALIA 345

Bommkt bt fright-clck foe optiona]

==s Mcdel and evaluafion oo LCALmiTg Mt sss
40 . Sl e

2.0
5 waam mod
luster as
Clestazs
atrripuce Fuil Dara - 1
] 1
sutlack wary many  avercast
EEMpELATULE miid mild sl
maidary kigh Bigh nazmal
windy L FaLsE TR
Blay L) T e
lusteved Instanc
L U]
a0 2
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EXPERIMENT: 8

AIM: Demonstration of Clustering on any datasets using simple K-mediods
algorithm

DESCRIPTION:

The K-medoids clustering algorithm is similar to the K-means algorithm. Both of these two
algorithms partition the dataset into groups and minimize the squared error based on the
distance between points. In contrast to the K-means algorithm which chooses the means as the
centroids, the K-medoids chooses datapoints as centers (medoids or exemplars).

The most common realisation of K-medoid clustering algorithm is the Partitioning Around
Medoids (PAM) algorithm.
The PAM algorithm works as following steps:

1. Initialization step: randomly select k data points in the dataset as the medoids.

2. Assignment step: associate each data point to the closest medoid. The closeness is
measured by any valid distance metric, such as Euclidean distance, Manhattan
distance, or Minkowski distance.

3. Updating step:

For each cluster
For each data point o in the cluster

Compute the cost of 0 as the medoid. The cost is defined as
the DistanceError which is

Distance Error(o) = Z dist{o, p)
pecluster
Choose the o with the smallest cost as the new medoid.
4. Repeat steps 2 and 3 until there is no change in medoids.
5. Repeat steps 1 to 4 for several times and output the solution with the least squared
error.
K-medoid in weka:
Weka provides new tab called Subspace Clustering for additional clustering methods.

While subspace clustering is a rather young area that has been researched for only one decade,
several distinct paradigms can be observed in the literature. Our system includes
representatives of these paradigms to provide an overview over the techniques available. We
provide implementations of the most recent approaches from different paradigms:

1. Cell-based subspace clustering discretizes the data space for efficient detection of
dense grid cells in a bottom-up fashion. It was introduced in the CLIQUE approach
which exploits monotonicity on the density of grid cells for pruning. SCHISM
extends CLIQUE using a variable threshold adapted to the dimensionality of the
subspace as well as efficient heuristics for pruning. In contrast, DOC and MINECLUS
use variable cells represented by hypercubes.

2. Density-based subspace clustering defines clusters as dense areas separated by
sparsely populated areas. In SUBCLU, a density monotonicity property is used to
prune subspaces in a bottom-up fashion. FIRES extends this paradigm by using
variable neighborhoods and an approximative heuristicts for efficient computation. In
INSCY we use dimensionality unbias density, normalized with respect to the
dimensionality of the subspace and in addition in-process pruning of redundant
subspace clusters achieves meaningful result sizes.

26



3. Clustering oriented methods optimize the overall clustering result. PROCLUS
extends the k-medoid algorithm by iteratively refining a full-space k-medoid
clustering in a top-down manner. P3C combines one-dimensional cluster cores to
higher-dimensional clusters bottom-up. STATPC uses a statistical test to remove
redundant clusters out of the result.

NEW: Subspace Clustering Tab

* Weka Explorer

| Preprocess | Classify | Cluster | Subspace Cluster | Associate | Select attributes | Visualize |
X SubspaceClusterer [
Selection of
subspace cluster Proclus K 4-D3
algorithm
Class to cluster evaluation SubspaceClusterer output ‘
[¥] Enable SC2: (0001000000000101] #1852 (2 4 6 21 25 27 38 44
(Nom) class v |SC3:[0001000000010000] #825 {15 1428 40 46 47 61
[[] store dlusters for visualization Clustering took: 00h 00m 03s (364lms)
i Brecketirg Unclustered instances : 1517
Bracketing )
configuration .‘ [¥] Enable Bracketing
{ Evaluation measurements:
Sisdiion of {Evaluation | all sC_0 sC_1 $C_3
election of
Accuracy 0,32
V] Calculate Measures e
meacliree T Quaky 1.0-ClusErr 0,16
Coverage 0,8 0,25 0,19 0,2.
[ Ignore attributes ] Entropy 0,68 0,7 0,73 0,6
FlMeasure 0,18
Start Bracketing 1.0-RNIA 0,27
Result list
- Proclus -- S S
119:05:50 - Procius > V1o in main windoy
Bracketing 19:05:55 - Produs > Viewn separate i Cluster Distribution:
rosult area —115:06:00- Procs > Saveresi bffer Clusterdi 0121000000000000
119:06:07 - Proclus > Save all result buffers MBLELvASL
19:06:12 - Proclus > pelete result HumOfCiuate: A v|
119:06:26 - Proclus --> LS 3 |
| Load model A =
Status Save model ;
oK % | 4
Calculate visualization
| Show visualization | <— Open single visualization
| Show all visuslizations | <€—— Open visualization with Evaluation area
) overview

You can perform k-medoids by selecting Proclus as shown below:

»* Weka Explorer

| Preprocess | Classify | Cluster | SubspaceClusterer | associate

SubspaceClusterer

) weka

Elhj subspaceClusterer
q O Clique

O Doc

O Fires

Lo @ INSCY

O MineClus

- @ P3C

E 0 Schism
- @ Statpc
L @ Subclu
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* Weka Explacer

ClusterDist

Cluster Distribution:
0000242000000000

P fadhce Cluster | Associats | Select Strbates Visualze |
P2 Calcu... |- | O] X| | gy
=3 &
Choosd
Accuracy fuce=s Qmetertuon [ ‘
Class to cf Coverage 2} SubspaceChisterer output
CE B gt . : |
[7] Enad Entropy ¢ |- SC6: [0101000101020100] #955 (10 12 15 16 17 19 35 &/
ClusterDistributi (Nod  FiMessise v |57 (0001010000001 111] #212 (27 46 49 89 128 143
[ store ot | Clustering rook: 00h 00m DAs (4219ms)
Coverage
Brackating E | Unclustered instances : 2114
Entropy [ Ensd) [(ed )
/!valunuon measurements:
FiMeasure Ev. [ all sc_0 $C_1 $¢_
sy iy IOELT,
W0~ rr 2
RNIA l/I // ] Coverage 0,72 0,01 0,06 0,0 I
Ignore attributes Entropy 0,49 0,32 0,64 0,51 \
[ Load TrueCluster File ] / R, e ‘I
1.0-RNTA 0,28
[ QK ] Result bt |
19:06:26 - Produs «> & 4 Al
Cluster Distribution:
| ClusterDist 0000242000000000 i
v o * s ]
ST MEvaluation measurements:
all SC_0 SC_1 SC_
o Accuracy 0,42
1.0-ClusErx 0,15
Coverage 0,72 0,01 0,06 0,0
Entropy 0,49 0,32 0,64 0,5
FlMeasure 0,37
1.0-RNIA 0,28

Visualization of output:

Cluster Visualization Overview

Fr g

Y.

| Chuster Overview | 30-Bromsing | Object Details|
~grSi 10 -mSu 200 -de S00.0 -ta 8.0 -e 4.0 -mCl1 0.0 -K 1
EIsTe17]

g
&

 Chuster Overview | 30-Browsing | Object Detais|

LJ -grSi 10 -mSu 200 -de 500.0 -ta 8.0 -& 4.0 -mCl 0.0 K 1

[ I I

@

O
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EXPERIMENT: 9

AlM: Demonstration of Clustering rules process on any datasets of images
using DB Scan algorithm

DESCRIPTION:

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering
algorithm. It is a density-based clustering algorithm: given a set of points in some space, it
groups together points that are closely packed together (points with many nearby neighbors),
marking as outliers points that lie alone in low-density regions (whose nearest neighbors are
too far away). DBSCAN is one of the most common clustering algorithms.

Algorithm:
DBSCAN requires two parameters: € (eps) and the minimum number of points required to form
a dense region.

It starts with an arbitrary starting point that has not been visited. This point's €-neighborhood
is retrieved, and if it contains sufficiently many points, a cluster is started. Otherwise, the point
is labeled as noise. Note that this point might later be found in a sufficiently sized e-
environment of a different point and hence be made part of a cluster.

In the following, we present a basic version of DBSCAN omitting details of data types and
generation of additional information about clusters:

DBSCAN (SetOfPoints, Eps, MinPts)

/I SetOfPoints is UNCLASSIFIED
Clusterld := nextld(NOISE);

FOR i FROM 1 TO SetOfPoints.size DO
Point := SetOfPoints.get(i);

IF Point.Clld = UNCLASSIFIED THEN
IF ExpandCluster(SetOfPoints, Point,
Clusterld, Eps, MinPts) THEN
Clusterld := nextld(Clusterld)

END IF

END IF

END FOR

END; // DBSCAN

Steps to run data set using DBScan algorithm:
1. Load Dataset
From the displayed functions above select cluster.
Go to choose option below the functions.
By clicking on the choose you may observe certain forms of clusters.
Choose MakeDensityBasedClusterer.
Now run the data set.

S
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Weka Explorer,

| Preprocess | Classify | Cluster | Associate | Select attributes | Visualize |

Clusterer
[ choose |DBScan <€ 0.9 M 6 -T weka.chusterers.for OPTICSAndDBScan.Datab tialDtebase -D weka clusterers forOPTICSANADBSCan . Data0bjects. EuclidianDataChject
Cluster mode Clusterer output
(O U res: === P Information o
© suppled test set Set..
Scheme: weke.clusterers.DBScan -E 0.9 -M 6 -I weka.clusterers. Eor0PTIC: . SequentialDatabase -D weka.clusterers.Eor0PTICSARADEScan.:
O Percenkage st % Reletaom:  iris
© Classes ta dusters evaluation :o1s
(o) class N
sepallength
Stare clusters For visualization sepalwidth
petallength ||
[ Ignore attributes petalwidth
class
stap Test node: evaluate on training data
Result st K for opi
o S et i i) === Nodel and evaluation on training set ===
DBScan clustering results
Clustered Datalbjects: 150
Humber of atcributes: §
Epsilon: 0.9; minPoints: &
Index: veka.clusterers.fordPTICSindDEScan. Databases. SequentialDatabase
Distance-type: weka.clusterers. Eor0PTICSAndDBScan. Daralbjects. Euclidianbatalbiect
Humber of generated clusters: 3
Elapsed time: .05
{ 0.] 5.1,3.5,1.4,0.2,Iris-setosa - 0
| 1.] 4.9,3,1.4,0.2,Iris-setosa - 0
| 2.] 4.7,3.2,1.3,0.2,Iris-setosa - 0
| 3.] 4.6,3.1,1.5,0.2,Iris-setosa -0
| 4.) 5,3.6,1.4,0.2,Iris-setosa -0
| 5.) 5.4,3.9,1.7,0.4,Iris-setosa -0
| 6.] 4.6,3.4,1.4,0.3,Tris-setosa -0
{ 7.) 5,3.4,1.5,0.2,Iris-setosa -0
| 8.) 4.4,2.9,1.4,0.2,Tris-setosa -0
{ 9.) 4.9,3.1,1.5,0.1,Iris-setosa -== 0
( 10.) 5.4,3.7,1.5,0.2,Iris-setosa -== 0
( 11.) 4.8,3.4,1.6,0.2,Iris-setosa -== 0
{ 1z2.) 4.8,3,1.4,0.1,Iris-setosa -== 0
£ 170 A A 211 N1 Teis_sarmss ] e
3 | >

Weka Explorer

| Preprocess | Classiy | Chuster | assoriate | Select attributes | visualze |

Clusterer
[ choose | pBScan - 0.5 -6 -1 weka. clusterers. ForOPTICS AndDBScan. Databases. SeruentialDatabase - weka, dusterers ForOPTICSAndDBScan. Datadhjects EuciiianDataChiect
Cluster mode Clusterer outpur
© Use braining sst T 26,579,455, (LTS VITYINICE =T 3
(118.) 6,2.2,5,1.5,Iriz-virginica - 1
O Supplied test set Set.. (120.) 6.9,3.2,5.7,2.3,Iriz-virginica -1
. (121.) 5.6,2.8,4.9,2,Iris-virginica "
DR - (122.) 7.7,2.8,6.7,2,Iris-virginica "
O Classes to clusters evaluation (123.) 6.3,2.7,4.9,1.8,Iris-virginica 1
(hlom) class (124.) €.7,3.3,5.7,2.1,Tris-virginica "
(125.) 7.2,3.2,6,1.8,Iris-virginica —
Stare clusters for visualization
(126.) 6.2,2.8,4.8,1.5,Iris-virginica —
(127.) 6.1,3,4.9,1.8,Iris-virginica "
( Ignore attributes (128.) 6.4,2.8,5.6,2.1,Iris-virginica > 1
(129.) 7.2,3,5.8,1.6,Iris-virginica —
top (130.) 7.4,2.8,6.1,1.9,Iris-virginica 1
Result st (right-click for optionss) (131.) 7.2,3.8,6.4,2,Iris-virginica T
(132.) 6.4,2.8,5.6,2.2,Iris-virginica —
(133.) 6.3,2.8,5.1,1.5,Iris-virginica —
(134.) 6.1,2.6,5.6,1.4,Iris-virginica —
(135.) 7.7,3,6.1,2.3,Iris-virginica —
(136.) 6.3,3.4,5.6,2.4,Iris-virginica —
(137.) 6.4,3.1,5.5,1.8,Iris-virginica —
(138.) 6,3,4.8,1.8,Irisvirginica "
(139.) 6.9,3.1,5.4,2.1,Tris-virginica "
(140.) 6.7,3.1,5.6,2.4,Tris-virginica "
(141.] 6.9,3.1,5.1,2.3,Iris-virginica 51
(142.] 5.8,2.7,5.1,1.9,Iris-virginica 51
(143.] 6.8,3.2,5.9,2.3,Iris-virginica 51
(144.] 6.7,3.3,5.7,2.5,Iris-virginica 51
(145.] 6.7,3,5.2,2.3,Iris-virginica 51
(146.) 6.3,2.5,5,1.9,Iris-virginica - 1
(147.] 6.5,3,5.2,2,Tris-virginica 51
(148.] 6.2,3.4,5.4,2.3,Iris-virginica 51
(143.) 5.9,3,5.1,1.8,[r1a-virginica 1
Clustered Instances
0 50 33%)
1 50 33%)
H 50
< |

Status
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EXPERIMENT: 10

AIM: Demonstration of Clustering rules process on any datasets using Birch
Algorithm

DESCRIPTION:

BIRCH (balanced iterative reducing and clustering using hierarchies) is an unsupervised data
mining algorithm used to perform hierarchical clustering over particularly large data-sets. An
advantage of BIRCH is its ability to incrementally and dynamically cluster incoming, multi-
dimensional metric data points in an attempt to produce the best quality clustering for a given
set of resources (memory and time constraints). In most cases, BIRCH only requires a single
scan of the database.

Its inventors claim BIRCH to be the "first clustering algorithm proposed in the database area
to handle 'noise’ (data points that are not part of the underlying pattern)
effectively”, beating DBSCAN by two months. The algorithm received the SIGMOD 10 year
test of time award in 2006.

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies) is an integrated
agglomerative hierarchical clustering method. It is mainly designed for clustering large amount
of metric data. It is mainly suitable when there is limited amount of main memory and have to
achieve a linear 1/0O time requiring only in one database scan. It introduces two concepts,
clustering feature and clustering feature tree (CF tree), which are used to summarize cluster
representations [Tian Zhang et al., 1996].

A CF tree is a height-balanced tree that stores the clustering features for a hierarchical
clustering. It is similar to B+-Tree or R-Tree. CF tree is balanced tree with a branching factor
(maximum number of children per none leaf node) B and threshold T. Each internal node
contains a CF triple for each of its children. Each leaf node also represents a cluster and contains
a CF entry for each sub cluster in it. A sub cluster in a leaf node must have a diameter no greater
than a given threshold value (maximum diameter of sub-clusters in the leaf node) [Tian Zhang
etal., 1996].

An object is inserted to the closest leaf entry (sub cluster). A leaf node represents a cluster
made up of all sub clusters represented by its entries. All the entries in a leaf node must satisfy
the threshold requirements with respect to the threshold value T, that is, the diameter of the sub
cluster must be less than T. If the diameter of the sub cluster stored in the leaf node after
insertion is larger than the threshold

Steps to run data set using BIRCH algorithm:
1. Load Dataset
From the displayed functions above select cluster.
Go to choose option below the functions.
By clicking on the choose you may observe certain forms of clusters.
Choose HierarchicalClustering.
Now run the data set.

ok wN
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OUTPUT:

Data Mining Lab from Erabinsilwa om.nE

[ Preprocess T Classify I Cluster T Associate T Select attributes T Visualize ]
Clusterer

¥ (& weka A "weka core EuclideanDistance -R first-last |
v ﬁ clusterers

Canopy k. Clusterer output

Cobweb

EM

Y| FarthestFirst

Bl=0

DFEE

|

T

Hierarchical clustering class

2

SimpleKM:
Implements a number of classic agglemorative (i.e. bottom up) hierarchical clustering methodsbased on

CAPABILITIES
Class — No class

Attributes — Unary attributes, Numeric attributes, Date atiributes, Missing values, String attributes, Binary attributes, Empty nominal attributes, Nominal attributes

Additional
min # of instances: 0

12 ) ()

[ Preprocess T Classify T Cluster T Associate T Select aftributes T Visualize ]

Clusterer

l Choose ”Hieramhicalclusterer -t 2-L SINGLE -P -4 "weka core EuclideanDistance -R firsk-last'

Cluster mode Clusterer output

(®) Use training set N
~ mass -
(_) Supplied test set Set.. pedi
() Percentage split % 66 age
- class
' Classes to clusters evaluation Test mode: evaluate on training data
(Mom) class
] store clusters for visualization === Clustering model (full training set) ===
{ Ignore atributes J Cluster 0
COOCCCOECC a0 42.02:0.16243,1.0:0.16243) :0.01512,1.0: 0.17755) :0. 01402, 1.0:0.1¢
{LJ Shon Cluster 1
Result list {right-click for options) A A A A A A A A A R R A R R A R
14:52:47 - HierarchicalClusterer
|Time taken to build model (full training data) : 4.74 seconds
=== Model and evaluation on training set ===
[Clustered Instances
0 268 | 358)
1 500 ( 65%)
./
v
EL T

Status

oK Log ‘ x0
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