
Contents

1 Introduction 7
1.1 Computer . 7
1.2 Types of Computer . 7
1.3 Basic Structure of a Digital Computer 7

1.3.1 Operating System . 8
1.3.2 Utility Programs . 8

1.4 Programming Language . 8
1.4.1 Low level Language . 8
1.4.2 High level Language . 9

1.5 Compiler, Interpreter and Assembler . 9
1.6 Traditional and Structured Programming 9

2 Programming Logic 10
2.1 Understanding of problems, Feasibility and Requirement Analysis 10
2.2 Design FlowChart and Algorithm . 10
2.3 Program Coding . 11
2.4 Testing and Debugging . 11
2.5 Implementation . 11
2.6 Evaluation and Maintenance . 12
2.7 Documentation . 12

3 Variables and Data Types 13
3.1 Constant and Variables . 13
3.2 Variable declaration in C . 13
3.3 Rules for writing variable name in C . 14
3.4 Input Output Function . 14
3.5 Operators in C . 14

3.5.1 Arithmetic Operator . 15
3.5.2 Relational Operator . 15
3.5.3 Logical Operator . 15
3.5.4 Assignment Operator . 16
3.5.5 Conditional Operator . 16
3.5.6 Bitwise Operator . 16

3.6 Operator Precedence in C . 17
3.7 Simple Input Output Function . 17

3.7.1 getchar() function . 17
3.7.2 putchar() function . 18
3.7.3 scanf() function . 18
3.7.4 printf() function . 18
3.7.5 gets() and puts() function . 19

4 Control Statements in C 20
4.1 Branching Structure . 20

4.1.1 if Statement . 20
4.1.2 if..else Statement . 21
4.1.3 if..else if..else Statement . 22
4.1.4 Nested if Statement . 22
4.1.5 Switch Statement . 22
4.1.6 The ? : Operator . 23

4.2 Looping Structure . 24

4

4.2.1 while loop . 24
4.2.2 for loop . 25
4.2.3 do while loop . 25
4.2.4 nested loop . 26

4.3 Break Continue and Goto Statement . 27
4.3.1 Break Statement . 27
4.3.2 Continue Statement . 28
4.3.3 Goto Statement . 30

5 Arrays and Strings 32
5.1 One Dimensional Array . 32

5.1.1 Declaring and Initialising . 32
5.2 MultiDimensional Array . 33

5.2.1 Initialisation of Multidimensional Arrays 33
5.3 String . 34

5.3.1 Accessing Strings . 35
5.3.2 String related fuctions . 35

6 Function 36
6.1 Function Definition . 36
6.2 Types of C function . 36

6.2.1 Library Function . 36
6.3 User Defined Function . 36
6.4 Defining a Function . 36
6.5 Calling a function . 37
6.6 Call by Value . 37
6.7 Call by Reference . 37
6.8 Passing array as an argument to a function 38
6.9 Storage Class in C . 38

6.9.1 auto . 38
6.9.2 register . 38
6.9.3 static . 39
6.9.4 extern . 39

6.10 Recursion . 39
6.10.1 Factorial Using Recursion . 39
6.10.2 Fibonacci Series Using Recursion 40

6.11 Preprocessor Directives . 40
6.12 Macro Substitution . 41

7 Pointer 42
7.1 Using Pointers . 42
7.2 Null Pointer . 43
7.3 Pointer Arithmetic . 43

7.3.1 Incrementing Pointer . 43
7.3.2 Decrementing a Pointer . 44

7.4 Definition Pointer to Arrays . 44
7.5 Returning Multiple Values from a function 45
7.6 Pointer to String . 45
7.7 Double pointer . 46
7.8 Dynamic Memory Allocation . 46

7.8.1 Malloc . 46
7.8.2 Calloc . 47

5

7.8.3 free . 47

8 Structure and Unions 49
8.1 Accessing Members of Structure . 49
8.2 Initialising Structure . 49
8.3 Array of Structure . 50
8.4 Nested Structure . 50
8.5 Pointer to a structure . 51
8.6 Self Referential Structure . 52
8.7 Union . 52
8.8 Difference between Structure and Union 52

9 File Handling in C 53
9.1 Opening a File in C . 53
9.2 Closing a File . 53
9.3 Writing Character by Character in File 54
9.4 Reading and Writing From a file using fprintf() and fscanf() 54
9.5 fread() and fwrite() . 55

List of Figures

1 Block Diagram of Computer . 7
2 Flow chart Basic Symbols . 11
3 FlowChart Control Statement . 20
4 if statement flowchart . 21
5 If else Statement . 21
6 switch statement flowchart . 23
7 while loop flowchart . 24
8 for loop flowchart . 25
9 do..while loop flowchart . 26
10 Flowchart Break Statement . 27
11 Working of Break Statement . 28
12 Flowchart Continue Statement . 29
13 Working of Continue Statement . 30
14 Arrays Representation . 32
15 Arrays Initialisation . 32
16 Arrays Initialisation . 33
17 String Representation . 35
18 C program Compilation . 42

List of Tables

1 Data types in C . 13
2 Preprocessor Directives . 41
3 Function Dynamic Memory Allocation 47
4 Difference between structure and union 53
5 File opening modes . 54

6

1 Introduction

1.1 Computer

Basically it is a fast calculating machine which is now a days used for variety of uses
ranging from house hold works to space technology. The credit of invention of this
machine goes to the English Mathematician Charles Babbage.

1.2 Types of Computer

Based on nature, computers are classified into Analog computers and Digital computers.
The former one deals with measuring physical quantities (concerned with continuous
variables) which are of late rarely used. The digital computer operates by counting and
it deals with the discrete variables.There is a combined form called Hybrid computer,
which has both features.

Based on application computers are classified as special purpose computers and gen-
eral computers. As the name tells special computers are designed to perform certain
specific tasks where as the other category is designed to cater the needs of variety of
users.

1.3 Basic Structure of a Digital Computer

The von Neumann architecture, which is also known as the von Neumann model and
Princeton architecture, is a computer architecture based on that described in 1945 by the
mathematician and physicist John von Neumann.This describes a design architecture
for an electronic digital computer with parts consisting of a processing unit containing
an arithmetic logic unit and processor registers; a control unit containing an instruction
register and program counter; a memory to store both data and instructions; external
mass storage; and input and output mechanisms.The key idea of the Von Neumann ar-
chitecture is the stored program concept.A stored-program digital computer is one that
keeps its program instructions, as well as its data, in read-write, random-access memory
(RAM). Stored-program computers were an advancement over the program-controlled
computers of the 1940s.

Figure 1: Block Diagram of Computer

The main components of a computer are Input unit (IU), Central Processing unit (CPU)
and Output unit (OU). The information like data, programs etc are passed to the com-
puter through input devices. The keyboard, mouse, floppy disk, CD, DVD, joystick etc

7

are certain input devices. The output device is to get information from a computer
after processing . VDU (Visual Display Unit), Printer, Floppy disk, CD etc are output
devices.

The brain of a computer is CPU. It has three components- Memory unit, Control unit
and Arithmetic and Logical unit (ALU)- Memory unit also called storage device is to
store information. Two types memory are there in a computer. They are RAM (ran-
dom access memory) and ROM (read only memory). When a program is called, it is
loaded and processed in RAM. When the computer is switched off, what ever stored
in RAM will be deleted.So it is a temporary memory. Where as ROM is a permanent
memory, where data, program etc are stored for future use. Inside a computer there
is storage device called Hard disk, where data are stored and can be accessed at any time.

The control unit is for controlling the execution and interpreting of instructions stored
in the memory. ALU is the unit where the arithmetic and logical operations are per-
formed.The information to a computer is transformed to groups of binary digits, called
bit. The length of bit varies from computer to computer, from 8 to 64. A group of 8
bits is called a Byte and a byte generally represents one alphanumeric (Alphabets and
Numerals) character. The physical components of a computer are called hardwares. But
for the machine to work it requires certain programs (A set of instructions is called a
program). They are called softwares. There are two types of softwares – System soft-
ware and Application software – System software includes Operating systems, Utility
programs and Language processors.

1.3.1 Operating System

The set of instructions which resides in the computer and governs the system are called
operating systems, without which the machine will never function. They are the medium
of communication between a computer and the user. DOS, Windows, Linux, Unix etc
are Operating Systems.

1.3.2 Utility Programs

These programs are developed by the manufacturer for the users to do various tasks.
Word, Excel, Photoshop, Paint etc are some of them.

1.4 Programming Language

1.4.1 Low level Language

Low level languages are machine level and assembly level language. In machine level
language computer only understand digital numbers i.e. in the form of 0 and 1. So,
instruction given to the computer is in the form binary digit, which is difficult to im-
plement instruction in binary code. This type of program is not portable, difficult to
maintain and also error prone. The assembly language is on other hand modified version
of machine level language. Where instructions are given in English like word as ADD,
SUM, MOV etc. It is easy to write and understand but it is hard for the computer to
understand. So the translator used here is assembler to translate into machine level.
Although language is bit easier, programmer has to know low level details related to
low level language. In the assembly level language the data are stored in the computer
register, which varies for different computer. Hence it is not portable.

8

1.4.2 High level Language

These languages are machine independent, means it is portable. The language in this
category is Pascal, Cobol, Fortran etc. High level languages are not understood by the
machine. So it needs to translate by the translator into machine level. A translator is
software which is used to translate high level language as well as low level language in
to machine level language.

1.5 Compiler, Interpreter and Assembler

Compiler and interpreter are used to convert the high level language into machine level
language. The program written in high level language is known as source program and
the corresponding machine level language program is called as object program. Both
compiler and interpreter perform the same task but there working is different. Compiler
read the program at-a-time and searches the error and lists them. If the program is error
free then it is converted into object program. When program size is large then compiler
is preferred. Whereas interpreter read only one line of the source code and convert it to
object code. If it check error, statement by statement and hence of take more time.

An assembler program creates object code by translating combinations of mnemonics
and syntax for operations and addressing modes into their numerical equivalents. This
representation typically includes an operation code (”opcode”) as well as other control
bits and data. The assembler also calculates constant expressions and resolves symbolic
names for memory locations and other entities.

1.6 Traditional and Structured Programming

Structured programming is a programming paradigm aimed at improving the clarity,
quality, and development time of a computer program by making extensive use of sub-
routines, block structures, for and while loops—in contrast to using simple tests and
jumps such as the go to statement which could lead to ”spaghetti code” causing diffi-
culty to both follow and maintain.

It is possible to do structured programming in any programming language, though it
is preferable to use something like a procedural programming language. Some of the
languages initially used for structured programming include: ALGOL, Pascal, PL/I and
Ada – but most new procedural programming languages since that time have included
features to encourage structured programming, and sometimes deliberately left out fea-
tures – notably GOTO – in an effort to make unstructured programming more difficult.
Structured programming (sometimes known as modular programming) is a subset of
imperative programming that enforces a logical structure on the program being written
to make it more efficient and easier to understand and modify.

9

2 Programming Logic

Problems solving

First and foremost step of solving a problem is knowing about the nature of problem in
order to solve it. Almost all types of problems can be solved with computer. However,
correct formulation of the problem in computer understandable terms is essential to
formulate the problem and solve it using computer.

2.1 Understanding of problems, Feasibility and Requirement Analysis

In order to start to develop a solution to a problem using computer, we need to first
understand the problem about its nature, complexities and others. Problems can be of
various nature and we need to understand about the problems first to be able to solve
it using computer. Once the problem has been understood and we can solve it using
computer the feasibility of the problem solution needs to be determined. We can solve a
problem using various logic but what needs to be worked out is the most feasible solution
that can be derived with the least amount of complexities. Another major portion to
solving problems using computer is the analysis of the requirements. The solution to
the problem can be solved however the requirements required is beyond the possible
technologies of today. Then the solution may not be feasible to the problem.

2.2 Design FlowChart and Algorithm

An algorithm is a solution to a computer programming problem. In other words a step
by step procedure for developing a problem is called an algorithm.Algorithms can be
written in two different ways.

1. Pseudocode English like steps that describe the solution.Pseudocode is an ar-
tificial and informal language that helps programmers develop algorithms. Pseu-
docode is a ”text-based” detail (algorithmic) design tool.The rules of Pseudocode
are reasonably straightforward. All statements showing ”dependency” are to be
indented. These include while, do, for, if, switch.

Set t o t a l to zero
Set grade counter to one
While grade counter i s l e s s than or equal to ten

Input the next grade
Add the grade in to the t o t a l

Set the c l a s s average to the t o t a l d iv ided by ten
Pr int the c l a s s average .

2. FlowChart Pictures Detailing with specific blocks detailing out the logical flow
of the solution. For a better understanding of an algorithm, it is represented
pictorially.The pictorial representation of an algorithm is called a Flow Chart.
The algorithm and flowchart to add two numbers can be stated as:

(a) Step1: Input numbers as a and b

(b) Step2: Sum = x + y

(c) Step3: Print the sum

Various symbols can be used to represent different actions like taking input, making
decisions and connecting flowcharts.

10

Figure 2: Flow chart Basic Symbols

The flow chart for the addition of two numbers whose algorithm has been stated above
can be drawn as

2.3 Program Coding

Once algorithm and flowchart has been developed the task now remains is to write
programs using some high level programming language.C, C++, Java, Python are the
most popular programming language to develop programs. PHP and ASP remain a
popular choice for developing web based applications.

2.4 Testing and Debugging

Once the program code has been written in a selected programming language of choice
the next task to complete is the testing and debugging. Testing and debugging helps
to find the problems associated with the program behavior under normal and abnormal
circumstances. Extensive testing like white box testing and black box testing, integration
testing needs to done before the program is deployed into the real world scenario.

2.5 Implementation

After a program has been written and tested it needs to be implemented to the target
environment to solve the problem. Various needs of physical hardware and accessories
required by the program to solve the intended problem needs to be present upon imple-
mentation. Once the program is implemented it starts to work.

11

2.6 Evaluation and Maintenance

The evaluation of the performance of the program needs to be done at frequent interval
once the program or software is implemented. The advent of new technology, upscaling
and downscaling of the business, request for the change from customers, finding of a
new bug are the major reasons for the maintenance and change of the softwares. Once
changes have been continuous monitoring of the software performance needs to done to
discover the flaws in the software.

2.7 Documentation

The same workforce that developed the program may have left the project and gone in
search of opportunities. So a program must be well documented in order for the new
people to understand how the software was developed and how can it be modified. The
documentation start from the very beginning of the problem formulation to the very
end of the Evaluation and Maintenance.

12

3 Variables and Data Types

3.1 Constant and Variables

The smallest meaningful units in C programming is called C Token. Keywords, vari-
ables, various special characters fall under c tokens.

Constants refer to fixed values that the program may not alter during its execution.
These fixed values are also called literals. Constants can be of any of the basic data
types like an integer constant, a floating constant, a character constant, or a string
literal. There are enumeration constants as well.Constants are treated just like regular
variables except that their values cannot be modified after their definition.

A variable is nothing but a name given to a storage area that our programs can ma-
nipulate. Each variable in C has a specific type, which determines the size and layout
of the variable’s memory; the range of values that can be stored within that memory;
and the set of operations that can be applied to the variable.The name of a variable
can be composed of letters, digits, and the underscore character. It must begin with
either a letter or an underscore. Upper and lowercase letters are distinct because C is
case-sensitive.

Type Size(Byte) Range

char 1 -127 to 127

int 2 -32,767 to 32,767

float 4 1*10−37 to 1*1037 six
digit precision

double 8 1*10−37 to 1*1037 ten
digit precision

long int 4 -2,147,483,647 to
2,147,483,647

Table 1: Data types in C

3.2 Variable declaration in C

A variable declaration provides assurance to the compiler that there exists a variable
with the given type and name so that the compiler can proceed for further compilation
without requiring the complete detail about the variable. A variable definition has its
meaning at the time of compilation only, the compiler needs actual variable definition
at the time of linking the program.

#inc lude <s t d i o . h>
extern i n t a , b ;
extern i n t c ;
extern f l o a t f ;
i n t main () {

i n t a , b ;
i n t c ;
f l o a t f ;

a = 10 ;
b = 20 ;

13

c = a + b ;
p r i n t f (” value o f c : %d \n” , c) ;
f = 7 0 . 0 / 3 . 0 ;
p r i n t f (” value o f f : %f \n” , f) ;
r e turn 0 ;

}

3.3 Rules for writing variable name in C

1. A variable name can have letters (both uppercase and lowercase letters), digits
and underscore only.

2. The first letter of a variable should be either a letter or an underscore. However,
it is discouraged to start variable name with an underscore. It is because variable
name that starts with an underscore can conflict with a system name and may
cause error.

3. There is no rule on how long a variable can be. However, the first 31 characters
of a variable are discriminated by the compiler. So, the first 31 letters of two
variables in a program should be different.

3.4 Input Output Function

C programming language provides many of the built-in functions to read given input
and write data on screen, printer or in any file.

scanf() and printf() functions

#inc lude<s t d i o . h>
#inc lude<con io . h>
void main ()
{

i n t i ;
p r i n t f (” Enter a value ”) ;
s can f (”%d”,& i) ;
p r i n t f (”\nYou entered : %d” , i) ;
getch () ;
}

3.5 Operators in C

An operator is a symbol that tells the compiler to perform specific mathematical or
logical functions. C language is rich in built-in operators and provides the following
types of operators.

• Arithmetic Operator

• Relational Operator

• Logical Operator

• Bitwise Operator

• Assignment Operator

• Misc Operator

14

3.5.1 Arithmetic Operator

The basic operators for performing arithmetic are the same in many computer languages:

1. + Addition

2. - Subtraction

3. * Multiplication

4. / Division

5. % Modulus (Remainder)

For exponentiations we use the library function pow. The order of precedence of these
operators is % / * + - . it can be overruled by parenthesis.

Division of an integer quantity by another is referred to integer division. This operation
results in truncation. i.e.When applied to integers, the division operator / discards any
remainder, so 1 / 2 is 0 and 7 / 4 is 1. But when either operand is a floating-point
quantity (type float or double), the division operator yields a floating-point result, with
a potentially nonzero fractional part. So 1 / 2.0 is 0.5, and 7.0 / 4.0 is 1.75.

A operator acts up on a single operand to produce a new value is called a unary
operator. The decrement and increment operators - ++ and – are unary operators.
They increase and decrease the value by 1.

sizeof() is another unary operator. The output given by the sizeof() operator de-
pends on the computer architecture. The values stated by sizeof() operator down below
are based on a 16 bit compiler.

1 int x , y ;
2 y=s izeof (x) ;

The value of y is 2. The sizeof() of an integer type data is 2 that of float is 4, that of
double is 8, that of char is 1.

3.5.2 Relational Operator

< (less than), <= (less than or equal to), > (greater than), >= (greater than
or equal to), == (equal to) and ! = (not equal to) are relational operators. A
logical expression is expression connected with a relational operator. For example ‘b*b
– 4*a*c<0 is a logical expression. Its value is either true or false.

1 int i , j , k ;
2 i =1;
3 j =2;
4 K=i+j ;

The expression k>5 evaluates to false and the expression k<5 evaluates to true.

3.5.3 Logical Operator

The relational operators work with arbitrary numbers and generate true/false values.You
can also combine true/false values by using the Boolean operators, which take true/false
values as operands and compute new true/false values. The three Boolean operators are:

1. && AND

15

2. || OR

3. ! NOT

The && (‘‘and’’) operator takes two true/false values and produces

a true (1) result if both operands are true (that is, if the left-

hand side is true and the right-hand side is true). The || (‘‘or’’)

operator takes two true/false values and produces a true (1) result

if either operand is true. The ! (‘‘not’’) operator takes a single

true/false value and negates it, turning false to true and true to

false (0 to 1 and nonzero to 0).

&& (and) and || (or) are logical operators which are used to connect logical expressions.
Where as ! (not) is unary operator, acts on a single logical expression.

1 (a<5) && (a>2)
2 (a<=3) | | (a>2)

In the example if a= 3 or a=6 the logical expression returns true.

3.5.4 Assignment Operator

These operators are used for assigning a value of expression to another identifier.

=, + =, - = , * =, /= and % = are assignment operators.
a = b+c results in storing the value of b+c in ‘a’.
a += 5 results in increasing the value of a by 5.
a /= 3 results in storing the value a/3 in a and it is equivalent a=a/3

3.5.5 Conditional Operator

The operator ?: is the conditional operator. It is used as variable 1 = expression 1 ?
expression 2 : expression 3. Here expression 1 is a logical expression and expression 2
and expression 3 are expressions having numerical values. If expression 1 is true, value
of expression 2 is assigned to variable 1 and otherwise expression3 is assigned.

1 int a , b , c , d , e ;
2 a=3; b=5; c =8;
3 d=(a<b) ? a : b ;
4 e=(b>c) ? b : c ;

The evaluation of the expression results the value of d = 3 and e = 8.

3.5.6 Bitwise Operator

C has a distinction of supporting special operator known as bitwise operator for manip-
ulation of data at bit level. These operators are used for testing bits or shifting them
right or left. Bitwise operator may not be applied to float or double. Following are the
bitwise operators.

• & bitwise AND

• | bitwise OR

• ˆ bitwise exclusive OR

• << shift left

• >> shift right

16

3.6 Operator Precedence in C

Operator precedence determines the grouping of terms in an expression and decides how
an expression is evaluated. Certain operators have higher precedence than others; for
example, the multiplication operator has a higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has
a higher precedence than +, so it first gets multiplied with 3*2 and then adds into 7.An
arithmetic expression without parenthesis will be evaluated from left to right using the
rules of precedence. There are two distinct priority levels of arithmetic operators in C.

• Higher Priority * /

• Lower Priority + -

The expression x=a-b/3+c*2-1 where a=9, b=12 and c=3 will be evaluated as
step1: x=9-12/3+3*2-1 Higher priority operators left to right division first
step2: x=9-4+3*2-1 Higher priority operators left to right multiply
step3: x=9-4+6-1 Lower priority operators left to right subtraction
step4: x=5+6-1 Lower priority operators left to right addition
step5: x=11-1 Lower priority operators left to right subtraction
step6: x=10 Final Result

Rules for Evaluation of Expression

• First, parenthesized sub expression from left to right are evaluated.

• If parentheses are nested, the evaluation begins with innermost sub expression.

• The precedence rule is applied in determining the order of operands in evaluating
sub expressions.

• Arithmetic expressions are evaluated from left to right using the rules of prece-
dence.

• When parentheses are used, the expressions within the parentheses assume highest
priority.

3.7 Simple Input Output Function

For inputting and outputting data we use library function .the important of these func-
tions are getch(), putchar(), scanf(), printf(), gets(), puts().

3.7.1 getchar() function

It is used to read a single character (char type) from keyboard. The syntax is
char variable name = getchar();
For reading an array of characters or a string we can use getchar() function.

1 #include<s t d i o . h>
2 #include<con io . h>
3 void main ()
4 {
5 char p lace [8 0] ;
6 int i ;
7 for (i = 0 ; (p lace [i] = getchar ()) ! =‘\n ‘ , ++i) ;
8 }

17

3.7.2 putchar() function

It is used to display single character. The syntax is
putchar(char c);

1 #include <s t d i o . h>
2 #include <con io . h>
3 void main ()
4 {
5 char alphabet ;
6 p r i n t f (” Enter an alphabet ”) ;
7 putchar ’ \n ’) ;
8 alphabet=getchar () ;
9 putchar (a lphabet) ;

10 }

3.7.3 scanf() function

This function is generally used to read any data type- int, char, double, float,string.The
syntax is
scanf (control string, list of arguments)
The control string consists of group of characters, each group beginning % sign and a
conversion character indicating the data type of the data item. The conversion characters
are c,d,e,f,o,s,u,x indicating the type resp. char decimal integer, floating point value in
exponent form, floating point value with decimal point, octal integer, string, unsigned
integer, hexadecimal integer. ie, “%s”, “%d” etc are such group of characters.

1 #include<s t d i o . h>
2 #include<con io . h>
3 void main ()
4 {
5 char name [3 0] , l i n e ;
6 int x ;
7 f loat y ;
8
9

10 s can f (”%s%d%f ” , name , &x , &y) ;
11 s can f (”%c” , l i n e) ;
12 }

3.7.4 printf() function

This is the most commonly used function for outputting a data of any type. The syntax
is
printf(control string, list of arguments)
Here also control string consists of group of characters, each group having % symbol
and conversion characters like c, d, o, f, x etc.

1 #include<s t d i o . h>
2 #include<con io . h>
3 void main ()
4 {
5 int x ;
6 s can f (”%d”,&x) ;
7 x=x∗x ;
8 p r i n t f (”The square o f the number i s %d” , x) ;
9 }

18

Note that in this list of arguments the variable names are without & symbol unlike in
the case of scanf() function. In the conversion string one can include the message to
be displayed. In the above example ”The square of the number is” is displayed and is
followed by the value of x.

3.7.5 gets() and puts() function

The C library function gets() reads a line from stdin and stores it into the string pointed
to by str. It stops when either the newline character is read or when the end-of-file is
reached, whichever comes first.

1 #include<s t d i o . h>
2 #include<con io . h>
3 int main ()
4 {
5 char s t r [5 0] ;
6 p r i n t f (” Enter a s t r i n g : ”) ;
7 ge t s (s t r) ;
8 p r i n t f (”You entered : %s ” , s t r) ;
9 return (0) ;

10 }

The C library function int puts() writes a string to stdout up to but not including the
null character. A newline character is appended to the output.

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 int main ()
4 {
5 char s t r 1 [1 5] ;
6 char s t r 2 [1 5] ;
7 s t r cpy (st r1 , ”Nepal”) ;
8 s t r cpy (st r2 , ” Online ”) ;
9 puts (s t r 1) ;

10 puts (s t r 2) ;
11 return (0) ;
12 }

19

4 Control Statements in C

C provides two types of Control Statements

• Branching Structure

• Looping Structure

4.1 Branching Structure

Branching is deciding what actions to take and looping is deciding how many times to
take a certain action.Decision making structures require that the programmer specifies
one or more conditions to be evaluated or tested by the program, along with a statement
or statements to be executed if the condition is determined to be true, and optionally,
other statements to be executed if the condition is determined to be false. Show below is
the general form of a typical decision making structure found in most of the programming
languages.

Figure 3: FlowChart Control Statement

4.1.1 if Statement

An if statement consists of a Boolean expression followed by one or more statements.If
the Boolean expression evaluates to true, then the block of code inside the ’if’ statement
will be executed. If the Boolean expression evaluates to false, then the first set of code
after the end of the ’if’ statement (after the closing curly brace) will be executed. C
programming language assumes any non-zero and non-null values as true and if it is
either zero or null, then it is assumed as false value.

1 #include <s t d i o . h>
2 int main () {
3 int a = 10 ;
4 i f (a < 20) {
5 p r i n t f (”a i s l e s s than 20\n”) ;
6 }
7 p r i n t f (” value o f a i s : %d\n” , a) ;
8 return 0 ;
9 }

20

Figure 4: if statement flowchart

4.1.2 if..else Statement

An if statement can be followed by an optional else statement, which executes when the
Boolean expression is false.If the Boolean expression evaluates to true, then the if block
will be executed,otherwise, the else block will be executed.C programming language
assumes any non-zero and non-null values as true,and if it is either zero or null, then it
is assumed as false value.

Figure 5: If else Statement

1 #include <s t d i o . h>
2 int main () {
3 int a = 100 ;
4 i f (a == 10) {
5 p r i n t f (”Value o f a i s 10\n”) ;
6 }
7 else i f (a == 20) {
8 p r i n t f (”Value o f a i s 20\n”) ;
9 }

10 else i f (a == 30) {
11 p r i n t f (”Value o f a i s 30\n”) ;
12 }
13 else {

21

14 p r i n t f (”None o f the va lue s i s matching\n”) ;
15 }
16 p r i n t f (”Exact value o f a i s : %d\n” , a) ;
17 return 0 ;
18 }

4.1.3 if..else if..else Statement

An if statement can be followed by an optional else if...else statement, which is very
useful to test various conditions using single if...else if statement.When using if...else
if...else statements, there are few points to keep in mind:

• An if can have zero or one else’s and it must come after any else if’s.

• An if can have zero to many else if’s and they must come before the else.

• Once an else if succeeds, none of the remaining else if’s or else’s will be tested.

4.1.4 Nested if Statement

It is always legal in C programming to nest if-else statements, which means you can use
one if or else if statement inside another if or else if statement(s).

4.1.5 Switch Statement

A switch statement allows a variable to be tested for equality against a list of values.
Each value is called a case, and the variable being switched on is checked for each switch
case.The following rules apply to a switch statement:

• The expression used in a switch statement must have an integral or enumerated
type, or be of a class type in which the class has a single conversion function to
an integral or enumerated type.

• You can have any number of case statements within a switch. Each case is followed
by the value to be compared to and a colon.

• The constant-expression for a case must be the same data type as the variable in
the switch, and it must be a constant or a literal.

• When the variable being switched on is equal to a case, the statements following
that case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the flow of control
jumps to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow of control
will fall through to subsequent cases until a break is reached.

• A switch statement can have an optional default case, which must appear at the
end of the switch. The default case can be used for performing a task when none
of the cases is true. No break is needed in the default case.

1 #include <s t d i o . h>
2 int main () {
3 /∗ l o c a l v a r i a b l e d e f i n i t i o n ∗/
4 char grade = ’B ’ ;
5 switch (grade) {

22

Figure 6: switch statement flowchart

6 case ’A ’ :
7 p r i n t f (” Exce l l en t !\n”) ;
8 break ;
9 case ’B ’ :

10 case ’C ’ :
11 p r i n t f (”Well done\n”) ;
12 break ;
13 case ’D ’ :
14 p r i n t f (”You passed \n”) ;
15 break ;
16 case ’F ’ :
17 p r i n t f (” Better t ry again \n”) ;
18 break ;
19 default :
20 p r i n t f (” I n v a l i d grade \n”) ;
21 }
22 p r i n t f (”Your grade i s %c\n” , grade) ;
23 return 0 ;
24 }

4.1.6 The ? : Operator

Exp1? Exp2 : Exp3 is the general structure of the ? : operator.

The value of a ? expression is determined like this:

• Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the value of
the entire ? expression.

• If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the
expression.

23

4.2 Looping Structure

Programming languages provide various control structures that allow for more compli-
cated execution paths. A loop statement allows us to execute a statement or group
of statements multiple times.C programming language provides the following types of
loops to handle looping requirements.

• while loop

• do while loop

• for loop

4.2.1 while loop

A while loop in C programming repeatedly executes a target statement as long as a
given condition is true.

1 while (cond i t i on)
2 {
3 statement (s) ;
4 }

Here, statement(s) may be a single statement or a block of statements. The condition
may be any expression, and true is any nonzero value. The loop iterates while the
condition is true. When the condition becomes false, the program control passes to
the line immediately following the loop.Here, the key point to note is that a while loop
might not execute at all. When the condition is tested and the result is false, the loop
body will be skipped and the first statement after the while loop will be executed. flow
chart and program remaining

Figure 7: while loop flowchart

24

4.2.2 for loop

A for loop is a repetition control structure that allows you to efficiently write a loop
that needs to execute a specific number of times.

1 for (i n i t ; c ond i t i on ; increment) {
2 statement (s) ;
3 }

1. The init step is executed first, and only once. This step allows you to declare and
initialize any loop control variables. You are not required to put a statement here,
as long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If
it is false, the body of the loop does not execute and the flow of control jumps to
the next statement just after the ’for’ loop.

3. Next, the condition is evaluated. If it is true, the body of the loop is executed. If
it is false, the body of the loop does not execute and the flow of control jumps to
the next statement just after the ’for’ loop.

4. The condition is now evaluated again. If it is true, the loop executes and the
process repeats itself (body of loop, then increment step, and then again condition).
After the condition becomes false, the ’for’ loop terminates.

Figure 8: for loop flowchart

4.2.3 do while loop

Unlike for and while loops, which test the loop condition at the top of the loop, the
do...while loop in C programming checks its condition at the bottom of the loop.A

25

do...while loop is similar to a while loop, except the fact that it is guaranteed to execute
at least one time.

1 do {
2 statement (s) ;
3 }while (cond i t i on) ;

Notice that the conditional expression appears at the end of the loop, so the statement(s)
in the loop executes once before the condition is tested.If the condition is true, the flow
of control jumps back up to do, and the statement(s) in the loop executes again. This
process repeats until the given condition becomes false.

Figure 9: do..while loop flowchart

4.2.4 nested loop

C programming allows to use one loop inside another loop.

• Nested for loop

1 for (i n i t ; c ond i t i on ; increment) {
2 for (i n i t ; c ond i t i on ; increment) {
3 statement (s) ;
4 }
5 statement (s) ;
6 }

• Nested while loop

1 while (cond i t i on) {
2

3 while (cond i t i on) {
4 statement (s) ;
5 }
6

7 statement (s) ;
8 }

• Nested do while loop

26

1 do {
2

3 statement (s) ;
4

5 do {
6 statement (s) ;
7 }while (cond i t i on) ;
8

9 }while (cond i t i on) ;

• Find Prime numbers between 2 to 100 using prime number

1 #include <s t d i o . h>
2 int main () {
3 /∗ l o c a l v a r i a b l e d e f i n i t i o n ∗/
4 int i , j ;
5 for (i = 2 ; i <100; i++) {
6 for (j = 2 ; j <= (i / j) ; j++)
7 i f (! (i%j)) break ; // i f f a c t o r found , not prime
8 i f (j > (i / j)) p r i n t f (”%d i s prime\n” , i) ;
9 }

10 return 0 ;
11 }

4.3 Break Continue and Goto Statement

4.3.1 Break Statement

The break statement terminates the loop (for, while and do...while loop) immediately
when it is encountered. The break statement is used with decision making statement
such as if...else. The syntax of the statement is
break;
Example of Goto Statement

Figure 10: Flowchart Break Statement

27

1 // Program to c a l c u l a t e the sum of maximum of 10 numbers
2 // Ca l cu l a t e s sum un t i l user en t e r s p o s i t i v e number
3 # include <s t d i o . h>
4 int main ()
5 {
6 int i ;
7 double number , sum = 0 . 0 ;
8 for (i =1; i <= 10 ; ++i)
9 {

10 p r i n t f (” Enter a n%d : ” , i) ;
11 s can f (”%l f ” ,&number) ;
12 // I f user en t e r s nega t i v e number , loop i s terminated
13 i f (number < 0 . 0)
14 {
15 break ;
16 }
17 sum += number ; // sum = sum + number ;
18 }
19 p r i n t f (”Sum = %.2 l f ” , sum) ;
20 return 0 ;
21 }

Working of Break Statement

Figure 11: Working of Break Statement

4.3.2 Continue Statement

The continue statement skips some statements inside the loop. The continue statement
is used with decision making statement such as if...else. The syntax is
continue;

28

Example of Continue Statement

Figure 12: Flowchart Continue Statement

1 // Program to c a l c u l a t e sum of maximum of 10 numbers
2 // Negat ive numbers are sk ipped from ca l c u l a t i o n
3 # include <s t d i o . h>
4 int main ()
5 {
6 int i ;
7 double number , sum = 0 . 0 ;
8 for (i =1; i <= 10 ; ++i)
9 {

10 p r i n t f (” Enter a n%d : ” , i) ;
11 s can f (”%l f ” ,&number) ;
12 // I f user en t e r s nega t i v e number , loop i s terminated
13 i f (number < 0 . 0)
14 {
15 continue ;
16 }
17 sum += number ; // sum = sum + number ;
18 }
19 p r i n t f (”Sum = %.2 l f ” , sum) ;
20 return 0 ;
21 }

Working of Continue Statement

29

Figure 13: Working of Continue Statement

4.3.3 Goto Statement

The goto statement is used to alter the normal sequence of a C program. The syntax
of goto statement is

1 goto l a b e l ;
2
3
4
5 l a b e l :
6 statements ;

Example of Goto Statement

1 // Program to c a l c u l a t e the sum and average o f maximum of 5 numbers
2 # include <s t d i o . h>
3 int main ()
4 {
5 const int maxInput = 5 ;
6 int i ;
7 double number , average , sum=0.0;
8 for (i =1; i<=maxInput ; ++i)
9 {

10 p r i n t f (”%d . Enter a number : ” , i) ;
11 s can f (”%l f ” ,&number) ;
12 // I f user en t e r s nega t i v e number , f l ow o f program moves to l a b e l jump
13 i f (number < 0 . 0)
14 goto jump ;
15 sum += number ; // sum = sum+number ;
16 }
17 jump :
18 average=sum/(i −1);
19 p r i n t f (”Sum = %.2 f \n” , sum) ;

30

20 p r i n t f (”Average = %.2 f ” , average) ;
21 return 0 ;
22 }

Reasons to avoid using goto statement

1. The use of goto statement may lead to code that is buggy and hard to follow.

2. Goto make jumps that are out of scope so it is difficult to follow.

31

5 Arrays and Strings

Arrays a kind of data structure that can store a fixed-size sequential collection of ele-
ments of the same type. An array is used to store a collection of data, but it is often more
useful to think of an array as a collection of variables of the same type.Instead of declar-
ing individual variables, such as number0, number1, ..., and number99, you declare one
array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to
represent individual variables. A specific element in an array is accessed by an index.All
arrays consist of contiguous memory locations. The lowest address corresponds to the
first element and the highest address to the last element.

Figure 14: Arrays Representation

5.1 One Dimensional Array

5.1.1 Declaring and Initialising

1 data type array name [a r r a y s i z e] ;
2 double balance [1 0] ;

balance is a variable array which is sufficient to hold up to 10 double numbers.size of
array defines the number of elements in an array. Each element of an array can be
accessed and used as per the need of the program.

1 int age [5]={2 , 4 , 34 , 3 , 4} ;
2 int age []={4 , 6 , 8 , 9 , 10} ;

In the second case the compiler determines the size of an array by calculating the number
of elements in an array.

Figure 15: Arrays Initialisation

Program to find sum of marks of n students

1 #include <s t d i o . h>
2 int main (){
3 int marks [1 0] , i , n , sum=0;
4 p r i n t f (” Enter number o f s tudents : ”) ;
5 s can f (”%d”,&n) ;
6 for (i =0; i<n;++ i){
7 p r i n t f (” Enter marks o f student%d : ” , i +1);
8 s can f (”%d”,&marks [i]) ;
9 sum+=marks [i] ;

10 }
11 p r i n t f (”Sum= %d” ,sum) ;
12 return 0 ;
13 }

32

5.2 MultiDimensional Array

C programming language allows programmer to create arrays of arrays known as mul-
tidimensional arrays.

1 f loat a [2] [6] ;

Figure 16: Arrays Initialisation

5.2.1 Initialisation of Multidimensional Arrays

1 int c [2] [3]={{1 ,3 , 0} ,{ −1 ,5 , 9}} ;
2 int c [2] [3]={1 ,3 , 0 , −1 ,5 , 9} ;

In the second case the compiler creates two rows from the given array.
Program to add two matrices

1 #include <s t d i o . h>
2 int main (){
3 f loat a [2] [2] , b [2] [2] , c [2] [2] ;
4 int i , j ;
5 p r i n t f (” Enter the e lements o f 1 s t matrix\n”) ;
6

7 for (i =0; i <2;++ i)
8 for (j =0; j<2;++j){
9 p r i n t f (” Enter a%d%d : ” , i +1, j +1);

10 s can f (”%f ” ,&a [i] [j]) ;
11 }
12

13 p r i n t f (” Enter the e lements o f 2nd matrix\n”) ;
14 for (i =0; i <2;++ i)
15 for (j =0; j<2;++j){
16 p r i n t f (” Enter b%d%d : ” , i +1, j +1);
17 s can f (”%f ” ,&b [i] [j]) ;
18 }
19

20 for (i =0; i <2;++ i)
21 for (j =0; j<2;++j){
22 c [i] [j]=a [i] [j]+b [i] [j] ;
23 }
24 p r i n t f (”\nSum Of Matrix : ”) ;
25 for (i =0; i <2;++ i)
26 for (j =0; j<2;++j){
27 p r i n t f (”%.1 f \ t ” , c [i] [j]) ;
28 i f (j==1)
29 p r i n t f (”\n”) ;
30 }
31 return 0 ;
32 }

Program to Multiply Two matrices

1 #include <s t d i o . h>

33

2 int main ()
3 {
4 int m, n , p , q , c , d , k , sum = 0 ;
5 int f i r s t [1 0] [1 0] , second [1 0] [1 0] , mul t ip ly [1 0] [1 0] ;
6

7 p r i n t f (” Enter rows and columns o f f i r s t matrix\n”) ;
8 s can f (”%d%d” , &m, &n) ;
9 p r i n t f (” Enter the e lements o f f i r s t matrix\n”) ;

10

11 for (c = 0 ; c < m; c++)
12 for (d = 0 ; d < n ; d++)
13 s can f (”%d” , &f i r s t [c] [d]) ;
14

15 p r i n t f (” Enter rows and columns o f second matrix\n”) ;
16 s can f (”%d%d” , &p , &q) ;
17

18 i f (n != p)
19 p r i n t f (”can ’ t be m u l t i p l i e d with each other .\n”) ;
20 else
21 {
22 p r i n t f (” Enter the e lements o f second matrix\n”) ;
23

24 for (c = 0 ; c < p ; c++)
25 for (d = 0 ; d < q ; d++)
26 s can f (”%d” , &second [c] [d]) ;
27

28 for (c = 0 ; c < m; c++) {
29 for (d = 0 ; d < q ; d++) {
30 for (k = 0 ; k < p ; k++) {
31 sum = sum + f i r s t [c] [k]∗ second [k] [d] ;
32 }
33

34 mult ip ly [c] [d] = sum ;
35 sum = 0 ;
36 }
37 }
38

39 p r i n t f (”Product o f entered matr i ce s :−\n”) ;
40

41 for (c = 0 ; c < m; c++) {
42 for (d = 0 ; d < q ; d++)
43 p r i n t f (”%d\ t ” , mul t ip ly [c] [d]) ;
44

45 p r i n t f (”\n”) ;
46 }
47 }
48

49 return 0 ;
50 }

5.3 String

Strings are actually one-dimensional array of characters terminated by a null character.
Thus a null-terminated string contains the characters that comprise the string followed
by a null.The following declaration and initialization create a string consisting of the
word ”Hello”. To hold the null character at the end of the array, the size of the character
array containing the string is one more than the number of characters in the word
”Hello.”

34

1 char g r e e t i n g [6]= ” He l lo ” ;
2 char g r e e t i n g [6]={ ’H ’ , ’ e ’ , ’ l ’ , ’ l ’ , ’ o ’ , ’ \0 ’ } ;

Figure 17: String Representation

5.3.1 Accessing Strings

1 //no need to use address & in scan f f o r s t r i n g s
2 s can f (”%s ” , g r e e t i n g) ;
3 ge t s (g r e e t i n g) ;
4

5 p r i n t f (”%s ” , g r e e t i n g) ;
6 puts (g r e e t i n g) ;

5.3.2 String related fuctions

• strcpy(s1,s2) copies string s2 into the string s1.

• strcat(s1,s2) concatenates string s2 onto the end of string s1

• strlen(s1) returns the length of string s1

• strcmp(s1,s2) returns 0 if s1 and s2 are the same, less than 0 if s1<s2 and greater
than 0 if s1>s2

• strrev(s1) reverses the string s1 and places it in s1

35

6 Function

6.1 Function Definition

A function is a group of statements that together perform a task. Every C program
has at least one function, which is main(), and all the most trivial programs can define
additional functions.A function declaration tells the compiler about a function’s name,
return type, and parameters. A function definition provides the actual body of the
function.

6.2 Types of C function

There are two types of C functions

• Library Function

• User Defined Function

6.2.1 Library Function

Library functions are the in-built function in C programming system.

1 main ()
2 p r i n t f ()
3 s can f ()
4 s t r cpy ()
5 s t r c a t ()
6 strcmp ()

are the examples of Library functions available in C.

6.3 User Defined Function

C allows programmer to define their own function according to their requirement. These
types of functions are known as user-defined functions.
Function Prototype(Declaration)
Every function in C programming should be declared before they are used. These type
of declaration are also called function prototype. Function prototype gives compiler
information about function name, type of arguments to be passed and return type.

1 int add (int a , int b) ;

6.4 Defining a Function

The general form of a function definition in C programming language is as follows

1 r e tu rn type funct ion name (parameter l i s t) {
2 body o f the func t i on
3 }

A function definition in C Programming consists of a function header and a function
body.Here are all parts of a function.

• Return Type A function may return a value. The return type is the data type
of the value the function returns. Some functions perform the desired operations
without returning a value. In this case, the return type is the keyword void.

• Function Name This is the actual name of the function. The function name and
the parameter list together constitute the function signature.

36

• Parameters A parameter is like a placeholder. When a function is invoked, you
pass a value to the parameter. This value is referred to as actual parameter
or argument. The parameter list refers to the type, order, and number of the
parameters of a function. Parameters are optional; that is, a function may contain
no parameters.

• Function Body The function body contains a collection of statements that define
what the function does.

6.5 Calling a function

Function with return and without return can be called to using the different syntax.

1 add (a , b) ; // c a l l i n g func t i on wi thout re turn
2 c=add (a , b) ; // c a l l i n g func t i on wi th re turn

6.6 Call by Value

If data is passed by value, the data is copied from the variable used in for example main()
to a variable used by the function. So if the data passed (that is stored in the function
variable) is modified inside the function, the value is only changed in the variable used
inside the function.

1 #include <s t d i o . h>
2 void c a l l b y v a l u e (int x) {
3 p r i n t f (” I n s i d e func t i on x = %d be fo r e adding 10 .\n” , x) ;
4 x += 10 ;
5 p r i n t f (” I n s i d e func t i on x = %d a f t e r adding 10 .\n” , x) ;
6 }
7 int main () {
8 int a=10;
9

10 p r i n t f (”a = %d be fo r e func t i on .\n” , a) ;
11 c a l l b y v a l u e (a) ;
12 p r i n t f (”a = %d a f t e r func t i on .\n” , a) ;
13 return 0 ;
14 }

In the main() we create a integer that has the value of 10. We print some information at
every stage, beginning by printing our variable a. Then function call by value is called
and we input the variable a. This variable (a) is then copied to the function variable x.
In the function we add 10 to x (and also call some print statements). Then when the
next statement is called in main() the value of variable a is printed. We can see that
the value of variable a isn’t changed by the call of the function call by value().

6.7 Call by Reference

If data is passed by reference, a pointer to the data is copied instead of the actual
variable as is done in a call by value. Because a pointer is copied, if the value at that
pointers address is changed in the function, the value is also changed in main().

1 #include <s t d i o . h>
2 void c a l l b y r e f e r e n c e (int ∗y) {
3 p r i n t f (” I n s i d e func t i on y = %d be fo r e adding 10 .\n” , ∗y) ;
4 (∗y) += 10 ;
5 p r i n t f (” I n s i d e func t i on y = %d a f t e r adding 10 .\n” , ∗y) ;
6 }

37

7 int main () {
8 int b=10;
9 p r i n t f (”b = %d be fo r e func t i on .\n” , b) ;

10 c a l l b y r e f e r e n c e (&b) ;
11 p r i n t f (”b = %d a f t e r func t i on .\n” , b) ;
12 return 0 ;
13 }

We start with an integer b that has the value 10. The function call by reference() is
called and the address of the variable b is passed to this function. Inside the function
there is some before and after print statement done and there is 10 added to the value
at the memory pointed by y. Therefore at the end of the function the value is 20. Then
in main() we again print the variable b and as you can see the value is changed (as
expected) to 20.

6.8 Passing array as an argument to a function

Likewise int and floats an array can be passed as an argument to the function .

1 f loat l a r g e s t (f loat a [] , int s i z e) ;
2 main (){
3 f loat value [4] ={2 . 5 , −1 . 6 , 3 . 4 , 6 . 8} ;
4 p r i n t f (”%f \n” , l a r g e s t (value , 4)) ;
5 }
6 f loat l a r g e s t (f loat a [] , int s i z e){
7 int i ;
8 f loat max ;
9 max=a [0] ;

10 for (i =1; i<s i z e ; i ++){
11 i f (max<a [i])
12 max=a [i] ;
13 return (max) ;
14 }
15 }

6.9 Storage Class in C

6.9.1 auto

The auto storage class is the default storage class for all local variables.

1 {
2 int mount ;
3 auto int month ;
4 }

The example above defines two variables with in the same storage class. ’auto’ can only
be used within functions, i.e., local variables.

6.9.2 register

The register storage class is used to define local variables that should be stored in a
register instead of RAM. This means that the variable has a maximum size equal to the
register size (usually one word) and can’t have the unary ’&’ operator applied to it (as
it does not have a memory location).

1 {
2 register int mi le s ;
3 }

38

The register should only be used for variables that require quick access such as counters.
It should also be noted that defining ’register’ does not mean that the variable will
be stored in a register. It means that it MIGHT be stored in a register depending on
hardware and implementation restrictions.

6.9.3 static

The static storage class instructs the compiler to keep a local variable in existence during
the life-time of the program instead of creating and destroying it each time it comes into
and goes out of scope. Therefore, making local variables static allows them to maintain
their values between function calls.The static modifier may also be applied to global
variables. When this is done, it causes that variable’s scope to be restricted to the file
in which it is declared.In C programming, when static is used on a class data member,
it causes only one copy of that member to be shared by all the objects of its class.

1 #include <s t d i o . h>
2 void func (void) ;
3 stat ic int count = 5 ; /∗ g l o b a l v a r i a b l e ∗/
4 main () {
5 while (count−−) {
6 func () ;
7 }
8 return 0 ;
9 }

10 /∗ f unc t i on d e f i n i t i o n ∗/
11 void func (void) {
12 stat ic int i = 5 ; /∗ l o c a l s t a t i c v a r i a b l e ∗/
13 i ++;
14 p r i n t f (” i i s %d and count i s %d\n” , i , count) ;
15 }

6.9.4 extern

The extern storage class is used to give a reference of a global variable that is visible
to ALL the program files. When you use ’extern’, the variable cannot be initialized
however, it points the variable name at a storage location that has been previously
defined.When you have multiple files and you define a global variable or function, which
will also be used in other files, then extern will be used in another file to provide the
reference of defined variable or function. Just for understanding, extern is used to declare
a global variable or function in another file.

6.10 Recursion

A function that calls itself is known as recursive function and this technique is known as
recursion in C programming.Recursion is more elegant and requires few variables which
make program clean. Recursion can be used to replace complex nesting code by dividing
the problem into same problem of its sub-type.In other hand, it is hard to think the
logic of a recursive function. It is also difficult to debug the code containing recursion.

6.10.1 Factorial Using Recursion

1 #include<s t d i o . h>
2 int f a c t o r i a l (int n) ;
3 int main ()
4 {

39

5 int n ;
6 p r i n t f (” Enter an p o s i t i v e i n t e g e r : ”) ;
7 s can f (”%d”,&n) ;
8 p r i n t f (” F a c t o r i a l o f %d = %ld ” , n , f a c t o r i a l (n)) ;
9 return 0 ;

10 }
11 int f a c t o r i a l (int n)
12 {
13 i f (n !=1)
14 return n∗ f a c t o r i a l (n−1);
15 }

6.10.2 Fibonacci Series Using Recursion

1 #include<s t d i o . h>
2 int Fibonacc i (int) ;
3 main ()
4 {
5 int n , i = 0 , c ;
6 s can f (”%d”,&n) ;
7 p r i n t f (” Fibonacc i s e r i e s \n”) ;
8 for (c = 1 ; c <= n ; c++)
9 {

10 p r i n t f (”%d\n” , Fibonacc i (i)) ;
11 i ++;
12 }
13 return 0 ;
14 }
15 int Fibonacc i (int n)
16 {
17 i f (n == 0)
18 return 0 ;
19 else i f (n == 1)
20 return 1 ;
21 else
22 return (Fibonacc i (n−1) + Fibonacc i (n−2)) ;
23 }

6.11 Preprocessor Directives

Before a C program is compiled in a compiler, source code is processed by a program
called preprocessor. This process is called preprocessing.Commands used in preprocessor
are called preprocessor directives and they begin with “#” symbol.

1 #include<s t d i o . h>
2 #define he ight 100
3 #define number 3 .14
4 #define l e t t e r ’A ’
5 #define l e t t e r s e q u e n c e ”ABC”
6 #define backs l a sh char ’ \? ’
7 void main ()
8 {
9 p r i n t f (” va lue o f he ight : %d\n” , he ight) ;

10 p r i n t f (” va lue o f number : %f \n” , number) ;
11 p r i n t f (” va lue o f l e t t e r : %c\n” , l e t t e r) ;
12 p r i n t f (” va lue o f l e t t e r s e q u e n c e : %s \n” , l e t t e r s e q u e n c e) ;
13 p r i n t f (” va lue o f backs lah char : %c\n” , back s l a sh char) ;
14 getch () ;
15

16 }

40

Preprocessor Syntax Description

Macro #define macro defines con-
stant value and can
be any of the basic
data types

Header Inclusion
Files

#include<file name> source code of the file
file name is included
in the program at the
specified place

Conditional Compi-
lation

#ifedf, #en-
dif,#if,#else

set of commands are
included or excluded
in source program
before compilation
with respect to the
condition

Other directives #undef,#pragma #undef is used
to undefine a de-
fined macro vari-
able.#pragma is
used to call a func-
tion before and
after function in C
program.

Table 2: Preprocessor Directives

6.12 Macro Substitution

One of the major use of the preprocessor directives is the creation of macros.Macro
Substitution is a process where an identifier in a program is replaced by a predefined
string composed of one or more tokens.The general form of macro definition is

1 #define i d e n t i f i e r s t r i n g
2 #define count 100
3 #define area 5∗12.46
4 #define cube (x) (x∗x∗x)

41

Figure 18: C program Compilation

7 Pointer

A pointer is a variable whose value is the address of another variable, i.e., direct address
of the memory location. Like any variable or constant, you must declare a pointer before
using it to store any variable address. The general form of a pointer variable declaration
is

1 type ∗var−name ;

Here, type is the pointer’s base type; it must be a valid C data type and var-name is
the name of the pointer variable. The asterisk * used to declare a pointer is the same
asterisk used for multiplication. However, in this statement the asterisk is being used to
designate a variable as a pointer. Take a look at some of the valid pointer declarations

1 int ∗ ip ; /∗ po in t e r to an i n t e g e r ∗/
2 double ∗dp ; /∗ po in t e r to a doub le ∗/
3 f loat ∗ fp ; /∗ po in t e r to a f l o a t ∗/
4 char ∗ch /∗ po in t e r to a charac t e r ∗/

7.1 Using Pointers

1 #include <s t d i o . h>
2 int main () {
3

4 int var = 20 ; /∗ ac t ua l v a r i a b l e d e c l a r a t i on ∗/
5 int ∗ ip ; /∗ po in t e r v a r i a b l e d e c l a r a t i on ∗/
6 ip = &var ; /∗ s t o r e address o f var in po in t e r v a r i a b l e ∗/

42

7

8 p r i n t f (” Address o f var v a r i a b l e : %x\n” , &var) ;
9 /∗ address s t o r ed in po in t e r v a r i a b l e ∗/

10 p r i n t f (” Address s to r ed in ip v a r i a b l e : %x\n” , ip) ;
11 /∗ acces s the va lue us ing the po in t e r ∗/
12 p r i n t f (”Value o f ∗ ip v a r i a b l e : %d\n” , ∗ ip) ;
13

14 return 0 ;
15 }

7.2 Null Pointer

It is always a good practice to assign a NULL value to a pointer variable in case you do
not have an exact address to be assigned. This is done at the time of variable declaration.
A pointer that is assigned NULL is called a null pointer.

1 #include <s t d i o . h>
2 int main () {
3

4 int ∗ptr = NULL;
5 p r i n t f (”The value o f ptr i s : %x\n” , ptr) ;
6 return 0 ;
7 }

7.3 Pointer Arithmetic

A pointer in c is an address, which is a numeric value. Therefore, you can perform
arithmetic operations on a pointer just as you can on a numeric value. There are four
arithmetic operators that can be used on pointers: ++, –, +, and -.

1 ptr++

After the above operation, the ptr will point to the location 1004 because each time
ptr is incremented, it will point to the next integer location which is 2 bytes next to
the current location in 16 bit system. This operation will move the pointer to the next
memory location without impacting the actual value at the memory location. If ptr
points to a character whose address is 1000, then the above operation will point to the
location 1001 because the next character will be available at 1001.

7.3.1 Incrementing Pointer

We prefer using a pointer in our program instead of an array because the variable pointer
can be incremented, unlike the array name which cannot be incremented because it is a
constant pointer.

1 #include <s t d i o . h>
2 int main () {
3

4 int var [3] = {10 , 100 , 200} ;
5 int i , ∗ptr ;
6

7 /∗ l e t us have array address in po in t e r ∗/
8 ptr = var ;
9

10 for (i = 0 ; i < 3 ; i++) {
11 p r i n t f (” Address o f var [%d] = %x\n” , i , ptr) ;
12 p r i n t f (”Value o f var [%d] = %d\n” , i , ∗ptr) ;
13 /∗ move to the next l o c a t i o n ∗/
14 ptr++;

43

15 }
16 return 0 ;
17 }

7.3.2 Decrementing a Pointer

Likewise the increment of pointer the pointer variable can also be decremented which is
shown as:

1 i n c lude <s t d i o . h>
2 int main () {
3

4 int var [3] = {10 , 100 , 200} ;
5 int i , ∗ptr ;
6 /∗ l e t us have array address in po in t e r ∗/
7 ptr = &var [2] ;
8 for (i = 2 ; i >= 0 ; i−−) {
9 p r i n t f (” Address o f var [%d] = %x\n” , i , ptr) ;

10 p r i n t f (”Value o f var [%d] = %d\n” , i , ∗ptr) ;
11 /∗ move to the prev ious l o c a t i o n ∗/
12 ptr−−;
13 }
14 return 0 ;
15 }

7.4 Definition Pointer to Arrays

An array name is a constant pointer to the first element of the array. Therefore, in the
declaration

1 double balance [5 0] ;

balance is a pointer to &balance[0], which is the address of the first element of the array
balance. Thus, the following program fragment assigns p as the address of the first
element of balance.

1 double ∗p ;
2 double balance [1 0] ;
3 p = balance ; //p=&ba lance [0] ;

It is legal to use array names as constant pointers, and vice versa. Therefore, *(balance
+ 4) is a legitimate way of accessing the data at balance[4].Once you store the address
of the first element in ’p’, you can access the array elements using *p, *(p+1), *(p+2)
and so on.

1 #include <s t d i o . h>
2 int main () {
3

4 /∗ an array wi th 5 e lements ∗/
5 double balance [5] = {1000 .0 , 2 . 0 , 3 . 4 , 17 . 0 , 5 0 . 0} ;
6 double ∗p ;
7 int i ;
8 p = balance ; //p=&ba lance [0]
9

10 /∗ output each array element ’ s va lue ∗/
11 p r i n t f (”Array va lue s us ing po in t e r \n”) ;
12 for (i = 0 ; i < 5 ; i++) {
13 p r i n t f (” ∗(p + %d) : %f \n” , i , ∗(p + i)) ;
14 }

44

15 p r i n t f (”Array va lue s us ing balance as address \n”) ;
16

17 for (i = 0 ; i < 5 ; i++) {
18 p r i n t f (” ∗(ba lance + %d) : %f \n” , i , ∗(ba lance + i)) ;
19 }
20 return 0 ;
21 }

1 main (){
2 int ∗p , sum , i ;
3 int x [5]={5 , 9 , 6 , 7 , 3} ;
4 i =0;
5 p=x ; //p=&x [0] ;
6

7 while (i <5){
8 p r i n t f (”x[%d] %d %u” , i ,∗p , p) ;
9 sum=sum+∗p ;

10 i ++; p++;
11 }
12 p r i n t f (”\n sum=%d\n” ,sum) ;
13 }

Here the base address of array x is assigned to the pointer p. sum adds the value of
the int pointed by the pointer p using (*p) indirection operator and the increment i++
increases the value of the variable i by i and the increment p++ increase the value of
the address pointed by p which is an integer and infact increased by 2 bytes.Ultimately
the sum is calculated and printed.

7.5 Returning Multiple Values from a function

Return statement can return a single value. however multiple values can be returned
from functions using arguments that we pass to a function.The arguments that are
used to send out information are called output parameters.The mechanism of sending
back information through arguments is achieved using what are known as the address

operator(&) and indirection operator (*).

1 void mathoperation (int x , int y , int ∗ s , int ∗d) ;
2 main (){
3 int x=20,y=20, s , d ;
4 mathoperation (x , y,&s ,&d) ;
5 p r i n t f (”sum=%d\n d i f f=%d” , s , d) ;
6 }
7 void mathoperation (int a , int b , int ∗sum , int ∗ d i f f){
8 ∗sum=a+b ;
9 ∗ d i f f=a−b ;

10 }
11 }

The variables *sum and *diff are known as pointers and sum and diff as pointer vari-
ables.Since they are declared as the int, they can point to locations of int type data.

7.6 Pointer to String

As string can be considered as a character array. C supports an alternative way to create
strings using pointer variables of type char.

1 char ∗ s t r =”good” ;

45

This creates a string literal and then stores its address in the pointer variables str. The
pointer now pointer to the first character of the string good.we can print the content of
the str using printf or puts function

1 p r i n t f (”%s ” , s t r) ;
2 puts (s t r) ;

Remember although str is a pointer to the string, it is also the name of the string.
Therefore we do not need an indirection operator *.

1 main (){
2 char ∗name ;
3 int l ength ;
4 char ∗ cptr=name ;
5 name=”DELHI”
6 p r i n t f (”%s \n” ,name) ;
7 while (∗ cptr != ’ \0 ’){
8 p r i n t f (”%c i s s to r ed at address at %u\n” ,∗ cptr , cpt r) ;
9 cptr++;

10 }
11 l ength=cptr−name ;
12 p r i n t f (”\n Length o f S t r ing i s =%d\n” ,name) ;
13 }

7.7 Double pointer

Stores the address of a pointer variable. Generally declared as

1 ∗∗ ptr ;

1 #include<s t d i o . h>
2 int main ()
3 {
4

5 int num = 45 , ∗ptr , ∗∗ ptr2pt r ;
6 ptr = #
7 ptr2pt r = &ptr ;
8 p r i n t f (”%d” ,∗∗ ptr2pt r) ;
9 return (0) ;

10 }

7.8 Dynamic Memory Allocation

The exact size of array is unknown untill the compile time,i.e., time when a compier
compiles code written in a programming language into a executable form. The size of
array you have declared initially can be sometimes insufficient and sometimes more than
required. Dynamic memory allocation allows a program to obtain more memory space,
while running or to release space when no space is required.

7.8.1 Malloc

The name malloc stands for ”memory allocation”. The function malloc() reserves a
block of memory of specified size and return a pointer of type void which can be casted
into pointer of any form

1 ptr=(cast−type ∗) mal loc (byte−s i z e)

46

Function Use of Function

malloc Allocates requested size of bytes and returns a
pointer first byte of allocated space

calloc Allocates space for an array elements, initializes
to zero and then returns a pointer to memory

free dellocate the previously allocated space

realloc Change the size of previously allocated space

Table 3: Function Dynamic Memory Allocation

Here, ptr is pointer of cast-type. The malloc() function returns a pointer to an area of
memory with size of byte size. If the space is insufficient, allocation fails and returns
NULL pointer.

1 ptr=(int ∗) mal loc (100∗ s izeof (int)) ;

This statement will allocate either 200 or 400 according to size of int 2 or 4 bytes
respectively and the pointer points to the address of first byte of memory.

7.8.2 Calloc

The name calloc stands for ”contiguous allocation”. The only difference between mal-
loc() and calloc() is that, malloc() allocates single block of memory whereas calloc()
allocates multiple blocks of memory each of same size and sets all bytes to zero.

1 ptr=(cast−type ∗) c a l l o c (n , element−s i z e) ;

This statement will allocate contiguous space in memory for an array of n elements.

1 ptr=(f loat ∗) c a l l o c (25 , s izeof (f loat)) ;

This statement allocates contiguous space in memory for an array of 25 elements each
of size of float, i.e, 4 bytes.

7.8.3 free

Dynamically allocated memory with either calloc() or malloc() does not get return on
its own. The programmer must use free() explicitly to release space.

1 f r e e (ptr) ;

This statement cause the space in memory pointer by ptr to be deallocated.
Find sum of n elements entered using malloc

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 int main (){
4 int n , i ,∗ ptr , sum=0;
5 p r i n t f (” Enter number o f e lements : ”) ;
6 s can f (”%d”,&n) ;
7 ptr=(int ∗) mal loc (n∗ s izeof (int)) ; //mal loc a l l o c a t i o n
8 i f (ptr==NULL)
9 {

10 p r i n t f (” Error ! memory not a l l o c a t e d . ”) ;
11 e x i t (0) ;
12 }
13 p r i n t f (” Enter e lements o f array : ”) ;
14 for (i =0; i<n;++ i)

47

15 {
16 s can f (”%d” , ptr+i) ;
17 sum+=∗(ptr+i) ;
18 }
19 p r i n t f (”Sum=%d” ,sum) ;
20 f r e e (ptr) ;
21 return 0 ;
22 }

Find sum of n elements entered using malloc

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 int main (){
4 int n , i ,∗ ptr , sum=0;
5 p r i n t f (” Enter number o f e lements : ”) ;
6 s can f (”%d”,&n) ;
7 ptr=(int ∗) c a l l o c (n , s izeof (int)) ;
8 i f (ptr==NULL)
9 {

10 p r i n t f (” Error ! memory not a l l o c a t e d . ”) ;
11 e x i t (0) ;
12 }
13 p r i n t f (” Enter e lements o f array : ”) ;
14 for (i =0; i<n;++ i)
15 {
16 s can f (”%d” , ptr+i) ;
17 sum+=∗(ptr+i) ;
18 }
19 p r i n t f (”Sum=%d” ,sum) ;
20 f r e e (ptr) ;
21 return 0 ;
22 }

48

8 Structure and Unions

A structure is a collection of logically related data items grouped together under a
single name, called structure tag.The data items enclosed within a structure are known
as members. The members can be of same or different data types.

1 struct structure name
2 {
3 data type member1 ;
4 data type member2 ;
5 data type member3 ;
6 }

Examples of Structure can be as follows

1 struct employee{
2 int emp id ;
3 char name [2 5] ;
4 int age ;
5 f loat s a l a r y ;
6

7 }e1 , e2 ;

The members of a structure do not occupy memory until they are associated with a
structure variable. Above examples shows the structure variable e1 and e2 of structure
employee.

8.1 Accessing Members of Structure

The members of a structure can be accessed with the help of .(dot) operator. The syntax
for accessing the members of the structure variable is as follows

1 s t r u c t v a r i a b l e . member
2 struct employee e1 ;
3 e1 . emp id ;
4 e1 . name ;
5 e1 . s a l a r y ;

8.2 Initialising Structure

The values to the members of the structure must appear in the order as in the definition
of the structure within braces and separated by the commas. C does not allow the
initialisation of individual structure members as within the definition.The general from
is

1 s t ruc t namevar i ab l e={value 1 , va lue 2 , va lue n } ;
2 struct employee
3 {
4 int emp id ;
5 char name [2 5] ;
6 int age ;
7 f loat s a l a r y ;
8

9 } ;
10 struct employee e1 ={555 ,”Sudip” , 25 , 80000 . 0} ;

The members of the variable e1 emp id,name,age,salary are initialised to 555, ”Sudip”,25,80000.0

49

8.3 Array of Structure

Likewise the array of data types arrays of structure can be initialised.

1 #include<s t d i o . h>
2 #include<con io . h>
3 struct employee{
4 int emp id ;
5 char name [2 5] ;
6 int age ;
7 f loat s a l a r y ;
8 }
9 int main ()

10 {
11 struct employee e [5 0] ;
12 int i , n ;
13 for (i =0; i <50; i++)
14 {
15 p r i n t f (” Enter id , name , age and s a l a r y ”) ;
16 s can f (”%d%s%d%f ” ,&e [i] . emp id , e [i] . name,&e [i] . age ,&e [i] . s a l a r y) ;
17 }
18 for (i =0; i <50; i ++){
19 p r i n t f (”Data on Employee %d” , i +1);
20 p r i n t f (”ID:%d” , e [i] . emp id) ;
21 p r i n t f (”Name:%s ” , e [i] . name) ;
22 p r i n t f (”Age:%d” , e [i] . age) ;
23 p r i n t f (” Sa lary :% f ” , e [i] . s a l a r y) ;
24 }
25 getch () ;
26 }

8.4 Nested Structure

Sometimes the member of structure needs to have multiple values, For the case the
members should be another variable of another structure type.C allows the member
structure to be the structure. The mechanism is called nesting of the structure. Nesting
enables to build powerful data structures.Following is an illustration of nested structure

1 struct date {
2 int day , month , year ;
3 } ;
4 struct employee{
5 int emp id ;
6 char name [2 5] ;
7 struct date dob ;
8 }

1 struct employee{
2 int emp id ;
3 char name [2 5] ;
4 struct date {
5 int day ;
6 int month ;
7 int year ;
8 }dob ;
9 }

Accessing the members of the nested structure

50

1 #include<s t d i o . h>
2 #include<con io . h>
3 struct employee{
4 int emp id ;
5 char name [2 5] ;
6 int age ;
7 f loat s a l a r y ;
8 struct date
9 {

10 int day ;
11 int month ;
12 int year ;
13 }dob ;
14 }
15 int main ()
16 {
17 struct employee e [5 0] ;
18 int i , n ;
19 for (i =0; i <50; i++)
20 {
21 p r i n t f (” Enter id , name , age and s a l a r y ”) ;
22 s can f (”%d%s%d%f ” ,&e [i] . emp id , e [i] . name,&e [i] . age ,&e [i] . s a l a r y) ;
23 p r i n t f (” Enter the date o f b i r t h ”) ;
24 s can f (”%d%d%d”,&e [i] . dob . day ,&e [i] . dob . month,&e [i] . dob . year) ;
25 }
26 for (i =0; i <50; i ++){
27 p r i n t f (”Data on Employee %d” , i +1);
28 p r i n t f (”ID:%d” , e [i] . emp id) ;
29 p r i n t f (”Name:%s ” , e [i] . name) ;
30 p r i n t f (”Age:%d” , e [i] . age) ;
31 p r i n t f (” Sa lary :% f ” , e [i] . s a l a r y) ;
32 p r i n t f (”Date o f Birth i s %d−%d−%d” , e [i] . dob . year ,
33 e [i] . dob . month , e [i] . dob . day) ;
34 }
35 getch () ;
36 }

8.5 Pointer to a structure

We can have a pointer that holds the address of the structure.We can declare a pointer
variable of a structure by writing

1 struct structname ∗ ps t ruc tvar ;

where struct is the required keyword structname represents the name of the userdefined
structure and pstructvar represents the name of the pointer variable.The address of the
structure variable to the pointer variable can be assigned as

1 ps t ruc tvar=&v a r i b a l e ;

Likewise the pointer to the structure variable can be accessed and processed as

1 (∗ struct name) . f i e ld name=v a r i a b l e ;

1 struct name−>f i e l d name=v a r i a b l e ;

1 #include<s t d i o . h>
2 struct employee
3 {
4 int emp id ;

51

5 char name [2 5] ;
6 int age ;
7 f loat s a l a r y ;
8 }
9 int main (){

10 struct employee e1 ={1,”Roshan” , 25 , 80000 . 0} ;
11 struct employee ∗ ps t ruc tva r ;
12 ps t ruc tvar=&e1 ;
13 p r i n t f (”Data on Employee”) ;
14 p r i n t f (”Emp ID=%d” , pst ructvar−>emp id) ;
15 p r i n t f (”Name=%s ” , pst ructvar−>char) ;
16 p r i n t f (”Age=%d” , pst ructvar−>age) ;
17 p r i n t f (” Sa lary=%f ” , pst ructvar−>s a l a r y) ;
18 getch () ;
19 return 1 ;
20 }

8.6 Self Referential Structure

A structure can have members which point to a structure variable of the same type.
These types of structure are called self referential structure. It is widely used in dy-
namic data structure like linklist, trees etc.Following is the syntax of the self referential
structure

1 struct struct name
2 {
3 data type member1 ;
4
5 struct struct name ∗next ;
6 }

The next refers to the name of a pointer variable to point structure of its own type. The
structure of type struct name will contain a member that points to another structure of
type struct name.

8.7 Union

Union are almost like structures with subtle differences.Declaration of the union is the
same as structure. Instead of the keyword struct the keyword union is used.

1 union union name{
2 data type member1 ;
3 data type member2 ;
4
5
6 data type member3 ;
7 }

8.8 Difference between Structure and Union

52

Structure Union

Keyword struct defines structure keyword union defines Union

1 struct mystructure {
2 int id ;
3 char name [2 0] ;
4 f loat age ;
5 } s1 ;

1 struct myunion{
2 int id ;
3 char name [2 0] ;
4 f loat age ;
5 }u1 ;

Within a structure all member gets
allocated and members have address
that increase as the declarators are
read left to right.The total size of
the structure is the sum of all the
members.

For a union compiler allocates the
memory for the largest of all mem-
ber.

Within a structure all members gets
memory allocated; therefore any
member can be retrieved at any
time.

While retrieving data from a union
the type that is being retrieved must
be the type most recently stored.

One or more members of structure
can be initialised at once.

A union may only be initialised with
a value of the type of its first mem-
ber.

Table 4: Difference between structure and union

9 File Handling in C

A file represents a sequence of bytes on the disk where a group of related data is stored.
File is created for permanent storage of data. It is a ready made structure.In C language,
we use a structure pointer of file type to declare a file.

1 FILE ∗ fp ;

9.1 Opening a File in C

The fopen() function is used to create a new file or to open an existing file.

1 ∗ fp = FILE ∗ fopen (const char ∗ f i l ename , const char ∗mode) ;
2 fp=fopen (” text . txt ” , ”w”) ;
3 //opens a f i l e t e x t . t x t in wr i t i n g mode

Here filename is the name of the file to be opened and mode specifies the purpose of
opening the file. *fp is the FILE pointer (FILE *fp), which will hold the reference to
the opened(or created) file.

9.2 Closing a File

The fclose() function is used to close an already opened file.

1 int f c l o s e (FILE ∗ fp) ;

Here fclose() function closes the file and returns zero on success, or EOF if there is an
error in closing the file. This EOF is a constant defined in the header file stdio.h.

53

mode description

r opens a text file in reading mode

w opens or create a text file in writing mode

a open a file in append mode

r+ opens a file in both reading and writing mode

w + opens a file in both reading and writing mode

a+ opens a file in both reading and writing mode

Table 5: File opening modes

9.3 Writing Character by Character in File

In the above table we have discussed about various file I/O functions to perform reading
and writing on file. getc() and putc() are simplest functions used to read and write
individual characters to a file

1 #include<s t d i o . h>
2 #include<con io . h>
3 main ()
4 {
5 FILE ∗ fp ;
6 char ch ;
7 fp = fopen (”one . txt ” , ”w”) ;
8 p r i n t f (” Enter data ”) ;
9 while ((ch = getchar ()) != EOF) {

10 putc (ch , fp) ;
11 }
12 f c l o s e (fp) ;
13 fp = fopen (”one . txt ” , ” r ”) ;
14 while ((ch = getc ()) != EOF)
15 p r i n t f (”%c” , ch) ;
16 f c l o s e (fp) ;
17 }

9.4 Reading and Writing From a file using fprintf() and fscanf()

1 #include<s t d i o . h>
2 #include<con io . h>
3 struct emp
4 {
5 char name [1 0] ;
6 int age ;
7 } ;
8

9 void main ()
10 {
11 struct emp e ;
12 FILE ∗p ,∗ q ;
13 p = fopen (”one . txt ” , ”a”) ;
14 q = fopen (”one . txt ” , ” r ”) ;
15 p r i n t f (” Enter Name and Age”) ;
16 s can f (”%s %d” , e . name , &e . age) ;
17 f p r i n t f (p , ”%s %d” , e . name , e . age) ;
18 f c l o s e (p) ;
19 do

54

20 {
21 f s c a n f (q , ”%s %d” , e . name , e . age) ;
22 p r i n t f (”%s %d” , e . name , e . age) ;
23 }
24 while (! f e o f (q)) ;
25 getch () ;
26 }

In this program, we have create two FILE pointers and both are refering to the same
file but in different modes. fprintf() function directly writes into the file, while fscanf()
reads from the file, which can then be printed on console usinf standard printf() function.

9.5 fread() and fwrite()

1 f w r i t e (ptr , int s i z e , int n , FILE ∗ fp) ;

The fwrite() function takes four arguments.
ptr : ptr is the reference of an array or a structure stored in memory.
size : size is the total number of bytes to be written.
n : n is number of times a record will be written.
FILE* : FILE* is a file where the records will be written in binary mode.

1 #include<s t d i o . h>
2 struct Student
3 {
4 int r o l l ;
5 char name [2 5] ;
6 f loat marks ;
7 } ;
8 void main ()
9 {

10 FILE ∗ fp ;
11 char ch ;
12 struct Student Stu ;
13 fp = fopen (” Student . dat ” , ”w”) ;
14 do
15 { p r i n t f (”\nEnter Rol l : ”) ;
16 s can f (”%d”,&Stu . r o l l) ;
17 p r i n t f (” Enter Name : ”) ;
18 s can f (”%s ” , Stu . name) ;
19 p r i n t f (” Enter Marks : ”) ;
20 s can f (”%f ” ,&Stu . marks) ;
21 f w r i t e (&Stu , s izeof (Stu) , 1 , fp) ;
22 p r i n t f (”\nDo you want to add another data (y/n) : ”) ;
23 ch = getche () ;
24 }while (ch==’ y ’ | | ch==’Y ’) ;
25 p r i n t f (”\nData wr i t t en s u c c e s s f u l l y . . . ”) ;
26 f c l o s e (fp) ;
27 }

1 f r ead (ptr , int s i z e , int n , FILE ∗ fp) ;

The fread() function takes four arguments.
ptr : ptr is the reference of an array or a structure where data will be stored after
reading.
size : size is the total number of bytes to be read from file.
n : n is number of times a record will be read.

55

FILE* : FILE* is a file where the records will be read.

1 #include<s t d i o . h>
2 struct Student
3 {
4 int r o l l ;
5 char name [2 5] ;
6 f loat marks ;
7 } ;
8 void main (){
9 FILE ∗ fp ;

10 char ch ;
11 struct Student Stu ;
12 fp = fopen (” Student . dat ” , ” r ”) ;
13 i f (fp == NULL)
14 {
15 p r i n t f (”\nCan ’ t open f i l e or f i l e doesn ’ t e x i s t . ”) ;
16 e x i t (0) ;
17 }
18 p r i n t f (”\n\ tRo l l \tName\ tMarks\n”) ;
19 while (f r ead (&Stu , s izeof (Stu) , 1 , fp)>0)
20 p r i n t f (”\n\ t%d\ t%s \ t%f ” , Stu . r o l l , Stu . name , Stu . marks) ;
21 f c l o s e (fp) ;
22 }

Write a program to write details of student to a file and read the same file and display
the records.

1 #include<s t d i o . h>
2 struct student {
3 char name [2 0] ;
4 int age ;
5 char dept [2 0] ;
6 } ;
7 int main (){
8 FILE ∗ fp ;
9 fp=fopen (” student . txt ” , ”w+”) ;

10 int i ;
11 struct student s [2] ;
12 for (i =0; i <2; i ++){
13 p r i n t f (” Enter name”) ;
14 s can f (”%s ” , s [i] . name) ;
15 p r i n t f (” Enter age ”) ;
16 s can f (”%d”,& s [i] . age) ;
17 p r i n t f (” Enter dept ”) ;
18 s can f (”%s ” , s [i] . dept) ;
19 f w r i t e (&s [i] , s izeof (s) , 1 , fp) ;
20 }
21 rewind (fp) ;
22 for (i =0; i <2; i ++){
23 f r ead (&s [i] , s izeof (s) , 1 , fp) ;
24 p r i n t f (”\n Name : %s \ t Age : %d\ t Department : %s ” ,
25 s [i] . name , s [i] . age , s [i] . dept) ;
26 }
27 f c l o s e (fp) ;
28 return 0 ;
29 }

56

Write a program to input data of 100 employee to a file and display records of those
employees living in ”Kathmandu”

1 #include<s t d i o . h>
2 #include<s t r i n g . h>
3 struct employee{
4 char name [2 0] ;
5 char address [2 0] ;
6 long te l ephone ;
7 f loat s a l a r y ;
8 struct dob{
9 int mm, dd , yy ;

10 }db ;
11

12 } ;
13 int main (){
14 struct employee e [1 0 0] ;
15 int i ;
16 FILE ∗ fp ;
17 fp=fopen (”employee . txt ” , ”w”) ;
18 for (int i = 0 ; i < 100 ; ++i)
19 {
20 p r i n t f (”\nEnter name”) ;
21 s can f (”%s ” , e [i] . name) ;
22 p r i n t f (”\nEnter address ”) ;
23 s can f (”%s ” , e [i] . address) ;
24 p r i n t f (”\nEnter te l ephone ”) ;
25 s can f (”%ld ” ,&e [i] . t e l ephone) ;
26 p r i n t f (”\nEnter s a l a r y ”) ;
27 s can f (”%f ” ,&e [i] . s a l a r y) ;
28 p r i n t f (”\nEnter date o f b i r t h in dd−mm−yyyy”) ;
29 s can f (”%d−%d−%d”,&e [i] . db . dd,&e [i] . db .mm,&e [i] . db . yy) ;
30 f w r i t e (&e [i] , s izeof (e) , 1 , fp) ;
31 }
32 for (int i = 0 ; i < 100 ; ++i)
33 {
34 i f (strcmp (”Kathmandu” , e [i] . address)==0)
35 {
36 p r i n t f (”\n%s ” , e [i] . name) ;
37 p r i n t f (”\n%s ” , e [i] . address) ;
38 p r i n t f (”\n%ld ” , e [i] . t e l ephone) ;
39 p r i n t f (”\n%f ” , e [i] . s a l a r y) ;
40 p r i n t f (”\n%d−%d−%d” , e [i] . db . dd , e [i] . db .mm, e [i] . db . yy) ;
41 }
42 }
43 return 0 ;
44 }

Write a program to read the name, author and price of 500 books in a library from the
file library.dat. Now print the book name and price of those books whose price is above
300.

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 struct book{
4 char name [1 0 0] ;
5 char author [1 0 0] ;
6 f loat p r i c e ;
7 } ;

57

8 int main ()
9 {

10 FILE ∗ fp ;
11 struct book b ;
12 fp=fopen (” l i b r a r y . dat” , ” r ”) ;
13

14 while (f r ead (&b , s izeof (b) , 1 , fp)>0){
15 i f (b . pr i c e >300.0)
16 {
17 p r i n t f (”%s \n” ,b . name) ;
18 p r i n t f (”%f \n” ,b . p r i c e) ;
19 }
20 }
21

22 return 0 ;
23 }

Write a program to create a ”student.txt” file to store the above records for 100 students.
Also display the records of students who are not from Pokhara.

1 #include <s t d i o . h>
2 #include <s t r i n g . h>
3 struct student
4 {
5 int r o l l ;
6 char name [2 0] ;
7 char address [2 0] ;
8 char f a c u l t y [2 0] ;
9 struct dob

10 {
11 int mm, dd , yy ;
12 }db ;
13 } ;
14 int main ()
15 {
16 FILE ∗ fp ;
17 int i ;
18 struct student s [1 0 0] ;
19 fp=fopen (” student . txt ” , ”w”) ;
20 for (int i = 0 ; i < 100 ; ++i)
21 {
22 p r i n t f (” Enter Rol l No .\n”) ;
23 s can f (”%d”,& s [i] . r o l l) ;
24 p r i n t f (”\nEnter name”) ;
25 s can f (”%s ” , s [i] . name) ;
26 p r i n t f (”\nEnter address ”) ;
27 s can f (”%s ” , s [i] . address) ;
28 p r i n t f (”\nEnter Faculty ”) ;
29 s can f (”%s ” , s [i] . f a c u l t y) ;
30 p r i n t f (”\n Enter date o f b i r t h in format dd−mm−yyyy”) ;
31 s can f (”%d−%d−%d”,& s [i] . db . dd,& s [i] . db .mm,& s [i] . db . yy) ;
32 f w r i t e (&s [i] , s izeof (s) , 1 , fp) ;
33 }
34 for (int i = 0 ; i < 100 ; ++i)
35 {
36 i f (strcmp (”Pokhara” , s [i] . address) !=0)
37 {
38 p r i n t f (”%d\n” , s [i] . r o l l) ;
39 p r i n t f (”%s \n” , s [i] . name) ;

58

40 p r i n t f (”%s \n” , s [i] . address) ;
41 p r i n t f (”%s \n” , s [i] . f a c u l t y) ;
42 p r i n t f (”%d−%d−%d\n” , s [i] . db . dd , s [i] . db .mm, s [i] . db . yy) ;
43 }
44 }
45 f c l o s e (fp) ;
46 return 0 ;
47 }

59

